JPH08217797A - Spa-1 protein and gene coding the same - Google Patents

Spa-1 protein and gene coding the same

Info

Publication number
JPH08217797A
JPH08217797A JP7051999A JP5199995A JPH08217797A JP H08217797 A JPH08217797 A JP H08217797A JP 7051999 A JP7051999 A JP 7051999A JP 5199995 A JP5199995 A JP 5199995A JP H08217797 A JPH08217797 A JP H08217797A
Authority
JP
Japan
Prior art keywords
protein
leu
spa
ala
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7051999A
Other languages
Japanese (ja)
Other versions
JP3683000B2 (en
Inventor
Nagahiro Minato
長博 湊
Masakazu Hattori
雅一 服部
Koji Kubota
浩司 久保田
Masatsugu Maeda
正嗣 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP05199995A priority Critical patent/JP3683000B2/en
Publication of JPH08217797A publication Critical patent/JPH08217797A/en
Application granted granted Critical
Publication of JP3683000B2 publication Critical patent/JP3683000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a new cell division mechanism control protein having a specific amino acid sequence, not manifested in stationary state and manifested in a nuclei after initiating a cell cycle and controlling cell division or differentiation of lymphocyte. CONSTITUTION: This new cell division mechanism controlling protein SPA-1 protein controls cell division or differentiation of lymphocyte and is not manifested in stationary state and manifested in a nucleus after initiating a cell cycle of lymphocyte in cell cycle of cell of mammals and has an amino acid sequence from the 1st methionine to 693th alanine or the amino acid sequence in which 1 or 2 or amino acids are added, lost or replaced in an amino acid sequence containing an amino acid sequence expressed by the formula. The protein is obtained by isolating mRNA from lymph-based cell strain, preparing cDNA library by ordinary method, screening the library with anti-SPA-1 monoclonal antibody, selecting clone containing SPA-1 gene and manifesting the gene in a host cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、細胞分裂の調節に関与
する蛋白質であるSPA−1蛋白質及びその断片、それ
らをコードする遺伝子、並びにそれらの蛋白質に対する
抗体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to SPA-1 protein and its fragments which are proteins involved in the regulation of cell division, genes encoding them, and antibodies to these proteins.

【0002】[0002]

【従来の技術】リンパ系の細胞は、その細胞増殖能にお
いて他の多くの体細胞と比べユニークな特性を有してい
る。即ちそれは、他の体細胞同様一定の前駆細胞から多
くの細胞分裂を経ながら分化し成熟した細胞となり、一
旦静止状態(G0/G1)に入る。その後これらが、抗
原や特定の増殖因子の刺激を受けると再び細胞周期に入
り一定の再分化をとげつつクローナルに増大し、やがて
また静止状態へと戻る(メモリー細胞)。生体の免疫応
答においては、リンパ球の特有な機能分化や発現と並ん
でこの反復性細胞増殖(クローン増幅)が極めて大きな
要素を成している。
2. Description of the Related Art Lymphoid cells have unique characteristics in their cell proliferating ability as compared with many other somatic cells. That is, like other somatic cells, it differentiates from a certain progenitor cell through many cell divisions to become a mature cell, and once enters a quiescent state (G0 / G1). After that, when they are stimulated by an antigen or a specific growth factor, they enter the cell cycle again and undergo clonal expansion with certain redifferentiation, and then return to a quiescent state (memory cells). In the immune response of the living body, this repetitive cell proliferation (clonal amplification) constitutes an extremely large factor in addition to the unique functional differentiation and expression of lymphocytes.

【0003】[0003]

【発明が解決しようとする課題】本発明は、前記の反復
性細胞増殖の制御に関与すると予想される新規な蛋白質
SPA−1及びその活性断片、それらをコードする遺伝
子、並びにそれらの蛋白質に対する抗体を提供しようと
するものである。
DISCLOSURE OF THE INVENTION The present invention relates to the novel protein SPA-1 and its active fragment which are expected to be involved in the control of repetitive cell growth, genes encoding them, and antibodies to these proteins. Is to provide.

【0004】[0004]

【課題を解決するための手段】本発明は、哺乳類の細胞
の細胞周期において、静止状態では発現されず細胞周期
進入後に核内に発現される細胞分裂機構調節蛋白質に関
する。この蛋白質はSPA−1と称され、図2に示す構
造を有する。cDNAの塩基配列から推定されるSPA
−1のアミノ酸配列は、配列番号:1において1位のM
etから始まり、693位のAlaに終るアミノ酸配列
を有する。
The present invention relates to a cell division mechanism regulatory protein that is not expressed in a quiescent state in the cell cycle of mammalian cells but is expressed in the nucleus after entering the cell cycle. This protein is called SPA-1 and has the structure shown in FIG. SPA deduced from the cDNA base sequence
The amino acid sequence of -1 is M at position 1 in SEQ ID NO: 1.
It has an amino acid sequence starting from et and ending at Ala at position 693.

【0005】しかしながら、本発明のポリペプチド又は
蛋白質は、上記のものに限定されず、正確なアミノ酸配
列内の小さな変更があっても本発明の活性を有する場合
には本発明の範囲に含まれる。このような変更には、配
列内のアミノ酸の置き換え、及び1又は複数のアミノ酸
の付加と又は欠失が含まれ、そして本発明の活性が維持
される限り、これらの変形もまた定義に含まれる。
However, the polypeptide or protein of the present invention is not limited to the above-mentioned ones, and is included in the scope of the present invention when it has the activity of the present invention even if there is a small change in the correct amino acid sequence. . Such alterations include amino acid substitutions within the sequence, and additions or deletions of one or more amino acids, and variations thereof are also included in the definition so long as the activity of the present invention is maintained. .

【0006】ここで、アミノ酸の付加、欠失又は置換は
出願前周知技術である部位特定変異誘発(例えば、Nu
cleic Acid Research,Vol.1
0,No.20,p6487〜6500,1982を参
照のこと)により実施することができ、アミノ酸の付
加、欠失又は置換に関し、1又は複数のアミノ酸とは、
部位特定変異誘発法により付加、欠失又は置換できる程
度の数のアミノ酸を意味する。
[0006] Here, addition, deletion or substitution of amino acids is a well-known technique before application, such as site-directed mutagenesis (eg Nu
cleic Acid Research, Vol. 1
0, No. 20, p6487-6500, 1982), and one or more amino acids in relation to addition, deletion or substitution of amino acids,
It means a sufficient number of amino acids that can be added, deleted or substituted by the site-directed mutagenesis method.

【0007】上記のポリペプチド又は蛋白質は、遺伝子
工学的方法により、上記のポリペプチド又は蛋白質のア
ミノ酸配列をコードする遺伝子を発現させることにより
製造することができる。上記ポリペプチドをコードする
遺伝子は、cDNA、ゲノムDNA又は化学合成DNA
として得ることができる。
The above-mentioned polypeptide or protein can be produced by a gene engineering method by expressing a gene encoding the amino acid sequence of the above-mentioned polypeptide or protein. The gene encoding the above polypeptide is cDNA, genomic DNA or chemically synthesized DNA.
Can be obtained as

【0008】SPA−1をコードするcDNAは、リン
パ球の静止期(G0 /G1 期)にはほとんど発現され
ず、増殖期(S期)に発現される遺伝子をクローニング
することにより得られる。例えばG0 /G1 期及びS期
のリンパ球から、常法に従ってcDNAを調製し、これ
らをハイブリダイズせしめ、S期に由来するcDNAと
ハイブリダイズしないG0 /G1 期由来のcDNAを選
択することによりSPA−1をコードするcDNAが得
られる。具体的な方法の1例を実施例1(1)に記載す
る。
The cDNA encoding SPA-1 is hardly expressed in the quiescent phase (G 0 / G 1 phase) of lymphocytes, and can be obtained by cloning a gene expressed in the proliferative phase (S phase). . For example, cDNA is prepared from G 0 / G 1 phase and S phase lymphocytes according to a conventional method, hybridized with these, and a G 0 / G 1 phase-derived cDNA that does not hybridize with the S phase-derived cDNA is selected. By doing so, a cDNA encoding SPA-1 can be obtained. One example of a specific method is described in Example 1 (1).

【0009】ゲノムDNAを得るには、例えば対象動物
からゲノムDNAライブラリーを作製し、これを、前記
のようにして得られたcDNA、例えば全長cDNAを
プローブとして用いてスクリーニングすることにより得
られる。この具体的な方法を実施例3に具体的に記載す
る。例えばSPA−1をコードするゲノムDNAは、ゲ
ノムDNAの5.7kbp のBamHI断片(Spa−G
C2と称する)及び6.6kbp のBamHI断片(Sp
a−GC9と称する)として得られる。
In order to obtain the genomic DNA, for example, a genomic DNA library is prepared from the target animal, and this is screened by using the cDNA obtained as described above, for example, the full-length cDNA as a probe. This concrete method is concretely described in Example 3. For example, a genomic DNA encoding SPA-1 is a 5.7 kbp BamHI fragment (Spa-G) of genomic DNA.
C2) and 6.6 kbp BamHI fragment (Sp
a-GC9)).

【0010】図5並びに配列番号:2及び3に示すごと
く5.7kbp のDNA断片(Spa−GC2)には4個
のエクソン(エクソン1〜4)が含まれており、これら
は5.7kbp 断片の3′−末端側の約2.5kbp 部位に
存在する。また6.6kbp 断片(Spa−GC9)には
12個のエクソン(エクソン5〜16)が散在してい
る。これらのエクソン1〜16が前記のcDNAの全体
を含んでいる。また、cDNAのコード領域はエクソン
5の後半からエクソン16の前半に含まれている。
As shown in FIG. 5 and SEQ ID NOs: 2 and 3, the 5.7 kbp DNA fragment (Spa-GC2) contains four exons (exons 1 to 4), which are 5.7 kbp fragments. It is present at about 2.5 kbp site on the 3'-end side of the. Also, 12 exons (exons 5 to 16) are scattered in the 6.6 kbp fragment (Spa-GC9). These exons 1-16 contain the entire cDNA described above. The coding region of cDNA is contained in the second half of exon 5 to the first half of exon 16.

【0011】本発明において、SPA−1又はその蛋白
質断片をコードするDNAを得るには、上記のごときc
DNA又はゲノムDNAをエクソヌクレアーゼにより処
理して不要部分を除去するか、あるいは適切な制限酵素
により切断した後、必要であれば不足の配列をオリゴヌ
クレオチドの付加により補い、又は不要部分をエクソヌ
クレアーゼ等により除去すればよい。また、生来のアミ
ノ酸配列に対して、1〜複数個のアミノ酸が欠失、付加
及び/又は置換されているポリペプチドをコードする遺
伝子は、上記のようにして得られるcDNA又はゲノム
DNAを、常法に従って、例えば部位特異的変異誘発に
かけることにより得られる。
In the present invention, to obtain a DNA encoding SPA-1 or a protein fragment thereof, the above-mentioned c
After removing unnecessary parts by treating DNA or genomic DNA with exonuclease, or cleaving with an appropriate restriction enzyme, if necessary, a missing sequence is supplemented by addition of an oligonucleotide, or unnecessary parts are exonuclease, etc. It may be removed by. In addition, a gene encoding a polypeptide in which one or more amino acids are deleted, added and / or substituted with respect to the natural amino acid sequence is a cDNA or genomic DNA obtained as described above It is obtained according to the method, for example, by subjecting it to site-directed mutagenesis.

【0012】本発明はさらに、配列番号:1〜3に記載
の塩基配列とハイブリダイズするDNA又はRNAをも
包含する。この様なハイブリダイズするDNA又はRN
Aは、好ましくはSPA−1又はその蛋白質断片の生物
学的機能を保持しているものであり、例えば50%ホル
ムアミド、5×SSC,10%Na−デキストラン、2
0mM Na−ホスフェート(pH6.5)、42℃のハイ
ブリダイゼーション条件下で前記cDNA又はゲノムD
NAとハイブリダイズするものである。
The present invention further includes DNA or RNA which hybridizes with the base sequences shown in SEQ ID NOs: 1 to 3. Such hybridizing DNA or RN
A preferably retains the biological function of SPA-1 or a protein fragment thereof, for example, 50% formamide, 5 × SSC, 10% Na-dextran, 2
0 mM Na-phosphate (pH 6.5), the above-mentioned cDNA or genome D under hybridization conditions at 42 ° C.
It hybridizes with NA.

【0013】本発明のポリペプチド又は蛋白質は、常法
に従って真核細胞又は原核細胞において発現させること
ができる。真核細胞としては、動物、例えばヒト又は他
の動物の塩基細胞、例えばNIH3T3細胞、Cos−
1細胞、CHO細胞等が用いられ、さらに真核性微生
物、例えば酵母又は糸状菌が用いられる。酵母としては
サッカロミセス・セレビシエー(Saccharomy
ces cerevisiae)、等が挙げられ、糸状
菌としては、アスペルギルス(Aspergillu
)属、例えばアスペルギルス・ニガー(Asperg
illus niger)等が挙げられる。原核生物と
しては細菌が挙げられる。例えばバシルス(Bacil
lus)、例えばバシルス・ズブチリン(Bacill
us subtilis)、大腸菌(Escheric
hia coli)等が使用される。
The polypeptide or protein of the present invention can be expressed in eukaryotic cells or prokaryotic cells according to a conventional method. Eukaryotic cells include animal, eg, human or other animal base cells, eg, NIH3T3 cells, Cos −.
1 cell, CHO cell or the like is used, and further a eukaryotic microorganism such as yeast or filamentous fungus is used. The yeast Saccharomyces cerevisiae (Saccharomy
ces cerevisiae ), and the like. Examples of filamentous fungi include Aspergillus.
s ) genus, eg Aspergillus niger ( Asperg
illus niger ) and the like. Prokaryotes include bacteria. For example, Bacils
lus ), for example Bacillus subtilin ( Bacill)
us subtilis ), Escherichia coli ( Escheric
hia coli ) or the like is used.

【0014】これらの宿主において前記DNAを発現さ
せるためには、前記コード領域を含むDNAと該DNA
のための発現制御領域を含んで成る発現ベクターを用い
る。この発現ベクターにおいて使用する発現制御領域と
しては、常用のものを用いることができる。例えば、動
物細胞での発現のためには、ウイルス性プロモーター、
例えばLTRプロモーター、CMVプロモーター、SR
αプロモーター等を用いることができ、大腸菌での発現
のためにはT7プロモーター、LacZプロモーター等
を用いることができ、また酵母用プロモーターとして、
例えばα−接合因子プロモーターが用いられる。
In order to express the DNA in these hosts, the DNA containing the coding region and the DNA
An expression vector comprising an expression control region for As the expression control region used in this expression vector, a conventional one can be used. For example, for expression in animal cells, a viral promoter,
For example, LTR promoter, CMV promoter, SR
α promoter and the like can be used, T7 promoter, LacZ promoter and the like can be used for expression in E. coli, and as a yeast promoter,
For example, the α-mating factor promoter is used.

【0015】本発明のポリペプチド又は蛋白質は、前記
の発現ベクターにより形質転換された宿主を培養し、培
養物から目的ポリペプチドを採取することにより得られ
る。発現ベクターによる宿主の形質転換は、宿主の種類
に応じて常法に従って行うことができる。形質転換され
た宿主の培養も常法に従って行うことができる。培養物
から目的とするポリペプチドを回収、精製するには、ア
フィニティークロマトグラフィー、ゲル濾過クロマトグ
ラフィー、濃縮、凍結乾燥等、蛋白質の精製に用いられ
る常法により行うことができる。
The polypeptide or protein of the present invention can be obtained by culturing a host transformed with the above expression vector and collecting the desired polypeptide from the culture. Transformation of the host with the expression vector can be performed according to a conventional method depending on the type of the host. Cultivation of the transformed host can also be performed according to a conventional method. To recover and purify the desired polypeptide from the culture, affinity chromatography, gel filtration chromatography, concentration, freeze-drying and the like can be performed by a conventional method used for protein purification.

【0016】[0016]

【実施例】次に、本発明を実施例によりさらに具体的に
記載する。実施例1. SPA−1 cDNAのクローニング及び
特性決定 (1)SPA−1 cDNAのクローニング 本発明においてはまず、リンパ球の静止期(G0 /G1
期)においてはほとんど発現されず増殖期(S期)にお
いて発現され遺伝子をクローニングするため、静止期
(G0 /G1 )のリンパ系細胞株(LFD−14)から
常法(Auffray,C.ら、Eur.J.Bioc
hem.,107,303,1980)に従ってmRN
Aを調製し、次にこのmRNAに基いて、常法(Aru
ffo,A.ら、Proc.Natl.Acad.Sc
i.USA,84,8573,1987)に従ってcD
NAライブラリーを調製した。
EXAMPLES Next, the present invention will be described more specifically by way of examples. Example 1. Cloning and Characterization of SPA-1 cDNA (1) Cloning of SPA-1 cDNA In the present invention, first, in the stationary phase (G 0 / G 1) of lymphocytes.
For cloning the expressed gene in most expressed without growth phase (phase S) in the period), a conventional method from lymphoid cell lines quiescent (G 0 / G 1) ( LFD-14) (Auffray, C. Et al., Eur. J. Bioc.
hem. , 107 , 303, 1980).
A was prepared, and then based on this mRNA, a conventional method (Aru
ffo, A. Proc. Natl. Acad. Sc
i. USA, 84 , 8573, 1987).
An NA library was prepared.

【0017】次に、同じ細胞株(LFD−14)をIL
−2(100U/ml)により増殖刺激し、約20時間後
(S期)に常法に従ってmRNAを調製し、このmRN
Aに基いて常法によりcDNAライブラリーを調製し
た。次に、これらのcDNAライブラリー間でディフエ
レンシヤル・ハイブリダイゼーションを行い、S期の細
胞においてのみ発現しているcDNAクローンを得、こ
れをSPA−1 cDNAと命名した。また、このcD
NAを含むベクターをpcSPA−1と命名した。この
ベクターを制限酵素XhoIで切断することによりSP
A−1 cDNAを切り出すことができる。
Next, using the same cell line (LFD-14) as IL
-2 (100 U / ml) stimulated proliferation, and about 20 hours later (S phase), mRNA was prepared according to a conventional method.
Based on A, a cDNA library was prepared by a conventional method. Next, differential hybridization was carried out between these cDNA libraries to obtain a cDNA clone expressing only in S phase cells, which was designated as SPA-1 cDNA. Also, this cd
The vector containing NA was named pcSPA-1. By cutting this vector with the restriction enzyme XhoI, SP
A-1 cDNA can be excised.

【0018】(2)SPA−1 cDNAの構造 SPA−1 cDNAの塩基配列を常法に従って決定し
た結果を配列番号:1に示す。このcDNAは全長約
3.5kbから成り、その5′−末端側に多くの短いオー
プンリーディングフレーム(ORF)を含む長い(約
1.2kb)5′−非翻訳領域を持つ。同領域はある種の
がん遺伝子に共通して認められる強い翻訳抑制領域で、
同遺伝子発現が翻訳レベルでも強く制御されていること
を示す。
(2) Structure of SPA-1 cDNA The result of determining the base sequence of SPA-1 cDNA by a conventional method is shown in SEQ ID NO: 1. This cDNA consists of a total length of about 3.5 kb and has a long (about 1.2 kb) 5'-untranslated region containing many short open reading frames (ORFs) at its 5'-terminal side. This region is a strong translational repression region commonly found in certain oncogenes.
It is shown that the gene expression is also strongly regulated at the translation level.

【0019】このcDNAはさらに、約2.1kbから成
る1つのオープンリーディングフレーム(配列番号:1
中第1200番目の塩基A(アデノシン)から第327
8番目の塩基C(シトシン)まで)を含有する。このオ
ープンリーディングフレームによりコードされるアミノ
酸配列のN−末端側190アミノ酸からなる配列(「S
pan−N」と称する)はヒトRap1GAP(GAP
3 )と高い相同性を示していた。Span−NとGAP
3 のアミノ酸配列の相同性を図1に示す。
This cDNA further contains one open reading frame (SEQ ID NO: 1) consisting of about 2.1 kb.
From the 1200th base A (adenosine) to the 327th
Up to the 8th base C (cytosine)). A sequence consisting of 190 amino acids at the N-terminal side of the amino acid sequence encoded by this open reading frame ("S
“Pan-N”) is human Rap1 GAP (GAP).
3 ) showed high homology. Span-N and GAP
The homology of the amino acid sequence of 3 is shown in FIG.

【0020】(3)SPA−1N末端側の各ドメインに
対するモノクローナル抗体の調製 SPA−1 cDNAを制限酵素BglIおよびPst
Iで切断することにより、Span−NをコードするD
NA断片及びそれに続く約140アミノ酸からなるポリ
ペプチド(「Span−C」と称する)をコードするD
NA断片を得、これをpGEX−1ベクター(ファルマ
シア)のPstI末端をT4 ポリメラーゼで平坦化し、
EcoRIリンカーをつけて、ベクターのEcoRI部
位に挿入することにより、Span−N又はSpan−
CとGST(グルタチオン−S−トランスフェラーゼ)
との融合蛋白質をコードする配列を含む発現プラスミド
pGEX−SpanN及びpGEX−SpanCを得
た。この発現プラスミドを大腸菌にて発現せしめ、発現
生成物を回収・精製することによりSpan−N/GS
T融合蛋白質及びSpan−C/GST融合蛋白質を得
た。
(3) Preparation of monoclonal antibody against each domain on the SPA-1 N-terminal side SPA-1 cDNA was digested with restriction enzymes BglI and Pst.
D coding for Span-N by cutting with I
D encoding a NA fragment followed by a polypeptide of about 140 amino acids (designated "Span-C")
NA fragment was obtained, and the PstI end of pGEX-1 vector (Pharmacia) was flattened with T 4 polymerase,
By adding an EcoRI linker and inserting it into the EcoRI site of the vector, Span-N or Span-
C and GST (Glutathione-S-transferase)
The expression plasmids pGEX-SpanN and pGEX-SpanC containing the sequence encoding the fusion protein with This expression plasmid was expressed in E. coli, and the expression product was recovered and purified to obtain Span-N / GS.
A T fusion protein and a Span-C / GST fusion protein were obtained.

【0021】これらの融合蛋白質各200μgをフロイ
ント完全アジュバントと混合したものをアルメニアハム
スター(♂、5w)の皮下に免疫した。その後2週間お
きに3回、融合蛋白質200μgをフロイント不完全ア
ジュバントと混合し、ハムスター腹腔内に投与した。最
終免疫から3日後にハムスター脾臓を摘出、細切し脾細
胞液を調整した。これをLeo,Oらの方法(PNAS
84:1374,1987)に従い、マウスミエロー
マ株P3U1と細胞融合させ、ハイブリドーマを得た。
200 μg of each of these fusion proteins was mixed with Freund's complete adjuvant, and an Armenian hamster (♂, 5w) was subcutaneously immunized. Then, every 2 weeks, 200 μg of the fusion protein was mixed with Freund's incomplete adjuvant 3 times and administered intraperitoneally to the hamster. Three days after the final immunization, the hamster spleen was excised and cut into small pieces to prepare splenocyte solution. This is the method of Leo, O et al. (PNAS)
84 : 1374, 1987) and cell fusion with mouse myeloma strain P3U1 was performed to obtain a hybridoma.

【0022】これらハイブリドーマのうち目的とする抗
体を産生するクローンは、ハムスターの免疫に用いた各
々の融合蛋白を抗原としたELISA法により選別し
た。つまり、各々の融合蛋白(GST−SpanN,G
ST−SpanC)1μg/ウェルあるいはGST蛋白
のみ1μg/ウェルを結合させた96ウェルプレートを
用意し、これに各ハイブリドーマ上清100μlを反応
させた。
Among these hybridomas, clones producing the desired antibody were selected by the ELISA method using each fusion protein used for immunization of hamster as an antigen. That is, each fusion protein (GST-SpanN, G
A 96-well plate to which 1 μg / well of ST-SpanC) or 1 μg / well of GST protein alone was bound was prepared, and 100 μl of each hybridoma supernatant was reacted with this.

【0023】次にこれに抗ハムスターIgG−ペルオキ
シダーゼを反応させ、基質としてABTS(2−2′−
アジノ−ジ−3−エチル−ベンゾチアノジノ−6−硫
酸)を用い呈色反応を行い、GSTには反応せず各融合
蛋白にのみ反応するものを陽性とした。陽性を示すウェ
ルの細胞を限界希釈法にてクローニングし、単一細胞よ
りクローンを得た。Span−Nに対するモノクローナ
ル抗体をF6、Span−Cに対するモノクローナル抗
体をH10と称する。図7に各々のモノクローナル抗体
と融合蛋白の反応性をウェスタンブロッティング法によ
り解析した結果を示す。
Next, this was reacted with anti-hamster IgG-peroxidase, and ABTS (2-2'-) was used as a substrate.
A color reaction was carried out using (azino-di-3-ethyl-benzothianozino-6-sulfate), and those which did not react with GST but reacted only with each fusion protein were regarded as positive. The cells in the wells showing positive were cloned by the limiting dilution method to obtain clones from single cells. The monoclonal antibody against Span-N is called F6, and the monoclonal antibody against Span-C is called H10. FIG. 7 shows the results of analysis of the reactivity between each monoclonal antibody and the fusion protein by Western blotting.

【0024】すなわち、図7は、各10μgの、GST
−SpanNおよびGST−SpanC融合蛋白あるい
は、GSTのみをSDS−PAGEで展開した後、メン
ブランにブロットし、これを各々F6あるいはH10抗
体液(10μg/ml)にて反応させ、 125I−Prot
einA(アマシャム社)で検出した結果を示す。
That is, FIG. 7 shows that each 10 μg of GST
-SpanN and GST-SpanC fusion protein or GST alone was developed by SDS-PAGE, blotted on a membrane, and reacted with F6 or H10 antibody solution (10 μg / ml), and 125 I-Prot
The result detected by einA (Amersham) is shown.

【0025】なお、モノクローナル抗体F6を生産する
ハイブリドーマはF6と命名され寄託番号FERM B
P−4839として平成6年10月18日に、そしてモ
ノクローナル抗体H10を生産するハイブリドーマはH
10と命名され寄託番号FERM BP−4840とし
て平成6年10月18日に、工業技術院生命工学工業技
術研究所に寄託されている。
The hybridoma producing the monoclonal antibody F6 is named F6 and is deposited under the deposit number FERM B.
On October 18, 1994 as P-4839, and the hybridoma producing the monoclonal antibody H10 was H
It was named 10 and was deposited with the deposit number FERM BP-4840 on October 18, 1994, at the Institute of Biotechnology, Institute of Biotechnology, Institute of Industrial Science and Technology.

【0026】(4)モノクローナル抗体によるSPA−
1蛋白質の検出 リンパ球細胞株LFD14細胞(Kubota,H.e
t al.,J.Immunol.145:3924,
1990)の培養細胞から、Harlow,E.,et
al.Mol.&Cellelar Biology
:1579,1986の方法により蛋白質を抽出
し、前記モノクローナル抗体を用いるイムノブロッティ
ング(immunoblotting)法、免疫沈降
(immunoprecipitation)法、免疫
染色(immunostain)法等により蛋白質の同
定を行った。
(4) SPA with monoclonal antibody
Detection of 1 protein Lymphocyte cell line LFD14 cells (Kubota, He. E.
t al. , J. et al. Immunol. 145 : 3924,
1990) from Harlow, E .; , Et
al. Mol. & Cellular Biology
6 : 1579, 1986, the protein was extracted, and the protein was identified by the immunoblotting method using the above-mentioned monoclonal antibody, the immunoprecipitation method, the immunostaining method and the like.

【0027】この結果、例えばモノクローナル抗体F6
を用いるウエスタン・ブロット法において、リンパ球L
FD14からの蛋白質は分子量約68kDa のバンドとし
て検出された。このことから、SPA−1遺伝子は約6
8kDa の核内蛋白質をコードしていることが予想され
る。すなわち、本発明のSPA−1蛋白質は配列番号:
1の1番目のアミノ酸メチオニンから693番目のアミ
ノ酸アラニンまでのアミノ酸配列を有すると推定され
る。
As a result, for example, the monoclonal antibody F6
In Western blotting using
The protein from FD14 was detected as a band with a molecular weight of about 68 kDa. From this, the SPA-1 gene has about 6
It is expected to encode an 8 kDa nuclear protein. That is, the SPA-1 protein of the present invention has SEQ ID NO:
It is presumed to have an amino acid sequence from the 1st amino acid methionine of 1 to the 693th amino acid alanine.

【0028】実施例2. SPA−1 cDNAの発現 (1)SPA−1蛋白の発現インビトロ転写/翻訳法による発現 図8に様々な長さのSPA−1 cDNAを鋳型として
用いたインビトロ転写/翻訳法により発現したSPA−
1蛋白の解析結果を示す。鋳型としては図8に示した様
に、全長のSPA−1 cDNAを含むpBluesc
ript KS + −Spa1プラスミド、この5′側を
様々な長さで欠くクローン(#52,#35,#33,
#92)あるいは、ORFを完全に含み翻訳時に負に働
く5′非翻訳領域を欠く#35プラスミドをその下流の
様々な位置(NcoI(1729),BalI(223
1),EcoRI(2881),DraI(303
8))で切断したプラスミドを用いた。
[0028]Example 2. Expression of SPA-1 cDNA (1) Expression of SPA-1 proteinExpression by in vitro transcription / translation method Fig. 8 shows various lengths of SPA-1 cDNA as templates
SPA-expressed by the in vitro transcription / translation method used
The analysis result of 1 protein is shown. As shown in Fig. 8 as a template
Contains pBluesc containing the full-length SPA-1 cDNA.
ript KS +-Spa1 plasmid, this 5'side
Clones lacking various lengths (# 52, # 35, # 33,
# 92) Alternatively, the ORF is completely included and works negatively during translation.
The # 35 plasmid lacking the 5'untranslated region
Various positions (NcoI (1729), BalI (223
1), EcoRI (2881), DraI (303
The plasmid cleaved in 8)) was used.

【0029】これらの鋳型DNA10μgを用い、RN
A転写キット(ストラタジーン社)により相補的mRN
A(cRNA)を合成した。このcRNAをTagaw
aらの方法(J.Biol.Chem.,256:20
021,1990)に従い、インビトロ発現翻訳キット
(ストラタジーン社)により、インビトロにてウサギ網
状赤血球破砕物(プロメガ社)を用い、35S−メチオニ
ン(アマシャム社)の存在下で翻訳し、翻訳生成物を前
記H10抗体とプロテインAビーズ(ファルマシア社)
とにより免疫沈降したものをSDS−PAGEにより展
開した。
Using 10 μg of these template DNAs, RN
Complementary mRN with A transcription kit (Stratagene)
A (cRNA) was synthesized. This cRNA is Tagaw
a et al. (J. Biol. Chem., 256 : 20.
021, 1990), an in vitro expression translation kit (Stratagene) was used to translate in vitro using a rabbit reticulocyte lysate (Promega) in the presence of 35 S-methionine (Amersham). The above H10 antibody and protein A beads (Pharmacia)
Those immunoprecipitated by and were developed by SDS-PAGE.

【0030】その結果、ORFおよび3′非翻訳領域を
完全に含む全長のpBluescript−KS+ −S
PA−1、#52および#35のプラスミドを鋳型とし
た時には約85kDa の特異バンドが検出されたが、OR
Fの一部を欠くプラスミド(#33)では、その欠いた
長さに応じた翻訳物(約50kDa)が検出された。さらに
ORF以下の3′非翻訳領域を欠くプラスミド(#35
/BalI,#35/EcoRIおよび#35/Dra
I)ではその長さに応じて85kDa より小さい翻訳物が
検出された。これらの結果は、SPA−1蛋白は120
0番目のメチオニンから3278番目のアラニンまでの
693アミノ酸からなるポリペプチドとして翻訳されて
いることを示している。
As a result, full-length pBluescript-KS + -S containing the ORF and the 3'untranslated region completely.
A specific band of about 85 kDa was detected when the PA-1, # 52 and # 35 plasmids were used as templates.
In the plasmid lacking part of F (# 33), a translation product (about 50 kDa) was detected depending on the lacking length. Furthermore, a plasmid lacking the 3'untranslated region below the ORF (# 35
/ BalI, # 35 / EcoRI and # 35 / Dra
In I), a translation product smaller than 85 kDa was detected depending on its length. These results show that SPA-1 protein is 120
It shows that it is translated as a polypeptide consisting of 693 amino acids from methionine at position 0 to alanine at position 3278.

【0031】安定な動物細胞トランスフェクタントによ
る発現 SPA−1 cDNAを制限酵素BglI−DraIに
より切り出し、pSRα発現ベクター(Takebe,
Y.ら、Mol.Cell Biol.,,466−
472,1988)のEcoRI部位に挿入して発現ベ
クターSRα−SPA−1を作製し、これをNeo遺伝
子を含むプラスミドpSV2 NeOと共にNIH3T3
細胞(ATCC CRL−1658)に導入したのちG
418により選択し、安定なトランスフェクタントを得
た(NIH/SPA−1細胞)。
By stable animal cell transfectants
The expressed SPA-1 cDNA was excised with the restriction enzymes BglI-DraI, and the pSRα expression vector (Takebe,
Y. Et al., Mol. Cell Biol. , 8 , 466-
472, 1988) to create an expression vector SRα-SPA-1, which is combined with the plasmid pSV 2 NeO containing the Neo gene into NIH3T3.
After introduction into cells (ATCC CRL-1658) G
Stable transfectants were obtained by selection with 418 (NIH / SPA-1 cells).

【0032】NIH/SPA−1細胞は、図9のAに示
すごとく通常の培養条件下(5%血清添加)では、コン
トロールのSRαベクターのみを導入したNIH3T3
細胞(NIH/SRα細胞)と何ら変らない増殖を示す
が、同細胞を血清除去にてG1相に同調し(exten
ted G1)、一定時間後に血清を加えて細胞周期を
回転させると、S期中〜後期において急速な細胞死のお
こることがわかった(図10のA)。形態学的には、細
胞が丸くなり著明な核凝縮がみられ、いわゆる分裂破綻
(mitotic catastrophes)による
ものと推定された(図9のB)。また、このような細胞
周期同調に伴いSPA−1は特有な発現の変動を示し、
サイクリン群同様その発現は、細胞周期に伴う調節をう
けていることも示唆された(図10のB,C)。
Under normal culture conditions (5% serum added), NIH / SPA-1 cells were transfected with NIH3T3 into which only the control SRα vector was introduced.
The cells show the same growth as the cells (NIH / SRα cells), but the cells are synchronized with G1 phase by serum removal (exten).
ted G1), it was found that, after adding a serum after a certain period of time and rotating the cell cycle, rapid cell death occurred in the middle to the late S phase (A in FIG. 10). Morphologically, cells became round and marked nuclear condensation was observed, which was presumed to be due to so-called mitotic catastrophes (FIG. 9B). In addition, SPA-1 shows a characteristic change in expression with such cell cycle synchronization,
It was also suggested that, like the cyclin group, its expression is regulated by the cell cycle (FIGS. 10B and 10C).

【0033】図9は、SPA−1 cDNAを遺伝子導
入したNIH3T3細胞(NIH/Spa−1)におけ
るG1 期細胞周期ブロック後の増殖刺激による細胞死の
誘導を示しており、この図のAは、NIH/SPA−1
細胞(●)、およびNIH3T3細胞にpSRαベクタ
ーのみを遺伝子導入したNIH/SRα細胞(○)をほ
ぼ飽和状態になるまで5%血清存在下で培養した後、
0.5%血清加培地に移し、0,24あるいは48時間
培養した。その後20%血清加培地に移し細胞数を経時
的に測定した結果を示す。
FIG. 9 shows the induction of cell death by proliferation stimulation after G 1 phase cell cycle block in NIH3T3 cells (NIH / Spa-1) into which the SPA-1 cDNA had been gene-transfected. , NIH / SPA-1
After culturing cells (●) and NIH / SRα cells in which only pSRα vector was introduced into NIH3T3 cells (○) in the presence of 5% serum until almost saturated,
The medium was transferred to a medium containing 0.5% serum and cultured for 0, 24 or 48 hours. Then, the results are shown in which the cells were transferred to a medium containing 20% serum and the number of cells was measured over time.

【0034】図9のBは、48時間0.5%血清存在下
で培養したNIH/SRα細胞およびNIH/SPA−
1細胞に20%の血清を加え培養18時間後の細胞の鏡
検像であり、右側はその時の細胞の核の状態をヘキスト
33427(シグマ社)にて示している。NIH/SP
A−1で核の萎縮が認められる。図10において、Aは
NIH/SPA−1細胞における細胞周期の解析結果を
示し、上段がNIH/SRα、下段がNIH/SPA−
1細胞である。血清再添加後16時間の時点で、NIH
/SPA−1細胞は死滅している(コントロールの細胞
はS期に入っている)。Bは血清非存在下培養(G1
rrest)時のSPA−1蛋白の蓄積を示し、NIH
/SPA−1細胞ではtransfectしたSPA−
1mRNAは検出されているのにもかかわらず、通常の
培養下(ohのレーン)では、SPA−1蛋白はウェス
タンブロット法でほとんど検出されない(恐らく、常時
分解されている)。しかし、一旦血清濃度を0.5%に
下げ細胞周期をG1 に止めた状態(G1 arrest)
にすると、SPA−1蛋白の蓄積が観察される。
FIG. 9B shows NIH / SRα cells and NIH / SPA-cultured in the presence of 0.5% serum for 48 hours.
20% serum is added to one cell and a microscopic image of the cell is obtained after 18 hours of culture. The right side shows the nuclear state of the cell at that time with Hoechst 33427 (Sigma). NIH / SP
Atrophy of the nucleus is recognized in A-1. In FIG. 10, A shows the analysis result of the cell cycle in NIH / SPA-1 cells, the upper row is NIH / SRα, and the lower row is NIH / SPA-.
1 cell. 16 hours after re-addition of serum, NIH
/ SPA-1 cells are dead (control cells are in S phase). B is a culture in the absence of serum (G 1 a
rrest) shows the accumulation of SPA-1 protein, NIH
/ SPA-transfected SPA-1 cells
Despite detection of 1 mRNA, under normal culture (lane of oh), SPA-1 protein is hardly detected by Western blotting (probably always degraded). However, once the serum concentration was lowered to 0.5% and the cell cycle was stopped at G 1 (G 1 arrest)
When set to 1, accumulation of SPA-1 protein is observed.

【0035】図10のCは血清添加後のSPA−1蛋白
の動態を示し、48時間のG1 arrest後血清再添
加により細胞周期を再び開始させ、各時間ごと生存して
いる細胞のみを回収し、SPA−1蛋白の発現を調べ
た。NIH/SPA−1細胞でも血清再添加後24時間
でも一部(約一割)の細胞は生き残っており、これらの
細胞ではcαc2の活性化が観察される。これに対し、
SPA−1蛋白はこの時点ではすでに減少している。
C of FIG. 10 shows the kinetics of SPA-1 protein after the addition of serum. The cell cycle was restarted by the re-addition of serum after 48 hours of G 1 arrest, and only the surviving cells were collected at each time. Then, the expression of SPA-1 protein was examined. Even in NIH / SPA-1 cells and some cells (about 10%) survived 24 hours after re-addition of serum, activation of cαc2 was observed in these cells. In contrast,
The SPA-1 protein is already reduced at this point.

【0036】組換えSPA−1の大腸菌での発現 SPA−1 cDNAを制限酵素BglI(塩基117
1位を切断)及びDraI(塩基3038位を切断)に
より切断し、BglI−DraI切断を得、これをT4
ポリメラーゼにより平滑末端化した。このDNA断片
を、EcoRVにより切断されたプラスミドBS−SK
(ストラタジーン社)に連結してプラスミドSK+ −S
PA−1を得た。次に、このプラスミドのHindIII
部位にBamHIリンカーを付与し、これをBamHI
により消化し、得られたBamHI断片を、BglIIに
より消化した発現プラスミドpET−16b(Nova
gen社、米国)に挿入し、発現プラスミドpET−S
PA1を得た。この発現プラスミドを用いて大腸菌を形
質転換した。
Expression of recombinant SPA-1 in E. coli The SPA-1 cDNA was digested with the restriction enzyme BglI (base 117).
Cleavage at position 1) and DraI (at base 3038 position) to obtain BglI-DraI cleavage, which is T4.
The ends were made blunt by polymerase. This DNA fragment was used as a plasmid BS-SK digested with EcoRV.
(Stratagene) and the plasmid SK + -S
PA-1 was obtained. Next, HindIII of this plasmid
BamHI linker was added to the site, and this was added to BamHI
The resulting BamHI fragment was digested with BglII and the resulting expression plasmid pET-16b (Nova) was digested with BglII.
gen, USA) and used as an expression plasmid pET-S.
PA1 was obtained. E. coli was transformed with this expression plasmid.

【0037】この大腸菌を培養し、培養物からの発現生
成物を電気泳動の後前記モノクローナル抗体F6により
検出したところ、分子量85kDa の部位にバンドが検出
され、組換えSPA−1(rSPA−1)が発現したこ
とが確認された。上記発現プラスミドの作製過程を図3
に示す。
This Escherichia coli was cultured, and the expression product from the culture was electrophoresed and detected by the above-mentioned monoclonal antibody F6. As a result, a band was detected at a site having a molecular weight of 85 kDa, and recombinant SPA-1 (rSPA-1) Was confirmed to have been expressed. Figure 3 shows the process of constructing the above expression plasmid.
Shown in

【0038】(2)Span−Nの生理活性 Span−NがGAP3と相同性を有するので、前述の
GST−SpanN融合蛋白質を用いてGAP活性を検
討した。対照としてヒトGAP3(75〜663アミノ
酸残基)GST融合蛋白質を用い、酵母Rsr1(1−
272残基)、ヒトRap1A(Glu63)(1−18
4残基)、ヒトHa−Ras(1−189残基)、およ
びヒトRhoA(1−193残基)GST融合蛋白質
(文献:Nur−E−Kamalら、Mol.Bio
l.Cell 31:1437−1442,199
2.,Nur−E−Kamalら、J.Biol.Ch
em 267:1415−1418,1992)のGT
Pase活性に及ぼす影響について、Marutaらの
方法(J.Biol.Chem.266:11661−
11668,1991)に従い解析した。その結果Sp
an−NはHa−Ras,Rac1,Rho1等には無
効であるがRap1及びRsr1に対して選択的GAP
活性を有することが示された。この結果を表1に示す。
(2) Bioactivity of Span-N Since Span-N has homology with GAP3, GAP activity was examined using the GST-SpanN fusion protein described above. As a control, human GAP3 (75 to 663 amino acid residues) GST fusion protein was used, and yeast Rsr1 (1-
272 residues), human Rap1A (Glu 63 ) (1-18
4 residues), human Ha-Ras (1-189 residues), and human RhoA (1-193 residues) GST fusion protein (reference: Nur-E-Kamal et al., Mol. Bio).
l. Cell 31 : 1437-1442, 199.
2. , Nur-E-Kamal et al., J. Am. Biol. Ch
em 267 : 1415-1418, 1992) GT
Regarding the effect on Pase activity, the method of Maruta et al. (J. Biol. Chem. 266 : 11661-
11668, 1991). As a result Sp
an-N is ineffective for Ha-Ras, Rac1, Rho1, etc. but selective GAP for Rap1 and Rsr1
It was shown to have activity. Table 1 shows the results.

【0039】[0039]

【表1】 [Table 1]

【0040】また、図4に、Span−N濃度とRsr
1GTPase活性化の関係を示す。この図はSpan
NのRsrGTPase活性が濃度に依存していること
を示している。GAP活性の測定は先のMarutaら
の方法(J.Biol.Chem.266:11661
−11668,1991)に従い行った。SPA−1は
核内蛋白であり、他方Rap1が核に存在するという報
告はない。そこで唯一核内に存在することが明かな低分
子G蛋白Ranに対する活性を検討したところ、Spa
n−NはRanに対して明かなGAP活性を示すことが
判明した。この結果を表2に示す。
FIG. 4 shows the Span-N concentration and Rsr.
The relationship of 1 GTPase activation is shown. This figure is Span
It is shown that the RsrGTPase activity of N is concentration-dependent. GAP activity was measured by the method of Maruta et al. (J. Biol. Chem. 266 : 11661).
-11668, 1991). SPA-1 is a nuclear protein, while there is no report that Rap1 exists in the nucleus. Therefore, when the activity against the small G protein Ran, which is known to exist only in the nucleus, was examined, Spa
It was found that n-N shows clear GAP activity against Ran. The results are shown in Table 2.

【0041】[0041]

【表2】 [Table 2]

【0042】また、図5に、Span−N濃度とRan
GTPase活性化との関係を示す。
FIG. 5 shows the Span-N concentration and Ran.
The relationship with GTPase activation is shown.

【0043】実施例3. ゲノム遺伝子のクローニング (1)マウスゲノムライブラリー(EMBL3−Adu
lt DBA/2J肝DNA;CLONTECH,ML
1009d)1.0×106 をHybond−N+
(アマシャム、RPN303B)にブロッティングし
た。SPA−1 cDNAを挿入したベクターSPA−
1 cDNA/pBluescriptをXhoI(T
oYoBo,XHO−101)で切断することにより全
長のSPA−1 cDNAを切り出し、このDNA断片
を、Nick Translation Kit(アマ
シャム、N5000)によりα32P−dCTP(アマシ
ャムPB(0205)により標識した。
Example 3. Cloning of genomic gene (1) Mouse genomic library (EMBL3-Adu
lt DBA / 2J liver DNA; CLONTECH, ML
1009d) 1.0 × 10 6 was blotted on a Hybond-N + membrane (Amersham, RPN303B). Vector SPA-in which SPA-1 cDNA is inserted
1 cDNA / pBluescript to XhoI (T
The full-length SPA-1 cDNA was excised by cutting with oYoBo, XHO-101), and this DNA fragment was labeled with α 32 P-dCTP (Amersham PB (0205)) by Nick Translation Kit (Amersham, N5000).

【0044】このプローブをRapid Hybrid
ization Buffer(アマシャム RPN1
636)の存在下で前記ゲノムライブラリーと反応せし
めた。一次スクリーニングの結果、陽性、疑陽性あわせ
て15個のシグナルを得た。さらに二次スクリーニング
の結果、9個の陽性クローンを得た。これらをさらに三
次スクリーニングにかけることにより、得られた9株が
クローン化されていることを確認した。これらのクロー
ン中のゲノムDNAを、それぞれGC1〜GC9と称す
る。
This probe was used for Rapid Hybrid
ization Buffer (Amersham RPN1
636) and reacted with the genomic library. As a result of the primary screening, 15 signals were obtained, including positive and false positives. As a result of the secondary screening, 9 positive clones were obtained. By subjecting these to a third screening, it was confirmed that the obtained 9 strains were cloned. The genomic DNAs in these clones are referred to as GC1 to GC9, respectively.

【0045】(2)マウス全DNAの調製 4週令のBalb/cマウスの尾を2cm切り取り、1.
5mlのエッペンドルフチューブに入れた。次にこれをは
さみにより切り刻んだ。これに、500μlの混合溶液
(439μlの1×SSC、5μlの1M Tris−
HCl(pH7.5)、1μl 0.5M EDTA(pH
8.0)、50μlの10%SDS、及び5μlの20
mg/mlプロティナーゼK)を加え、37℃にて12時間
インキュベートした。
(2) Preparation of total mouse DNA A 4 cm-old Balb / c mouse was cut into 2 cm tails.
Place in a 5 ml Eppendorf tube. Then this was chopped with scissors. To this, 500 μl of the mixed solution (439 μl of 1 × SSC, 5 μl of 1M Tris-
HCl (pH 7.5), 1 μl 0.5M EDTA (pH
8.0), 50 μl of 10% SDS, and 5 μl of 20
mg / ml proteinase K) was added and incubated at 37 ° C for 12 hours.

【0046】次に、これに500μlの緩衝化フェノー
ルを加え、5分間穏和に混合した。この混合物を10,
000rpm にて5分間室温で遠心分離した。液相を新た
なチューブに移し、これに700μlのイソプロパノー
ルを加え、そしてチューブを数回反転し、線状の沈澱を
生じさせた。この沈澱を、500μlの70%エタノー
ルを入れた新たなチューブに移し、次に70%のエタノ
ールを除去し、100%エタノールにより沈澱を洗浄し
た。沈澱を空気乾燥し次に100μlのTE緩衝液を加
えて全DNAを調製した。
Next, 500 μl of buffered phenol was added to this and mixed gently for 5 minutes. Add this mixture to 10,
Centrifuge for 5 minutes at room temperature at 000 rpm. The liquid phase was transferred to a new tube, to which 700 μl of isopropanol was added, and the tube was inverted several times, causing a linear precipitation. The precipitate was transferred to a new tube containing 500 μl of 70% ethanol, then 70% ethanol was removed and the precipitate was washed with 100% ethanol. The precipitate was air dried and then 100 μl TE buffer was added to prepare total DNA.

【0047】(3)SPA−1をコードするゲノムDN
Aのスクリーニング 前記(2)において調製した全DNAをBamHI(T
oYoBo,BHA−102)又はEcoRI(ToY
oBo,ECO−101)により切断し、次にこれをH
ybond−N+膜にブロッティングし、前記(1)に
おいて調製したSPA−1cDNA全長プローブとのハ
イブリダイゼーションによりスクリーニングを行った。
ハイブリダイゼーションは、前記(1)と同様Rapi
d Hybridization Buffer中で行
った。
(3) Genome DN encoding SPA-1
Screening of A The total DNA prepared in (2) above was treated with BamHI (T
oYoBo, BHA-102) or EcoRI (ToY
oBo, ECO-101) and then H
Screening was performed by blotting on a ybond-N + membrane and hybridization with the SPA-1 cDNA full-length probe prepared in (1) above.
Hybridization is performed in the same manner as in (1) above using Rapi.
dHybridization Buffer.

【0048】この結果、5.7kb及び6.6kbのBam
HI断片、並びに9.2kb,5.2kb及び1.4kbのE
coRI断片が陽性であった。5.7kb及び6.6kbの
BamHI断片にはSPA−1 cDNAの全長が含ま
れていた。また、これらの断片は、それぞれ前記ゲノム
断片Spa−GC2及びSpa−GC9に対応した。こ
れらが挿入されたファージベクターをそれぞれSpa−
GC2/EMBL−3及びSpa−GC9/EMBL−
3と命名した。
As a result, Bam of 5.7 kb and 6.6 kb
HI fragment and E of 9.2 kb, 5.2 kb and 1.4 kb
The coRI fragment was positive. The 5.7 kb and 6.6 kb BamHI fragments contained the full length SPA-1 cDNA. In addition, these fragments corresponded to the above-mentioned genomic fragments Spa-GC2 and Spa-GC9, respectively. The phage vectors into which these were inserted are each Spa-
GC2 / EMBL-3 and Spa-GC9 / EMBL-
It was named 3.

【0049】(4)配列決定 これらのファージベクターを調製し、BamHIにより
切断し、Gene Clean Kit(フナコシ)に
よりSpa−GC2/EMBL−3からの5.7kb B
amHI断片、及びSpa−GC9/EMBL−3から
の6.6kb BamHI断片を調製した。
(4) Sequencing These phage vectors were prepared, cleaved with BamHI and 5.7 kb B from Spa-GC2 / EMBL-3 with the Gene Clean Kit (Funakoshi).
The amHI fragment and the 6.6 kb BamHI fragment from Spa-GC9 / EMBL-3 were prepared.

【0050】次に、これらを、pBluescript
II SK(+)(ToYoBo,SC212205)
のBamHI部位に、DNA Ligation Ki
t(Takara 6021)により挿入し、サブクロ
ーニングした。次に、Kilo−Sequence D
eletion Kit(Takara,6030)に
より欠失変異体を作製し、7−deaza Seque
nase(ToYoBo,US70777)により配列
決定を行った。その結果、Spa−GC2にはその3′
側半分にエクソン1〜4が、Spa−GC9にはエクソ
ン5〜16が散在していることがわかった。
Next, these are added to pBluescript.
II SK (+) (ToYoBo, SC212205)
DNA Ligation Ki at the BamHI site of
T (Takara 6021) was inserted and subcloned. Next, Kilo-Sequence D
The deletion mutant was prepared by the deletion kit (Takara, 6030), and the 7-deaza Sequence was prepared.
Sequencing was performed by Nase (ToYoBo, US70777). As a result, Spa-GC2 has its 3 '
It was found that exons 1 to 4 were scattered in the side half and exons 5 to 16 were scattered in Spa-GC9.

【0051】Spa−GC2の塩基配列を配列番号:2
に示し、そしてSpa−GC9の塩基配列を配列番号:
3に示す。Spa−GC9中、エクソン5の後半からエ
クソン16の前半に、cDNA中のアミノ酸コード領域
が含まれている。なお、Spa−GC2及びSpa−G
C9を含めて、ゲノム断片の相互位置を図6に示す。
The base sequence of Spa-GC2 is SEQ ID NO: 2.
And the base sequence of Spa-GC9 is shown in SEQ ID NO:
3 shows. In Spa-GC9, the second half of exon 5 to the first half of exon 16 contains the amino acid coding region in cDNA. In addition, Spa-GC2 and Spa-G
The relative positions of the genomic fragments, including C9, are shown in FIG.

【0052】[0052]

【発明の効果】SPA−1蛋白は、正常リンパ球細胞周
期のS期以降に強く発現することから、DNA複製や細
胞分裂に関与している可能性が示唆された。他方、同蛋
白のN末には、RanGAP活性ドメインの存在するこ
とが示された。Ranは、唯一核内に存在する低分子G
蛋白で、RCC−1遺伝子と会合している。RCC−1
は、酵母から哺乳類に至るすべての細胞によく保存され
ている核内蛋白で、G2/M移行のチェック機構(即
ち、DNA複製完了前の細胞分裂の防止)に関与する遺
伝子として有名であるが、近年他にもDNA複製開始や
RNAの核外輸送など、細胞核の機能の多くの局面に関
与していることがわかっている。
The SPA-1 protein is strongly expressed after the S phase of the normal lymphocyte cell cycle, suggesting that it may be involved in DNA replication and cell division. On the other hand, it was shown that the RanGAP activation domain exists at the N-terminus of the protein. Ran is a small molecule G that exists only in the nucleus
It is a protein and is associated with the RCC-1 gene. RCC-1
Is a nuclear protein that is well conserved in all cells from yeast to mammals, and is well known as a gene involved in the check mechanism of G 2 / M transition (ie, prevention of cell division before completion of DNA replication). However, it has recently been known that it is involved in many other aspects of the function of the cell nucleus, such as initiation of DNA replication and RNA nuclear export.

【0053】さらにRCC−1はRanに対して、GT
P exchangerとして作用する。このRCC−
1/Ran系はしかし、共に細胞周期に関係なく構成的
に発現されており、従って、周期とRCC−1/Ran
をつなぐ因子として、周期依存性因子、とりわけGAP
分子の介在が長らく推定されてきているがその本体は不
明であった。今回の一連の結果は、SPA−1が正しく
この介在分子であることを強く示唆するものである。さ
らに、SPA−1過剰発現により有糸分裂破綻(mit
otic catastrophes)がおこるという
今回の知見は、SPA−1が、周期依存性にこのRCC
−1/Ran系の機能制御にあたる中枢的分子であるこ
とを示唆しよう。
In addition, RCC-1 is
Acts as P exchanger. This RCC-
The 1 / Ran system is, however, both constitutively expressed independent of the cell cycle, and therefore, cycle and RCC-1 / Ran
As a factor that connects the two, a cycle-dependent factor, especially GAP
It has long been presumed that the intervening molecules are present, but its main body was unknown. This series of results strongly suggests that SPA-1 is the correct intervening molecule. Furthermore, SPA-1 overexpression causes mitotic disruption (mit
This time, it was found that SPA-1 is cycle-dependent on this RCC.
Let us suggest that it is a central molecule that regulates the function of the −1 / Ran system.

【0054】DNA合成と細胞分裂を促進するエンジン
に相当するcyclin/cdc2系に対して、ブレー
キにあたるRCC1/Ran系がSPA−1を介してい
かに微調整の役割を果たすかの詳細は今後の重要な検討
課題である。とりわけSPA−1が、ユニークな細胞増
殖特性を有するリンパ系細胞に高発現される事実は、そ
れが、同細胞系の増殖調節とそのチェック機構において
重要な機能を果たしていることを示唆するものである。
従って、本発明の蛋白質はリンパ球の分化調節剤等とし
ての有用性が期待される。さらに、本発明の蛋白質を腫
瘍細胞で発現させれば、細胞周期のS期で細胞死を誘導
することができるため、抗腫瘍剤としても有用である。
For the cyclin / cdc2 system, which corresponds to the engine that promotes DNA synthesis and cell division, the details of how the RCC1 / Ran system, which is a brake, plays a role of fine adjustment via SPA-1 will be important in the future. It is a serious study subject. Above all, the fact that SPA-1 is highly expressed in lymphoid cells having unique cell growth characteristics suggests that it plays an important role in the growth regulation of the cell line and its check mechanism. is there.
Therefore, the protein of the present invention is expected to be useful as a regulator of lymphocyte differentiation. Furthermore, when the protein of the present invention is expressed in tumor cells, cell death can be induced in the S phase of the cell cycle, and therefore it is also useful as an antitumor agent.

【0055】[0055]

【配列表】[Sequence list]

配列番号:1 配列の長さ:3519 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA 起原: 配列の特徴:SPA−1をコードするDNA 配列: GTCCTGCATG CAGCTGCCCC AGGAGCTCCT GTGTCCTTGA GGCCCATCTG 50 AACAGCCCCC TCCTCTGCAG TGCAGAAACC ACTGAAGCCT CAGCCTTCTG 100 GGTGGGCACC AAGGACCCGT GCCCACCAAT GCGGCCCGGC CCCCAGAGAG 150 TCAGGCCCAC AGGAGCACGC CCATGTGGGC CGGAGGTGTG GGGAGCCCTC 200 GGCGGGCATG GCCCCTGCAC CTACCGATGA CCTCTTTGCC CGTAAGCTTC 250 GCCAACCTGC CCGGCCCCCA CTGACACCAC AATACCTTTG AGCCGAGGCC 300 AGCTCGGGGC CCACTCTTGC GCAGTGGCAG TGATGCTGGT GAAGTCCGGC 350 CCCCTACACC AGCCAGCCCC CGTGCCCGTG CCCACAGCCA CGAGGATGCC 400 AGCCGCCCTG CTGCAACCCC TACTCGGCTC TTCACTGACC CACTGGCACT 450 GCTAGGGTTG CCAGCAGAAG AGCCAGAGCC CACCTTCCCG CCAGTGCTGG 500 AACCCCGGTG GTTTGCTCAC TATGATGTGC AGAGCTTGCT CTTTGACTGG 550 GCTCCACGAC CTCGGGGGAC AGGCAGCCAT ACAGAGGCAA ACTCTGGGAC 600 CTTAGCTGAG GGCCAGACTA CCACCTCAGA TCTACTGCTC GGGGCACCTG 650 GCTTTGTGAG CGAGCTTGGT GGTGAGGGTG AGCTAGGGCT GGGTGGGCCA 700 ATATCCCCAC CTGTGCCCCC TGCACTGCCT AATGCGGCTG TGTCCGTCCT 750 GGAGGAGCCA CAGACCCGGA CCACACTTAC AGCCTGGAGC ACGCAGATCT 800 GGGTGCAGGC TACTACCGCA AGTACTTCTA TGGCAAAGAA CACCAGAACT 850 TCTTTGGGTT GGATGAGGCG CTGGGTCCGG TGGCCGTGAG CCTGCGACGG 900 SEQ ID NO: 1 Sequence length: 3519 Sequence type: Nucleic acid Number of strands: Double-stranded Topology: Linear Sequence type: cDNA Origin: Sequence characteristics: DNA encoding SPA-1 Sequence: GTCCTGCATG CAGCTGCCCC AGGAGCTCCT GTGTCCTTGA GGCCCATCTG 50 AACAGCCCCC TCCTCTGCAG TGCAGAAACC ACTGAAGCCT CAGCCTTCTG 100 GGTGGGCACC AAGGACCCGT GCCCACCAAT GCGGCCCGGC CCCCAGAGAG 150 TCAGGCCCAC AGGAGCACGC CCATGTGGGC CGGAGGTGTG GGGAGCCCTC 200 GGCGGGCATG GCCCCTGCAC CTACCGATGA CCTCTTTGCC CGTAAGCTTC 250 GCCAACCTGC CCGGCCCCCA CTGACACCAC AATACCTTTG AGCCGAGGCC 300 AGCTCGGGGC CCACTCTTGC GCAGTGGCAG TGATGCTGGT GAAGTCCGGC 350 CCCCTACACC AGCCAGCCCC CGTGCCCGTG CCCACAGCCA CGAGGATGCC 400 AGCCGCCCTG CTGCAACCCC TACTCGGCTC TTCACTGACC CACTGGCACT 450 GCTAGGGTTG CCAGCAGAAG AGCCAGAGCC CACCTTCCCG CCAGTGCTGG 500 AACCCCGGTG GTTTGCTCAC TATGATGTGC AGAGCTTGCT CTTTGACTGG 550 GCTCCACGAC CTCGGGGGAC AGGCAGCCAT ACAGAGGCAA ACTCTGGGAC 600 CTTAGCTGAG GGTCAGGA TGG GCTTTGTGAG CGAGCTTGGT GGTGAGGGTG AGCTAGGGCT GGGTGGGCCA 700 ATATCCCCAC CTGTGCCCCC TGCACTGCCT AATGCGGCTG TGTCTGTCCGTC CCGACGCGCCACACTTACAGTGCCGATACGACTGACCGATACTACCTGCTGACCTACTACAGTCAGCAG

【0056】 GAGGAGAAAG AGGGCAGCGG AGGGGGCACC TACACAGCTA CCGGGTCATC 950 GTGCGGACCA CGCAGCTCCG GACCCTCCGT GGCACCATCT CGGAGGACGC 1000 ACTGCCTCCC GGCCCCCCGA GCGTATCTCC GAGGAAGCTT CTGGAACATG 1050 TGCTCCACGG CTGAGCCCAC CTGCCTGCGC CTGGGTTCAG CCTCTCCCAA 1100 GGTGCCCCGC AGCTGCTTAC TCTGGATGAG CAAGTGCTGA GCTTCCAACG 1150 CAAGGTGGGC ATCCTGTACT GCCGCGCAGG CCAGGGCTCT GAGGAAGAG ATG 1202 Met TAC AAC AAC CAG GAG GCC GGA GCA GCC TTT ATG CAG TTC CTT ACT 1247 Tyr Asn Asn Gln Glu Ala Gly Ala Ala Phe Met Gln Phe Leu Thr 5 10 15 TTG CTG GGT GAT GTG GTG CGA CTC AAA GGC TTT GAA AGT TAC CGG 1292 Leu Leu Gly Asp Val Val Arg Leu Lys Gly Phe Glu Ser Tyr Arg 20 25 30 GCC CAG CTG GAT ACC AAA ACG GAT TCC ACG GGC ACA CAC TCA CTC 1337 Ala Gln Leu Asp Thr Lys Thr Asp Ser Thr Gly Thr His Ser Leu 35 40 45 TAC ACC ACC TAC CAA GAC CAT GAG ATC ATG TTT CAC GTG TCC ACG 1382 Tyr Thr Thr Tyr Gln Asp His Glu Ile Met Phe His Val Ser Thr 50 55 60 ATG CTG CCT TAC ACG CCT AAT AAC CAG CAA CAG CTC CTG AGG AAG 1427 Met Leu Pro Tyr Thr Pro Asn Asn Gln Gln Gln Leu Leu Arg Lys 65 70 75 CGT CAT ATC GGC AAC GAT ATT GTG ACC ATC GTG TTC CAG GAG CCC 1472 Arg His Ile Gly Asn Asp Ile Val Thr Ile Val Phe Gln Glu Pro 80 85 90 GGT AGC AAG CCC TTC TGC CCT ACA ACA ATC CGC TCT CAC TTC CAG 1517 Gly Ser Lys Pro Phe Cys Pro Thr Thr Ile Arg Ser His Phe Gln 95 100 105 [0056] GAGGAGAAAG AGGGCAGCGG AGGGGGCACC TACACAGCTA CCGGGTCATC 950 GTGCGGACCA CGCAGCTCCG GACCCTCCGT GGCACCATCT CGGAGGACGC 1000 ACTGCCTCCC GGCCCCCCGA GCGTATCTCC GAGGAAGCTT CTGGAACATG 1050 TGCTCCACGG CTGAGCCCAC CTGCCTGCGC CTGGGTTCAG CCTCTCCCAA 1100 GGTGCCCCGC AGCTGCTTAC TCTGGATGAG CAAGTGCTGA GCTTCCAACG 1150 CAAGGTGGGC ATCCTGTACT GCCGCGCAGG CCAGGGCTCT GAGGAAGAG ATG 1202 Met TAC AAC AAC CAG GAG GCC GGA GCA GCC TTT ATG CAG TTC CTT ACT 1247 Tyr Asn Asn Gln Glu Ala Gly Ala Ala Phe Met Gln Phe Leu Thr 5 10 15 TTG CTG GGT GAT GTG GTG CGA CTC AAA GGC TTT GAA AGT TAC CGG 1292 Leu Leu Gly Asp Val Val Arg Leu Lys Gly Phe Glu Ser Tyr Arg 20 25 30 GCC CAG CTG GAT ACC AAA ACG GAT TCC ACG GGC ACA CAC TCA CTC 1337 Ala Gln Leu Asp Thr Lys Thr Asp Ser Thr Gly Thr His Ser Leu 35 40 45 TAC ACC ACC TAC CAA GAC CAT GAG ATC ATG TTT CAC GTG TCC ACG 1382 Tyr Thr Thr Tyr Gln Asp His Glu Ile Met Phe His Val Ser Thr 50 55 60 ATG CTG CCT TAC ACG CCT AAT AAC CAG CAA CAG CTC CTG AGG AAG 1427 Met Leu Pro Tyr Thr Pro Asn Asn Gln Gln Gln Leu Leu Arg Lys 65 70 75 CGT CAT ATC GGC AAC GAT ATT GTG ACC ATC GTG TTC CAG GAG CCC 1472 Arg His Ile Gly Asn Asp Ile Val Thr Ile Val Phe Gln Glu Pro 80 85 90 GGT AGC AAG CCC TTC TGC CCT ACA ACA ATC CGC TCT CAC TTC CAG 1517 Gly Ser Lys Pro Phe Cys Pro Thr Thr Ile Arg Ser His Phe Gln 95 100 105

【0057】 CAC GTT TTC TTG GTG GTG CGT GCG CAT GCT CCC TGC ACC CCA CAC 1562 His Val Phe Leu Val Val Arg Ala His Ala Pro Cys Thr Pro His 110 115 120 ACC TCA TAC AGG GTG GCA GTG AGC CGC ACC CAG GAC ACT CCT GCC 1607 Thr Ser Tyr Arg Val Ala Val Ser Arg Thr Gln Asp Thr Pro Ala 125 130 135 TTC GGG CCT GCG CTG CCA GAA GGC GGA GGC CCC TTT GCA GCC AAT 1652 Phe Gly Pro Ala Leu Pro Glu Gly Gly Gly Pro Phe Ala Ala Asn 140 145 150 GCC GAT TTC CGG GCC TTT CTG TTG GCT AAG GCA CTC AAT GGT GAG 1697 Ala Asp Phe Arg Ala Phe Leu Leu Ala Lys Ala Leu Asn Gly Glu 155 160 165 CAA GCG GCT GGT CAT GCA CGC CAG TTC CAC GCC ATG GCT ACA CGC 1742 Gln Ala Ala Gly His Ala Arg Gln Phe His Ala Met Ala Thr Arg 170 175 180 ACA CGC CAA CAG TAC CTG CAG GAC CTG GCT ACT AAT GAA GTG ACC 1787 Thr Arg Gln Gln Tyr Leu Gln Asp Leu Ala Thr Asn Glu Val Thr 185 190 195 ACT ACT TCG CTG GAC TCG GCT TCG CGG TTT GGC CTG CCA TCT CTG 1832 Thr Thr Ser Leu Asp Ser Ala Ser Arg Phe Gly Leu Pro Ser Leu 200 205 210 GGG GGT AGG CGC CGG GCA ACC CCT CGG AGC CCA GGC GCG GAC GTA 1877 Gly Gly Arg Arg Arg Ala Thr Pro Arg Ser Pro Gly Ala Asp Val 215 220 225 CAG GCG GCG GGT GCG CTG ATG TGG GGC GTA CGC GCG GCT CCA GGG 1922 Gln Ala Ala Gly Ala Leu Met Trp Gly Val Arg Ala Ala Pro Gly 230 235 240 CAC GTT TTC TTG GTG GTG CGT GCG CAT GCT CCC TGC ACC CCA CAC 1562 His Val Phe Leu Val Val Arg Ala His Ala Pro Cys Thr Pro His 110 115 120 ACC TCA TAC AGG GTG GCA GTG AGC CGC ACC CAG GAC ACT CCT GCC 1607 Thr Ser Tyr Arg Val Ala Val Ser Arg Thr Gln Asp Thr Pro Ala 125 130 135 TTC GGG CCT GCG CTG CCA GAA GGC GGA GGC CCC TTT GCA GCC AAT 1652 Phe Gly Pro Ala Leu Pro Glu Gly Gly Gly Pro Phe Ala Ala Asn 140 145 150 GCC GAT TTC CGG GCC TTT CTG TTG GCT AAG GCA CTC AAT GGT GAG 1697 Ala Asp Phe Arg Ala Phe Leu Leu Ala Lys Ala Leu Asn Gly Glu 155 160 165 CAA GCG GCT GGT CAT GCA CGC CAG TTC CAC GCC ATG GCT ACA CGC 1742 Gln Ala Ala Gly His Ala Arg Gln Phe His Ala Met Ala Thr Arg 170 175 180 ACA CGC CAA CAG TAC CTG CAG GAC CTG GCT ACT AAT GAA GTG ACC 1787 Thr Arg Gln Gln Tyr Leu Gln Asp Leu Ala Thr Asn Glu Val Thr 185 190 195 ACT ACT TCG CTG GAC TCG GCT TCG CGG TTT GGC CTG CCA TCT CTG 1832 Thr Thr Ser Leu Asp Ser Ala Ser Arg Phe Gly Leu Pro Ser Leu 200 205 210 GGG GGT AGG CGC CGG GC A ACC CCT CGG AGC CCA GGC GCG GAC GTA 1877 Gly Gly Arg Arg Arg Ala Thr Pro Arg Ser Pro Gly Ala Asp Val 215 220 225 CAG GCG GCG GGT GCG CTG ATG TGG GGC GTA CGC GCG GCT CCA GGG 1922 Gln Ala Ala Gly Ala Leu Met Trp Gly Val Arg Ala Ala Pro Gly 230 235 240

【0058】 GCG CGG GTC GCA GCG GGA GCT GAA ACG AGC GGT CCG GAC GAC GCC 1967 Ala Arg Val Ala Ala Gly Ala Glu Thr Ser Gly Pro Asp Asp Ala 245 250 255 GAG GTG CCC TGC TTG TTG GGC ATC TCA GCA GAG ACA CTG GTG CTG 2012 Glu Val Pro Cys Leu Leu Gly Ile Ser Ala Glu Thr Leu Val Leu 260 265 270 GTG GCA CCT CGC GAC GGC CGC GTG GTC TTC AAT TGT GCC TGT CGC 2057 Val Ala Pro Arg Asp Gly Arg Val Val Phe Asn Cys Ala Cys Arg 275 280 285 GAC GTA TTG GCC TGG ACC TTC TCA GAG CAC CAA CTC GAT CTG TAC 2102 Asp Val Leu Ala Trp Thr Phe Ser Glu His Gln Leu Asp Leu Tyr 290 295 300 CAC GGG CGC GGG GAG GCG ATC ACG CTG CGG CTC GAC GGG GCC CCA 2147 His Gly Arg Gly Glu Ala Ile Thr Leu Arg Leu Asp Gly Ala Pro 305 310 315 GGG CAA GCC GTG GGC GAA GTC GTG GCA CGT CTG CAG CTG GTG AGC 2192 Gly Gln Ala Val Gly Glu Val Val Ala Arg Leu Gln Leu Val Ser 320 325 330 CGC GGG TGT GAG ACC AGA GAA CTA GCG CTG CCC AGA GAT GGC CAA 2237 Arg Gly Cys Glu Thr Arg Glu Leu Ala Leu Pro Arg Asp Gly Gln 335 340 345 GGT CGC CTG GGC TTC GAG GTG GAT GCA GAA GGC TTC ATC ACG CAC 2282 Gly Arg Leu Gly Phe Glu Val Asp Ala Glu Gly Phe Ile Thr His 350 355 360 GTG GAG CGC TTC ACG TTT GCG GAG ACC ACG GGG CTT CGG CCT GGA 2327 Val Glu Arg Phe Thr Phe Ala Glu Thr Thr Gly Leu Arg Pro Gly 365 370 375 GCG CGG GTC GCA GCG GGA GCT GAA ACG AGC GGT CCG GAC GAC GCC 1967 Ala Arg Val Ala Ala Gly Ala Glu Thr Ser Gly Pro Asp Asp Ala 245 250 255 GAG GTG CCC TGC TTG TTG GGC ATC TCA GCA GAG ACA CTG GTG CTG 2012 Glu Val Pro Cys Leu Leu Gly Ile Ser Ala Glu Thr Leu Val Leu 260 265 270 GTG GCA CCT CGC GAC GGC CGC GTG GTC TTC AAT TGT GCC TGT CGC 2057 Val Ala Pro Arg Asp Gly Arg Val Val Phe Asn Cys Ala Cys Arg 275 280 285 GAC GTA TTG GCC TGG ACC TTC TCA GAG CAC CAA CTC GAT CTG TAC 2102 Asp Val Leu Ala Trp Thr Phe Ser Glu His Gln Leu Asp Leu Tyr 290 295 300 CAC GGG CGC GGG GAG GCG ATC ACG CTG CGG CTC GAC GGG GCC CCA 2147 His Gly Arg Gly Glu Ala Ile Thr Leu Arg Leu Asp Gly Ala Pro 305 310 315 GGG CAA GCC GTG GGC GAA GTC GTG GCA CGT CTG CAG CTG GTG AGC 2192 Gly Gln Ala Val Gly Glu Val Val Ala Arg Leu Gln Leu Val Ser 320 325 330 CGC GGG TGT GAG ACC AGA GAA CTA GCG CTG CCC AGA GAT GGC CAA 2237 Arg Gly Cys Glu Thr Arg Glu Leu Ala Leu Pro Arg Asp Gly Gln 335 340 345 GGT CGC CTG GGC TTC GA G GTG GAT GCA GAA GGC TTC ATC ACG CAC 2282 Gly Arg Leu Gly Phe Glu Val Asp Ala Glu Gly Phe Ile Thr His 350 355 360 GTG GAG CGC TTC ACG TTT GCG GAG ACC ACG GGG CTT CGG CCT GGA 2327 Val Glu Arg Phe Thr Phe Ala Glu Thr Thr Gly Leu Arg Pro Gly 365 370 375

【0059】 GCT CGT TTG CTG CGA GTC TGC GGC CAG ACG CTG CCC AAG CTG GGT 2372 Ala Arg Leu Leu Arg Val Cys Gly Gln Thr Leu Pro Lys Leu Gly 380 385 390 CCC GAA GCT GCT GCC CAG ATG CTG CGC TCT GCG CCG AAG GTC TGC 2417 Pro Glu Ala Ala Ala Gln Met Leu Arg Ser Ala Pro Lys Val Cys 395 400 405 GTC ACG GTC CTA CCC CCA GAC GAG AGC GGC CGG CCG CAG AGG AGC 2462 Val Thr Val Leu Pro Pro Asp Glu Ser Gly Arg Pro Gln Arg Ser 410 415 420 TTT TCG GAG CTC TAT ATG CTC TCT CTG AAG GAA CCC AGC CGG CGG 2507 Phe Ser Glu Leu Tyr Met Leu Ser Leu Lys Glu Pro Ser Arg Arg 425 430 435 GGG GGC CCA GAG CCA GTA CAG GAT GAA ACT GGG AAG TTG GTC ATA 2552 Gly Gly Pro Glu Pro Val Gln Asp Glu Thr Gly Lys Leu Val Ile 440 445 450 TTG CCT CCC ACC AAG CAG CTG CTA CAT TTT TGC CTG AAA GAC AGC 2597 Leu Pro Pro Thr Lys Gln Leu Leu His Phe Cys Leu Lys Asp Ser 455 460 465 AGC AGT CCT CCG GGG CCT GGG GAT CTG ACT GAG GAG AGG ACA GAG 2642 Ser Ser Pro Pro Gly Pro Gly Asp Leu Thr Glu Glu Arg Thr Glu 470 475 480 TTC CTG CGC AGC CAC AAC TCC CTG TCA TCT GGA AGC TCC CTG TCC 2687 Phe Leu Arg Ser His Asn Ser Leu Ser Ser Gly Ser Ser Leu Ser 485 490 495 GAT GAG GCT CCA GTC CTG CCC AAC ACC ACT CCA GAC CTC CTC CTT 2732 Asp Glu Ala Pro Val Leu Pro Asn Thr Thr Pro Asp Leu Leu Leu 500 505 510 GCT CGT TTG CTG CGA GTC TGC GGC CAG ACG CTG CCC AAG CTG GGT 2372 Ala Arg Leu Leu Arg Val Cys Gly Gln Thr Leu Pro Lys Leu Gly 380 385 390 CCC GAA GCT GCT GCC CAG ATG CTG CGC TCT GCG CCG AAG GTC TGC 2417 Pro Glu Ala Ala Ala Gln Met Leu Arg Ser Ala Pro Lys Val Cys 395 400 405 GTC ACG GTC CTA CCC CCA GAC GAG AGC GGC CGG CCG CAG AGG AGC 2462 Val Thr Val Leu Pro Pro Asp Glu Ser Gly Arg Pro Gln Arg Ser 410 415 420 TTT TCG GAG CTC TAT ATG CTC TCT CTG AAG GAA CCC AGC CGG CGG 2507 Phe Ser Glu Leu Tyr Met Leu Ser Leu Lys Glu Pro Ser Arg Arg 425 430 435 GGG GGC CCA GAG CCA GTA CAG GAT GAA ACT GGG AAG TTG GTC ATA 2552 Gly Gly Pro Glu Pro Val Gln Asp Glu Thr Gly Lys Leu Val Ile 440 445 450 TTG CCT CCC ACC AAG CAG CTG CTA CAT TTT TGC CTG AAA GAC AGC 2597 Leu Pro Pro Thr Lys Gln Leu Leu His Phe Cys Leu Lys Asp Ser 455 460 465 AGC AGT CCT CCG GGG CCT GGG GAT CTG ACT GAG GAG AGG ACA GAG 2642 Ser Ser Pro Pro Gly Pro Gly Asp Leu Thr Glu Glu Arg Thr Glu 470 475 480 TTC CTG CGC AGC CAC A AC TCC CTG TCA TCT GGA AGC TCC CTG TCC 2687 Phe Leu Arg Ser His Asn Ser Leu Ser Ser Gly Ser Ser Leu Ser 485 490 495 GAT GAG GCT CCA GTC CTG CCC AAC ACC ACT CCA GAC CTC CTC CTT 2732 Asp Glu Ala Pro Val Leu Pro Asn Thr Thr Pro Asp Leu Leu Leu 500 505 510

【0060】 GTC ACC ACT GCC AAC CCA TCT GCA CCT GGT ACT GAC AGA GAA ACA 2777 Val Thr Thr Ala Asn Pro Ser Ala Pro Gly Thr Asp Arg Glu Thr 515 520 525 CCC CCT TCC CAG GAC CAG TCA GGA AGC CCC AGT AGC CAT GAA GAC 2822 Pro Pro Ser Gln Asp Gln Ser Gly Ser Pro Ser Ser His Glu Asp 530 535 540 ACC AGT GAC TCA GGC CCA GAA CTG AGG GCC TCC ATC CTG CCC AGA 2867 Thr Ser Asp Ser Gly Pro Glu Leu Arg Ala Ser Ile Leu Pro Arg 545 550 555 ACC TTG TCT CTG CGG AAT TCC ATC AGT AAG ATT ATG TCG GAA GCT 2912 Thr Leu Ser Leu Arg Asn Ser Ile Ser Lys Ile Met Ser Glu Ala 560 565 570 GGC AGT GAG ACC CTG GAG GAT GAG TGG CAG TCC ATC TCA GAG ATC 2957 Gly Ser Glu Thr Leu Glu Asp Glu Trp Gln Ser Ile Ser Glu Ile 575 580 585 GCC TCC ACT TGC AAC ACA ATT CTG GAG TCA CTG TCC CGG GAG GGA 3002 Ala Ser Thr Cys Asn Thr Ile Leu Glu Ser Leu Ser Arg Glu Gly 590 595 600 CAA CCC ATC TCA GAG AGC GGA GAC CCC AAG GAA GCT TTA AAG TGT 3047 Gln Pro Ile Ser Glu Ser Gly Asp Pro Lys Glu Ala Leu Lys Cys 605 610 615 GAT TCT GAG CCA GAA CCC GGG AGC CTG TCA GAA AAG GTC TCT CAC 3092 Asp Ser Glu Pro Glu Pro Gly Ser Leu Ser Glu Lys Val Ser His 620 625 630 CTA GAG TCC ATG CTC TGG AAG CTC CAG GAG GAC CTG CAG AGG GAG 3137 Leu Glu Ser Met Leu Trp Lys Leu Gln Glu Asp Leu Gln Arg Glu 635 640 645 GTC ACC ACT GCC AAC CCA TCT GCA CCT GGT ACT GAC AGA GAA ACA 2777 Val Thr Thr Ala Asn Pro Ser Ala Pro Gly Thr Asp Arg Glu Thr 515 520 525 CCC CCT TCC CAG GAC CAG TCA GGA AGC CCC AGT AGC CAT GAA GAC 2822 Pro Pro Ser Gln Asp Gln Ser Gly Ser Pro Ser Ser His Glu Asp 530 535 540 ACC AGT GAC TCA GGC CCA GAA CTG AGG GCC TCC ATC CTG CCC AGA 2867 Thr Ser Asp Ser Gly Pro Glu Leu Arg Ala Ser Ile Leu Pro Arg 545 550 555 ACC TTG TCT CTG CGG AAT TCC ATC AGT AAG ATT ATG TCG GAA GCT 2912 Thr Leu Ser Leu Arg Asn Ser Ile Ser Lys Ile Met Ser Glu Ala 560 565 570 GGC AGT GAG ACC CTG GAG GAT GAG TGG CAG TCC ATC TCA GAG ATC 2957 Gly Ser Glu Thr Leu Glu Asp Glu Trp Gln Ser Ile Ser Glu Ile 575 580 585 GCC TCC ACT TGC AAC ACA ATT CTG GAG TCA CTG TCC CGG GAG GGA 3002 Ala Ser Thr Cys Asn Thr Ile Leu Glu Ser Leu Ser Arg Glu Gly 590 595 600 CAA CCC ATC TCA GAG AGC GGA GAC CCC AAG GAA GCT TTA AAG TGT 3047 Gln Pro Ile Ser Glu Ser Gly Asp Pro Lys Glu Ala Leu Lys Cys 605 610 615 GAT TCT GAG CCA GAA CC C GGG AGC CTG TCA GAA AAG GTC TCT CAC 3092 Asp Ser Glu Pro Glu Pro Gly Ser Leu Ser Glu Lys Val Ser His 620 625 630 CTA GAG TCC ATG CTC TGG AAG CTC CAG GAG GAC CTG CAG AGG GAG 3137 Leu Glu Ser Met Leu Trp Lys Leu Gln Glu Asp Leu Gln Arg Glu 635 640 645

【0061】 AAG GCG GAC AGG GCA GCC TTG GAG GAG GAG GTT CGG AGC CTC AGA 3182 Lys Ala Asp Arg Ala Ala Leu Glu Glu Glu Val Arg Ser Leu Arg 650 655 660 CAC AAC AAC CAG AGG CTG CTG GCA GAG TCC GAG AGT GCC GCC ACC 3227 His Asn Asn Gln Arg Leu Leu Ala Glu Ser Glu Ser Ala Ala Thr 665 670 675 CGC CTG CTC CTG GCC TCT AAG CAT CTG GGT GCA CCC ACT ACT GAC 3272 Arg Leu Leu Leu Ala Ser Lys His Leu Gly Ala Pro Thr Thr Asp 680 685 690 CTG GCC TGAGTTCCAA TCTGAATCTG GACCTGCTTG GAACTGCCTG 3318 Leu Ala GCCCCTCAGA GCAACTGGGT CATACTAGTG CCCTTCCTCA GGACTTCTTC 3368 CCTGCGCTGA GGCGCGTCTT AGCACTGCCC CCTCTTCCCA GCCCATTTGG 3418 TGGCTAATGC CTGTCCCTGT TTGTAAATAT CCTGTAAAGA AAAGGAGACA 3468 TCAGAGTTTA AAAAAAAGAA ACAACAAGAA GAAGCAAAAA AAAAAAAAAA 3518 A 3519AAG GCG GAC AGG GCA GCC TTG GAG GAG GAG GTT CGG AGC CTC AGA 3182 Lys Ala Asp Arg Ala Ala Leu Glu Glu Glu Val Arg Ser Leu Arg 650 655 660 CAC AAC AAC CAG AGG CTG CTG GCA GAG TCC GAG AGT GCC GCC ACC 3227 His Asn Asn Gln Arg Leu Leu Ala Glu Ser Glu Ser Ala Ala Thr 665 670 675 CGC CTG CTC CTG GCC TCT AAG CAT CTG GGT GCA CCC ACT ACT GAC 3272 Arg Leu Leu Leu Ala Ser Lys His Leu Gly Ala Pro Thr Thr Asp 680 685 690 CTG GCC TGAGTTCCAA TCTGAATCTG GACCTGCTTG GAACTGCCTG 3318 Leu Ala GCCCCTCAGA GCAACTGGGT CATACTAGTG CCCTTCCTCA GGACTTCTTC 3368 CCTGCGCTGA GGCGCGTCTT AGCACTGCCC CCTCTTCCCA GCCCATTTGG 3418 TGGCTAATGC CTGTCCCTGT TTGTAAATAT CCTGTAAAGA AAAGGAGACA 3468 TCAGAGTTTA AAAAAAAGAA ACAACAAGAA GAAGCAAAAA AAAAAAAAAA 3518 A 3519

【0062】配列番号:2 配列の長さ:5687 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:genomic DNA 起原 種:マウス 株:Spa−GC2 配列の特徴 Exon 1 :3109−3284 Exon 2 :3764−4555 Exon 3 :5147−5273 Exon 4 :5383−5524 配列:SEQ ID NO: 2 Sequence length: 5687 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: genomic DNA Origin: Mouse strain: Spa-GC2 Sequence characteristics Exon 1: 3109-3284 Exon 2: 3764-4555 Exon 3: 5147-5273 Exon 4: 5383-5524 Sequence:

【0063】 GGATCCCAAA CTGAGGCAGC AGCCTCCTAG CCAGGCCCTA AGAGCCAAAC 50 CCATGGGCTG GTCCCTCATT GGAGCCCATG GCCAGGACTG ACTTTGCCTC 100 TGGGGCCTGC ACTGCCCCCA AGGCTGGCCT CCTTAGCCTG GACCTGGGGC 150 CCGATATGTG GCAAGGGTGG GTTCATTCGT TCTTTTGTCA TTTTTCTTTC 200 TTTTTTTTTC TGTGCTTCAG AGACACCAAA TTAATAACAC TATTTTTGAT 250 TTTGGTTGGC AGTTTTATTT TCTGTGGGAC GAGGTGAGGT TGGTAGAGGT 300 GCCGGAGGGA GGCTGAAGTC AGAAGAGTGT GAGGGATAAG GGGTCAGACT 350 GCTGGGCTCC AGGCAGACAT GAGGTGGGAT GGGCTGCCTT CCTCACCTGC 400 CTCTGCCTTT CTTTTTTTTT TTTTTTTTTT AATGGTTTAA GAGCTTATTA 450 TAGAAATGCC AGTCGAGGGA AGAGAAAAGG TAGAGAGAGA GAGTGTGTGG 500 GACGGGGAAG GCTAGAGAAG AAGAAAGAGA AAGGAGAGAA AAGACAAAGG 550 GAAGAGGAGA AAGAAGTGAG AGGATAAAGG AGAGAGCTGA GCCTCTGCTT 600 TTCAAGCAGT CCTCTATCCC CAGGTGGCTC ACACATCCAT CAGCCTTGAT 650 CTTATCAAAG ACTGCTCAAC CTCATTTGTC CAAGCTTAAG AAAATAACAG 700 GTGAATAGAA AGGATTCTAT TCGTTTTTGA GACAGGGGCT TACCATGTAC 750 TCCCTATGTA CATCAGGCTG GCCTTGACCT CAGATCCACC TGCCTCTGCC 800 TTCAGAGTGC TGGATTTAAT GGTGTTCGCC ATTGCATAAA TGGTAGCCTG 850 TGTAGATCAG TTATCTAGCT TGGCCCAGCC CTTAAAGAGT GAAATAGTTT 900 CTGGCCCTAA TACCTGCTGT CTGCTGAGCC ACAGCAGGAC ACTAAGTGGC 950 CTCTAGCGCT CCAATTGGTC TGGAAGGCAG GTACATTTGT TCCCATTTCT 1000 CGGTGAAGTC ACTGACTGGG CTAGGACCGG GAGTTAAAAG AGCAGCTGAA 1050 GGCTGGGACA GAGAACTTCA GGCTGTCCGG GGCTGCCTAG GTTCCTGTCG 1100 GAGGTCCCCA CCCACTGTGC TTCCGCCTTA GACAGCTCCC GGGTAGTCCC 1150 GCCCCTCCAC TACGTACCGC CTCCATCCTG GCCCCGCCCC CAGGGAGGGA 1200[0063] GGATCCCAAA CTGAGGCAGC AGCCTCCTAG CCAGGCCCTA AGAGCCAAAC 50 CCATGGGCTG GTCCCTCATT GGAGCCCATG GCCAGGACTG ACTTTGCCTC 100 TGGGGCCTGC ACTGCCCCCA AGGCTGGCCT CCTTAGCCTG GACCTGGGGC 150 CCGATATGTG GCAAGGGTGG GTTCATTCGT TCTTTTGTCA TTTTTCTTTC 200 TTTTTTTTTC TGTGCTTCAG AGACACCAAA TTAATAACAC TATTTTTGAT 250 TTTGGTTGGC AGTTTTATTT TCTGTGGGAC GAGGTGAGGT TGGTAGAGGT 300 GCCGGAGGGA GGCTGAAGTC AGAAGAGTGT GAGGGATAAG GGGTCAGACT 350 GCTGGGCTCC AGGCAGACAT GAGGTGGGAT GGGCTGCCTT CCTCACCTGC 400 CTCTGCCTTT CTTTTTTTTT TTTTTTTTTT AATGGTTTAA GAGCTTATTA 450 TAGAAATGCC AGTCGAGGGA AGAGAAAAGG TAGAGAGAGA GAGTGTGTGG 500 GACGGGGAAG GCTAGAGAAG AAGAAAGAGA AAGGAGAGAA AAGACAAAGG 550 GAAGAGGAGA AAGAAGTGAG AGGATAAAGG AGAGAGCTGA GCCTCTGCTT 600 TTCAAGCAGT CCTCTATCCC CAGGTGGCTC ACACATCCAT CAGCCTTGAT 650 CTTATCAAAG ACTGCTCAAC CTCATTTGTC CAAGCTTAAG AAAATAACAG 700 GTGAATAGAA AGGATTCTAT TCGTTTTTGA GACAGGGGCT TACCATGTAC 750 TCCCTATGTA CATCAGGCTG GCCTTGACCT CAGATCCACC TGCCTCTGCC 800 TTCAGAGTGC TGGATTTAAT GGTGTTCGCC ATTGC ATAAA TGGTAGCCTG 850 TGTAGATCAG TTATCTAGCT TGGCCCAGCC CTTAAAGAGT GAAATAGTTT 900 CTGGCCCTAA TACCTGCTGT CTGCTGAGCC ACAGCAGGAC ACTAAGTGGC 950 CTCTAGCGCT CCAATTGGTC TGGAAGGCAG GTACATTTGT TCCCATTTCT 1000 CGGTGAAGTC ACTGACTGGG CTAGGACCGG GAGTTAAAAG AGCAGCTGAA 1050 GGCTGGGACA GAGAACTTCA GGCTGTCCGG GGCTGCCTAG GTTCCTGTCG 1100 GAGGTCCCCA CCCACTGTGC TTCCGCCTTA GACAGCTCCC GGGTAGTCCC 1150 GCCCCTCCAC TACGTACCGC CTCCATCCTG GCCCCGCCCC CAGGGAGGGA 1200

【0064】 GGCGCCGGGA GCGGTGTGAG CAGGCAGCGG GACCTTGGTG CGGAAGGCAG 1250 CGGTGGCCAG CTTGAGCCCG AGAGGTACTG GCGGGATCAG GGATCGGGAG 1300 GCACCAGGTT CGGGCTGGAT ACCCAACAAA GTAGCCTGGA CGTGAACCCT 1350 GTAGTGTGGG GAGGAACGGG ACTATTGGCT GCTTTCGCTA CACGCACCCC 1400 ACCCAACCTC CTGCCCCAGT CCAGCCCCGA GTCAGCACGT CCAGTGTTCT 1450 GCTCCTGCTG GCAGCTCCCA CTCCCTCCTC TGCATGAGCA GATTCAGAGC 1500 TCACTGAGTG GATTCATTGG TTCTGGACTT TTCTCAGCAA TGCTGGCGCA 1550 GCTGCTCCTG CTGCTGTTGT TGTTGTGGGG CTCCCCCTAT TCTGGGGCTC 1600 CCCTGTTCCC AGTGTGACCT CTTTCCCAGC CTTTGCAATC CTGAGTCTGG 1650 CCTGGGAGGA AACATCTGCA GCACTCCCTG GCAACAGAAA TAGGGTCACG 1700 ACCTCCAGAT GTGCTGGGAA GCATCCAGCG CCTCCTCCTG GGGCAGCCAG 1750 GCCTTCCGGA TCTGTGGGGG CGGGCCCCCC CTTTCCCCCC CTCAGTGACA 1800 CAGGCTGCAA GGAATGTCTG GGCCTCAATG GACCTTGTGT AAGATGAGGG 1850 GTGGGGGGCA GAGCAAGTAC ACACCTTAAG GCAGGGCCAG AACAAGAGGG 1900 AGCTCCTGGA CTGGGCTGCA CACATTCCCA GGGCTCCTCC CGGCACTGCG 1950 GCCTCAGTCT GTGCCCACGC TTGGTCTATG GACCTGGGCG CCTGCACAGT 2000 TCACACACGG ACATAGTTGG CCTTCACCTT TCAGTTTCCA AGGAGTCTTC 2050 AAAGAACTCA TGAAGAGTTC CAGACTCAGA GAGCTTATCC TAGAAGACAG 2100 ACAGACAGAC AGGAAGACCC TGAGGAGGTC TGCTCTTATT TAATTCTGGA 2150 GACCCAGCTG AGGGGCACCG TGGAGCTGCT CCCTGTCCCC TCCCAGCCTG 2200 GCCCCCTTGA TGCCACTGGA TGATGCAAAA AAAAGTACTA ATGGAGGCCT 2250 GCCCCTGCCC CAGCTGTTGG CTCCATTCCT ACGTCACGCC GAGGTAGGCT 2300 CGGCCTTCTC ACACCTTTTG CACCTGCCTA GTGTAGCTTC ACCACATTTC 2350 CGCACTTAGT AGGTCCCTGG GGCCTTGGGT GTTTCAGCCT TACATCCTGT 2400 GAGACCTTGA GCCTCTCCCA TCTCCCCTCA CAAGGCTGCC TTACTCCTAC 2450 GCACACGGGC AGAGTAGGCA GGTGCAGCTC TGACAAGTCC AGAAGCAGCA 2500 GTCTCAACCT GTGTGCTGGG ACCCCTTTGA GGGTCGAGCA GTCCTTCACA 2550 GGGGTCACAC TTGAGATATT TATCTTCTTC TTCTTCTTCT TTTTGTTTTT 2600[0064] GGCGCCGGGA GCGGTGTGAG CAGGCAGCGG GACCTTGGTG CGGAAGGCAG 1250 CGGTGGCCAG CTTGAGCCCG AGAGGTACTG GCGGGATCAG GGATCGGGAG 1300 GCACCAGGTT CGGGCTGGAT ACCCAACAAA GTAGCCTGGA CGTGAACCCT 1350 GTAGTGTGGG GAGGAACGGG ACTATTGGCT GCTTTCGCTA CACGCACCCC 1400 ACCCAACCTC CTGCCCCAGT CCAGCCCCGA GTCAGCACGT CCAGTGTTCT 1450 GCTCCTGCTG GCAGCTCCCA CTCCCTCCTC TGCATGAGCA GATTCAGAGC 1500 TCACTGAGTG GATTCATTGG TTCTGGACTT TTCTCAGCAA TGCTGGCGCA 1550 GCTGCTCCTG CTGCTGTTGT TGTTGTGGGG CTCCCCCTAT TCTGGGGCTC 1600 CCCTGTTCCC AGTGTGACCT CTTTCCCAGC CTTTGCAATC CTGAGTCTGG 1650 CCTGGGAGGA AACATCTGCA GCACTCCCTG GCAACAGAAA TAGGGTCACG 1700 ACCTCCAGAT GTGCTGGGAA GCATCCAGCG CCTCCTCCTG GGGCAGCCAG 1750 GCCTTCCGGA TCTGTGGGGG CGGGCCCCCC CTTTCCCCCC CTCAGTGACA 1800 CAGGCTGCAA GGAATGTCTG GGCCTCAATG GACCTTGTGT AAGATGAGGG 1850 GTGGGGGGCA GAGCAAGTAC ACACCTTAAG GCAGGGCCAG AACAAGAGGG 1900 AGCTCCTGGA CTGGGCTGCA CACATTCCCA GGGCTCCTCC CGGCACTGCG 1950 GCCTCAGTCT GTGCCCACGC TTGGTCTATG GACCTGGGCG CCTGCACAGT 2000 TCACACACGG ACATAGTTGG CCTTCACCTT TCAGTTTCCA AGGAGTCTTC 2050 AAAGAACTCA TGAAGAGTTC CAGACTCAGA GAGCTTATCC TAGAAGACAG 2100 ACAGACAGAC AGGAAGACCC TGAGGAGGTC TGCTCTTATT TAATTCTGGA 2150 GACCCAGCTG AGGGGCACCG TGGAGCTGCT CCCTGTCCCC TCCCAGCCTG 2200 GCCCCCTTGA TGCCACTGGA TGATGCAAAA AAAAGTACTA ATGGAGGCCT 2250 GCCCCTGCCC CAGCTGTTGG CTCCATTCCT ACGTCACGCC GAGGTAGGCT 2300 CGGCCTTCTC ACACCTTTTG CACCTGCCTA GTGTAGCTTC ACCACATTTC 2350 CGCACTTAGT AGGTCCCTGG GGCCTTGGGT GTTTCAGCCT TACATCCTGT 2400 GAGACCTTGA GCCTCTCCCA TCTCCCCTCA CAAGGCTGCC TTACTCCTAC 2450 GCACACGGGC AGAGTAGGCA GGTGCAGCTC TGACAAGTCC AGAAGCAGCA 2500 GTCTCAACCT GTGTGCTGGG ACCCCTTTGA GGGTCGAGCA GTCCTTCACA 2550 GGGGTCACAC TTGAGATATT TATCTTCTTC TTCTTCTTCT TTTTGTTTTT 2600

【0065】 CAAGACAGGG TTTCTCTGTG TAGCCCTGGC TATCCTGGAA CTCACTCTGT 2650 AGACCAGGCT GGCCTTGAAC TCGAAATCTG CCTGCCTCTG ATTCCCCAGT 2700 GCTAGGATTA AAGGAGTGTG CCAACACTGC CCGGCTCATG TTATGATCTT 2750 AAGGGCAGCA AAATTACAGT GGTGAAGTAG CAATGAAAAT AATTTTCTGG 2800 CTGTGAGGTC ACCACCGCAT TAGGGAAACT GTATTAAAGC GTCACAGAGT 2850 TAAGAAGGTT GAGAACTACT GCCTTCGAGA TTCAGAGACA AGGTTCAAAT 2900 TCTAGTTTGA ACATGGAACT AATTCAGGCA AGCTCATCTT CTTAACTGGG 2950 CCTCACTGTG ACCTGTCTCA CTGGGTTCAG ACCTCCCTGT CCATGCATGT 3000 GAGGCCAGGT AAACAGACAT CCACAGGGTC CTGATTGGGA TTAGCCTCTC 3050 TCACCCCTGG GAGTGGGCAT CGTGACCTGC AAGAGATTAG TATTAGTCTT 3100 GTCCTTTAGA CTTAGGTGTC TTGGGTCCCA TGACTGAGCT GTTGTGACCC 3150 TAGCACCTTC CTCAGGATAT AGGAGCCAAG CAGGGGGCTG GGCTGAGTTG 3200 GGGCCACTTC CTGTGTTATA GGAAGTCCTC TCACCACTGC TTCTGTCCTG 3250 CATGCAGCTG CCCCAGGAGC TCCTGTGTCC TTGAGGTATT GAGACTGCGG 3300 GAATTGAGGG CACTGAGTCT AGGCCTTGGG TGCTCAGTCT CTTTGGGGAC 3350 TCTGGAGGAA GTGGGAGGTA CCAGGGAGGA AGGTCTCTGG GGACGGACGT 3400 CTCCCTTTGT ACAAGTGGGC AAGACTCAGA CACCAGTGAC TGCTTTGATT 3450 TCCGTTCTGG TGAAAACTGT TCAGAATTTG GTGGCAACCC TCACTTTGAG 3500 CCTAGTTCCA CAGCCAAGGT GTACAGGGGA GAACTGGGAG GGGCCGGTGC 3550 CACTAGACCC AGTCACTAGC ACCCCGAGAG CAAAGCATCC CAGTTCAGCT 3600 CCCAGCCTTG ACCTAAGCCT GGGATGGGGC TGGAAACTTC AGCCCAGGCA 3650 GACAAGGAAG TGGCCAGGAA AGCGGAAGCA GCTTTGATGG TCCGGAGGGG 3700 GCCGGAAGCT AAATGGGGTG GTGGAAGACT GGGCTGGGGG CCTGAGTTCC 3750 TGTTTTCTCC CCAGGCCCAT CTGAACAGCC CCCTCCTCTG CAGTGCAGGA 3800 ACCTCTGAAC GCTCAGCCTT CTGGCTGGGC ACCAAGGACC CGTGCCCACC 3850 AATGCGGCCC GGCCCCCAGA GAGTCAGGCC CACAGGAGCA CGCCCATGTG 3900 GGCCGGCGGT GTGGGGAGCC CTCGGCGGGT GCATGGCCTG CACCTACCGA 3950 TGACCTCTTT GCCCGTAGCT TCGCCAACCT GCCCGGCCCC CACTGACACC 4000[0065] CAAGACAGGG TTTCTCTGTG TAGCCCTGGC TATCCTGGAA CTCACTCTGT 2650 AGACCAGGCT GGCCTTGAAC TCGAAATCTG CCTGCCTCTG ATTCCCCAGT 2700 GCTAGGATTA AAGGAGTGTG CCAACACTGC CCGGCTCATG TTATGATCTT 2750 AAGGGCAGCA AAATTACAGT GGTGAAGTAG CAATGAAAAT AATTTTCTGG 2800 CTGTGAGGTC ACCACCGCAT TAGGGAAACT GTATTAAAGC GTCACAGAGT 2850 TAAGAAGGTT GAGAACTACT GCCTTCGAGA TTCAGAGACA AGGTTCAAAT 2900 TCTAGTTTGA ACATGGAACT AATTCAGGCA AGCTCATCTT CTTAACTGGG 2950 CCTCACTGTG ACCTGTCTCA CTGGGTTCAG ACCTCCCTGT CCATGCATGT 3000 GAGGCCAGGT AAACAGACAT CCACAGGGTC CTGATTGGGA TTAGCCTCTC 3050 TCACCCCTGG GAGTGGGCAT CGTGACCTGC AAGAGATTAG TATTAGTCTT 3100 GTCCTTTAGA CTTAGGTGTC TTGGGTCCCA TGACTGAGCT GTTGTGACCC 3150 TAGCACCTTC CTCAGGATAT AGGAGCCAAG CAGGGGGCTG GGCTGAGTTG 3200 GGGCCACTTC CTGTGTTATA GGAAGTCCTC TCACCACTGC TTCTGTCCTG 3250 CATGCAGCTG CCCCAGGAGC TCCTGTGTCC TTGAGGTATT GAGACTGCGG 3300 GAATTGAGGG CACTGAGTCT AGGCCTTGGG TGCTCAGTCT CTTTGGGGAC 3350 TCTGGAGGAA GTGGGAGGTA CCAGGGAGGA AGGTCTCTGG GGACGGACGT 3400 CTCCCTTTGT ACAAGTGGGC AAGACTCAGA CACCAGTGAC TGCTTTGATT 3450 TCCGTTCTGG TGAAAACTGT TCAGAATTTG GTGGCAACCC TCACTTTGAG 3500 CCTAGTTCCA CAGCCAAGGT GTACAGGGGA GAACTGGGAG GGGCCGGTGC 3550 CACTAGACCC AGTCACTAGC ACCCCGAGAG CAAAGCATCC CAGTTCAGCT 3600 CCCAGCCTTG ACCTAAGCCT GGGATGGGGC TGGAAACTTC AGCCCAGGCA 3650 GACAAGGAAG TGGCCAGGAA AGCGGAAGCA GCTTTGATGG TCCGGAGGGG 3700 GCCGGAAGCT AAATGGGGTG GTGGAAGACT GGGCTGGGGG CCTGAGTTCC 3750 TGTTTTCTCC CCAGGCCCAT CTGAACAGCC CCCTCCTCTG CAGTGCAGGA 3800 ACCTCTGAAC GCTCAGCCTT CTGGCTGGGC ACCAAGGACC CGTGCCCACC 3850 AATGCGGCCC GGCCCCCAGA GAGTCAGGCC CACAGGAGCA CGCCCATGTG 3900 GGCCGGCGGT GTGGGGAGCC CTCGGCGGGT GCATGGCCTG CACCTACCGA 3950 TGACCTCTTT GCCCGTAGCT TCGCCAACCT GCCCGGCCCC CACTGACACC 4000

【0066】 ACATACCTTT GAGCCGAGGC CAGCTCGGGC CACTCTTGCG CAGTGGCAGT 4050 GATGCTGGTG AAGTCGGCCC CCTACACCAG CCAGCCCCCG TGCCCGTGCC 4100 CACAGCCACG AGGATGCCAG CCGCCCTGCT GCAACCCCTA CTCGGCTCTT 4150 CACTGACCCA CTGGCACTGC TAGGGTTGCC AGCAGAAGAG CCAGAGCCCA 4200 GGTTCCCGCC AGTGCTGGAA CCCCGGTGGT TTGCTCACTA TGATGTGCAG 4250 AGCTTGCTCT TTGACTGGGC TCCACGACCT CGGGGGACAG GCAGCCATAC 4300 AGAGGCAAAC TCTGGGACCT TAGCTGAGGG CCAGACTACC ACCTCAGATC 4350 TACTGCTCGG GGCACCTGGC TTTGTGAGCG AGCTTGGTGG TGAGGGTGAG 4400 CTAGGGCTGG GTGGGCCAAT ATCCCCACCT GTGCCCCCTG CACTGCCTAA 4450 TGCGGCTGTG TCCGTCCTGG AGGAGCCACA GACCCGGACC ACACTTACAG 4500 CCTGGAGCAC GCAGATCTGG GTGCAGGCTA CTACCGCAAG TACTTCTATG 4550 GCAAAGGTAA GGGGCAGGCG AGCCTGGGAG AGGCAGGAGA GGATCTGGGT 4600 CGGAGGTCCC TGTGGTCTTC TACATTCTAT CAGTGGGAGG CTCATGGGCT 4650 GGCCTTCCCT GTAAAAAAGG GGCAGGAGCT GAATTGGGCT CTGTTGGCTC 4700 AACTCTGACC ACCTCTTTAA GGCCAAGAAT GGTGTCACAC CTGAAGTCAG 4750 GGAGTGCACT TACCTCTGAG GCTCATCTTC ATAACCTCCA GGAGGCCAGT 4800 GAGCGATTTC CTATTTCCAT ATCTGTGTGA TGAAACCCTG TTCTCATCAT 4850 TAGCAGGAAA AGCAGCTTCC GTGTCTTGAA TGGGAGAACC TAAGCTTTGG 4900 TGGAGCCAGG GCAGCATTTA ACTAGGAGGA CTTAGGCATT TGTTCCCCGG 4950 TCCTGGGAAC AAGGTGTAAC CGTGGGTGGG ACTGCAAACT GGGGTGGAGT 5000 GAACTCCCAG GTTCAGCGCT TGGTGAGAGA ATACCTAGGG TGGTACTTCT 5050 GTGGTGGGAG TAGTCAAGAA GGGATAGGGT GGTCTGTGGG TTTGACTGAA 5100 AGGCCACCGA CCGACCAACC AACGACCCTC CACCCCCACC CCCACAGAAC 5150 ACCAGAACTT CTTTGGGTTG GATGAGGCGC TGGGTCCGGT GGCCGTGAGC 5200 CTGCGACGGG AGGAGAAAGA GGGCAGCGGA GGGGGCACCT ACACAGCTAC 5250 CGGGTCATCG TGCGGACCAC GCAGGTGGGC TGGGATTACA GGCTCAGGAG 5300 GCAGGTTTCC TCCACCACAG CCTATACAAA AACTGAATGT CTCTACATCC 5350 TTAGCTCCGG ACCCTCCGTG GCACCATCTC GGAGGACGCA CTGCCTCCCG 5400 GCCCCCCGAG CGTATCTCCG AGGAAGCTTC TGGAACATGT GCTCCACGGC 5450 TGAGCCCACC TGCCTGCGCC TGGGTTCAGC CTCTCCCAAG GTGCCCCGCA 5500 GCTGCTTACT CTGGATGAGC AAGTGGTGAG TGGCTGGGAG GTAAGGAGGG 5550 AGTGCAGCAT CCCGGGGAAG ATGGGGCTGA CCTTCATCTC CCTAACTAGC 5600 TAGCTTCCCG CTCCCTAACC CTGACCTGAT CTGACGGACC TCAAGGTACA 5650 GCTGATCCAC CTCCAAGCCT TTCCGAGAGA AGGATCC 5687[0066] ACATACCTTT GAGCCGAGGC CAGCTCGGGC CACTCTTGCG CAGTGGCAGT 4050 GATGCTGGTG AAGTCGGCCC CCTACACCAG CCAGCCCCCG TGCCCGTGCC 4100 CACAGCCACG AGGATGCCAG CCGCCCTGCT GCAACCCCTA CTCGGCTCTT 4150 CACTGACCCA CTGGCACTGC TAGGGTTGCC AGCAGAAGAG CCAGAGCCCA 4200 GGTTCCCGCC AGTGCTGGAA CCCCGGTGGT TTGCTCACTA TGATGTGCAG 4250 AGCTTGCTCT TTGACTGGGC TCCACGACCT CGGGGGACAG GCAGCCATAC 4300 AGAGGCAAAC TCTGGGACCT TAGCTGAGGG CCAGACTACC ACCTCAGATC 4350 TACTGCTCGG GGCACCTGGC TTTGTGAGCG AGCTTGGTGG TGAGGGTGAG 4400 CTAGGGCTGG GTGGGCCAAT ATCCCCACCT GTGCCCCCTG CACTGCCTAA 4450 TGCGGCTGTG TCCGTCCTGG AGGAGCCACA GACCCGGACC ACACTTACAG 4500 CCTGGAGCAC GCAGATCTGG GTGCAGGCTA CTACCGCAAG TACTTCTATG 4550 GCAAAGGTAA GGGGCAGGCG AGCCTGGGAG AGGCAGGAGA GGATCTGGGT 4600 CGGAGGTCCC TGTGGTCTTC TACATTCTAT CAGTGGGAGG CTCATGGGCT 4650 GGCCTTCCCT GTAAAAAAGG GGCAGGAGCT GAATTGGGCT CTGTTGGCTC 4700 AACTCTGACC ACCTCTTTAA GGCCAAGAAT GGTGTCACAC CTGAAGTCAG 4750 GGAGTGCACT TACCTCTGAG GCTCATCTTC ATAACCTCCA GGAGGCCAGT 4800 GAGCGATTTC CTATTTCCAT ATCTGTGTGA TGAAACCCTG TTCTCATCAT 4850 TAGCAGGAAA AGCAGCTTCC GTGTCTTGAA TGGGAGAACC TAAGCTTTGG 4900 TGGAGCCAGG GCAGCATTTA ACTAGGAGGA CTTAGGCATT TGTTCCCCGG 4950 TCCTGGGAAC AAGGTGTAAC CGTGGGTGGG ACTGCAAACT GGGGTGGAGT 5000 GAACTCCCAG GTTCAGCGCT TGGTGAGAGA ATACCTAGGG TGGTACTTCT 5050 GTGGTGGGAG TAGTCAAGAA GGGATAGGGT GGTCTGTGGG TTTGACTGAA 5100 AGGCCACCGA CCGACCAACC AACGACCCTC CACCCCCACC CCCACAGAAC 5150 ACCAGAACTT CTTTGGGTTG GATGAGGCGC TGGGTCCGGT GGCCGTGAGC 5200 CTGCGACGGG AGGAGAAAGA GGGCAGCGGA GGGGGCACCT ACACAGCTAC 5250 CGGGTCATCG TGCGGACCAC GCAGGTGGGC TGGGATTACA GGCTCAGGAG 5300 GCAGGTTTCC TCCACCACAG CCTATACAAA AACTGAATGT CTCTACATCC 5350 TTAGCTCCGG ACCCTCCGTG GCACCATCTC GGAGGACGCA CTGCCTCCCG 5400 GCCCCCCGAG CGTATCTCCG AGGAAGCTTC TGGAACATGT GCTCCACGGC 5450 TGAGCCCACC TGCCTGCGCC TGGGTTCAGC CTCTCCCAAG GTGCCCCGCA 5500 GCTGCTTACT CTGGATGAGC AAGTGGTGAG TGGCTGGGAG GTAAGGAGGG 5550 AGTGCAGCAT CCCGGGGAAG ATGGGGCTGA CCTTCATCTC CCTAACTAGC 5600 TAGCTTCCCG CTCCCTAACC CTGACCTGAT CTGACGGACC TCAAGGTACA 5650 G CTGATCCAC CTCCAAGCCT TTCCGAGAGA AGGATCC 5687

【0067】配列番号:3 配列の長さ:6645 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:genomic DNA 起原 種:マウス 株:Spa−GC9 配列の特徴 Exon 5 : 891−1015 Exon 6 :1356−1459 Exon 7 :1726−1933 Exon 8 :2009−2618 Exon 9 :2890−3164 Exon10 :4291−4509 Exon11 :4598−4709 Exon12 :4795−4903 Exon13 :5017−5117 Exon14 :5200−5305 Exon15 :5497−5525 Exon16 :5598−5969 Open Reading Frame:904−57
41 配列:
SEQ ID NO: 3 Sequence length: 6645 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: genomic DNA Origin: Mouse strain: Spa-GC9 Sequence characteristics Exon 5: 891-1015 Exon 6: 1356-1459 Exon 7: 1726-1933 Exon 8: 2009-2618 Exon 9: 2890-3164 Exon10: 4291-4509 Exon11: 4598-4709 Exon12: 17x473-174714-174714-4795-4790. : 5200-5305 Exon15: 5497-5525 Exon16: 5598-5969 Open Reading Frame: 904-57.
41 Sequence:

【0068】 GGATCCCCAT TACAGATGGA TGTGAGCCAC CATGTGTTGC TGGGAATTGA 50 ACTCAGGAAC CTCTGGAAGA GCAGTCAATG CTCTTAACCA CTGAGCCATC 100 TCTCCAGCTA ACCTTGTTTC AAACAAACAA AAAATTGCAG GTACGTGTCT 150 AGATTCCAAT ATTTGGGAGA TACAGGCAAA TGATCAGGAT CAGGCAGTCT 200 TAGCTATATA TGAGTTTAAG TACAGCCTGG CCTATGTACT ATAGCCTATC 250 AAAAAGACAA ACAGGAAGGG GACAGAAATG ACTCCAAACC TCAGAGGGCT 300 GGGGTGCCAG CACACTGGAG CCTTGAGCTG AGGGGGACGG GAACATGGGC 350 ACCAGTCTTG GCAGGGGATC TCAGCCTTCC TAGTGCCCTT TCCCACAGCT 400 CCACATGGTG TGGTGACCCT GATCAAAAAT TATTTTCATT GCCACTTCAT 450 AACTGTAATT CTGCTACCCT TAGGAATTGT ACCATAAACA CCTGACACAC 500 AGGGTCTCTG CTGCATGCGA CCCCTGTGAA TGGGCCGTTA GACCCTCAGA 550 AGGGTCACAA CTATAGGCTG AGAACCCACT GGTGTATAGG GTCCTTTCTG 600 GGAGTTATCT CTTTTGTTGC TGGAGAAGTC ATTAAATCCT CTGCCTCTTC 650 CCTGTGACCT CCCTGCTCTC ACGAGCACAG GAGAGGGCAG GTAGAACGCA 700 CTTGATGGGC AAAGATGCCC AAATGGCTCA GAGTTCCTAC CAGGGCAGCC 750 CAGCCCCAAA GGCCAGCTCT TCCCATTCTC TACAGGGTGG GCTGCCAGGG 800 TACTGAAGCC TTTGTCTTCT GTTGTCCATG ACCCCCTCAG CTGAGCTTCC 850 AACGCAAGGT GGGCATCCTG TACTGCCGCG CAGGCCAGGG CTCTGAGGAA 900 GAG ATG TAC AAC AAC CAG GAG GCC GGA GCA GCC TTT ATG CAG TTC 945 Met Tyr Asn Asn Gln Glu Ala Gly Ala Ala Phe Met Gln Phe 5 10 CTT ACT TTG CTG GGT GAT GTG GTG CGA CTC AAA GGC TTT GAA AGT 990 Leu Thr Leu Leu Gly Asp Val Val Arg Leu Lys Gly Phe Glu Ser 15 20 25 [0068] GGATCCCCAT TACAGATGGA TGTGAGCCAC CATGTGTTGC TGGGAATTGA 50 ACTCAGGAAC CTCTGGAAGA GCAGTCAATG CTCTTAACCA CTGAGCCATC 100 TCTCCAGCTA ACCTTGTTTC AAACAAACAA AAAATTGCAG GTACGTGTCT 150 AGATTCCAAT ATTTGGGAGA TACAGGCAAA TGATCAGGAT CAGGCAGTCT 200 TAGCTATATA TGAGTTTAAG TACAGCCTGG CCTATGTACT ATAGCCTATC 250 AAAAAGACAA ACAGGAAGGG GACAGAAATG ACTCCAAACC TCAGAGGGCT 300 GGGGTGCCAG CACACTGGAG CCTTGAGCTG AGGGGGACGG GAACATGGGC 350 ACCAGTCTTG GCAGGGGATC TCAGCCTTCC TAGTGCCCTT TCCCACAGCT 400 CCACATGGTG TGGTGACCCT GATCAAAAAT TATTTTCATT GCCACTTCAT 450 AACTGTAATT CTGCTACCCT TAGGAATTGT ACCATAAACA CCTGACACAC 500 AGGGTCTCTG CTGCATGCGA CCCCTGTGAA TGGGCCGTTA GACCCTCAGA 550 AGGGTCACAA CTATAGGCTG AGAACCCACT GGTGTATAGG GTCCTTTCTG 600 GGAGTTATCT CTTTTGTTGC TGGAGAAGTC ATTAAATCCT CTGCCTCTTC 650 CCTGTGACCT CCCTGCTCTC ACGAGCACAG GAGAGGGCAG GTAGAACGCA 700 CTTGATGGGC AAAGATGCCC AAATGGCTCA GAGTTCCTAC CAGGGCAGCC 750 CAGCCCCAAA GGCCAGCTCT TCCCATTCTC TACAGGGTGG GCTGCCAGGG 800 TACTGAAGCC TTTGTCTTCT GTTGTCCATG ACCCC CTCAG CTGAGCTTCC 850 AACGCAAGGT GGGCATCCTG TACTGCCGCG CAGGCCAGGG CTCTGAGGAA 900 GAG ATG TAC AAC AAC CAG GAG GCC GGA GCA GCC TTT ATG CAG TTC 945 Met Tyr Asn Asn Gln Glu Ala Gly Ala Ala Phe Met GTT Gln Phe 10 GTT GTT CTC AAA GGC TTT GAA AGT 990 Leu Thr Leu Leu Gly Asp Val Val Arg Leu Lys Gly Phe Glu Ser 15 20 25

【0069】 TAC CGG GCC CAG CTG GAT ACC AAA A GTGAGCGTCC CCCGCCCCTA 1035 Tyr Arg Ala Gln Leu Asp Thr Lys 30 35 AGGGACTGGA GATGCAGGGC AGAACTTTAT CAGTGTTCCT TAGTCTGTGG 1085 TGGCTGGGGC TGAGAATGGG GGAGTGCCCT GCTCCCTCTA AGTCTTATTT 1135 CTGGATTCGT TCTATCTCAG CACCCCTATA CTGATTCCCC TTCACCCTGG 1185 TGTGGGGCCG TAGTCTATAG GAGAGGGGAG GGAATTTACC AAGGATGGGG 1235 CTCTTGGTCT TCGTGGCCTA AGCAATAGCT GGTGGCTGGG ACATAGAAGT 1285 AAATTTAAGA CTCATTGAAG TCACCCACAC CCCCCATGTT CTCTTTGTGT 1335 CCCCAATTGT CTGGCTACAG CG GAT TCC ACG GGC ACA CAC TCA CTC TAC 1384 Thr Asp Ser Thr Gly Thr His Ser Leu Tyr 40 45 ACC ACC TAC CAA GAC CAT GAG ATC ATG TTT CAC GTG TCC ACG ATG 1429 Thr Thr Tyr Gln Asp His Glu Ile Met Phe His Val Ser Thr Met 50 55 60 CTG CCT TAC ACG CCT AAT AAC CAG CAA CAG GTGTGTGAGG AGCTGGGCCA 1479 Leu Pro Tyr Thr Pro Asn Asn Gln Gln Gln 65 70 GGCCAAAGAC TTTCGGGAAG CAGTGGCGGG TGTTACTTGA GTGCTTAATA 1529 TCAGAACGGT GGTCTGAGCT CTGCTGAACC TAACAACACC CACCCCCCCA 1579 CCCCTTGGCT GTACCACCTT CGCAAATACC CTCCTCGGGC CTTTATAAGG 1629 TGCAGGTGGG GAACCACTGA CACCTTTGCC ATGCCTAAAT GAGGGACTGG 1679 GGGGGGCACA AAGCTCACCT CTCATTTGCC TACCTTTAAC CCCCAG CTC CTG 1731 Leu Leu AGG AAG CGT CAT ATC GGC AAC GAT ATT GTG ACC ATC GTG TTC CAG 1776 Arg Lys Arg His Ile Gly Asn Asp Ile Val Thr Ile Val Phe Gln 75 80 85 [0069] TAC CGG GCC CAG CTG GAT ACC AAA A GTGAGCGTCC CCCGCCCCTA 1035 Tyr Arg Ala Gln Leu Asp Thr Lys 30 35 AGGGACTGGA GATGCAGGGC AGAACTTTAT CAGTGTTCCT TAGTCTGTGG 1085 TGGCTGGGGC TGAGAATGGG GGAGTGCCCT GCTCCCTCTA AGTCTTATTT 1135 CTGGATTCGT TCTATCTCAG CACCCCTATA CTGATTCCCC TTCACCCTGG 1185 TGTGGGGCCG TAGTCTATAG GAGAGGGGAG GGAATTTACC AAGGATGGGG 1235 CTCTTGGTCT TCGTGGCCTA AGCAATAGCT GGTGGCTGGG ACATAGAAGT 1285 AAATTTAAGA CTCATTGAAG TCACCCACAC CCCCCATGTT CTCTTTGTGT 1335 CCCCAATTGT CTGGCTACAG CG GAT TCC ACG GGC ACA CAC TCA CTC TAC ATC GTC CATC ATC TCA CTC TAC 1384 Thr Asp Ser Thr Gly Thr His Ser Leu Tyr ATG 1429 Thr Thr Tyr Gln Asp His Glu Ile Met Phe His Val Ser Thr Met 50 55 60 CTG CCT TAC ACG CCT AAT AAC CAG CAA CAG GTGTGTGAGG AGCTGGGCCA 1479 Leu Pro Tyr Thr Pro Asn Asn Gln Gln Gln 65 70 GGCCAAAGAC TTTCGG GGT AGT CATTGGCG 1529 TCAGAACGGT GGTCTGAGCT CTGCTGAACC TAACAACACC CACCCCCCCA 1579 CCCCTTGGCT GTACCACCTT CGCAAATACC CTCCTCGGGC CTTTATAAGG 1629 TGCAGGTGGG GAACCACTGA CACCTTTGCC ATGCCTAAAT GAGGGACTGG 1679 GGGGGGCACA AAGCTCACCT CTCATTTGCC TACCTTTAAC CCCCAG CTC CTG 1731 Leu Leu AGG AAG CGT CAT ATC GTC CAT ATC GTC ATC GAT ATT GTG ACC GTC ATC GTC ATC GTC ATT GTG ACC 80 85

【0070】 GAG CCC GGT AGC AAG CCC TTC TGC CCT ACA ACA ATC CGC TCT CAC 1821 Glu Pro Gly Ser Lys Pro Phe Cys Pro Thr Thr Ile Arg Ser His 90 95 100 TTC CAG CAC GTT TTC TTG GTG GTG CGT GCG CAT GCT CCC TGC ACC 1866 Phe Gln His Val Phe Leu Val Val Arg Ala His Ala Pro Cys Thr 105 110 115 CCA CAC ACC TCA TAC AG GTGGGTGCTA GGGTGAACTC AGGTCATGGG 1913 Pro His Thr Ser Tyr Arg 120 125 CACCGATGAT TGACACATTC CTCGCACCGA TGATTGGACA CATTCCTCGC 1963 CCCCTTCCGC CCCACGTTCC CTCACTACAG CCTTCCTCCA CGCAG G GTG GCA 2015 Val Ala GTG AGC CGC ACC CAG GAC ACT CCT GCC TTC GGG CCT GCG CTG CCA 2060 Val Ser Arg Thr Gln Asp Thr Pro Ala Phe Gly Pro Ala Leu Pro 130 135 140 GAA GGC GGA GGC CCC TTT GCA GCC AAT GCC GAT TTC CGG GCC TTT 2105 Glu Gly Gly Gly Pro Phe Ala Ala Asn Ala Asp Phe Arg Ala Phe 145 150 155 CTG TTG GCT AAG GCA CTC AAT GGT GAG CAA GCG GCT GGT CAT GCA 2150 Leu Leu Ala Lys Ala Leu Asn Gly Glu Gln Ala Ala Gly His Ala 160 165 170 CGC CAG TTC CAC GCC ATG GCT ACA CGC ACA CGC CAA CAG TAC CTG 2195 Arg Gln Phe His Ala Met Ala Thr Arg Thr Arg Gln Gln Tyr Leu 175 180 185 CAG GAC CTG GCT ACT AAT GAA GTG ACC ACT ACT TCG CTG GAC TCG 2240 Gln Asp Leu Ala Thr Asn Glu Val Thr Thr Thr Ser Leu Asp Ser 190 195 200 GAG CCC GGT AGC AAG CCC TTC TGC CCT ACA ACA ATC CGC TCT CAC 1821 Glu Pro Gly Ser Lys Pro Phe Cys Pro Thr Thr Ile Arg Ser His 90 95 100 TTC CAG CAC GTT TTC TTG GTG GTG CGT GCG CAT GCT CCC TGC ACC 1866 Phe Gln His Val Phe Leu Val Val Arg Ala His Ala Pro Cys Thr 105 110 115 CCA CAC ACC TCA TAC AG GTGGGTGCTA GGGTGAACTC AGGTCATGGG 1913 Pro His Thr Ser Tyr Arg 120 125 CACCGATGAT TGACACATCCCC 1 CCCACACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCTCCCCCCCCCCCCCCCCCCCCCTTCCGA G GTG GCA 2015 Val Ala GTG AGC CGC ACC CAG GAC ACT CCT GCC TTC GGG CCT GCG CTG CCA 2060 Val Ser Arg Thr Gln Asp Thr Pro Ala Phe Gly Pro Ala Leu Pro 130 135 140 GAA GGC GGA GGC CCC TTT GCA GCC AAT GCC GAT TTC CGG GCC TTT 2105 Glu Gly Gly Gly Pro Phe Ala Ala Asn Ala Asp Phe Arg Ala Phe 145 150 155 CTG TTG GCT AAG GCA CTC AAT GGT GAG CAA GCG GCT GGT CAT GCA 2150 Leu Leu Ala Lys Ala Leu Asn Gly Glu Glu Ala Ala Gly His Ala 160 165 170 CGC CAG TTC CAC GCC ATG GCT ACA CGC ACA CGC CAA CAG TAC CTG 2195 Arg Gln Phe His Ala Met Ala Thr Arg Thr Arg Gln Gln Tyr Leu 175 180 185 CAG GAC CTG GCT ACT AAT GAA GTG ACC ACT ACT TCG CTG GAC TCG 2240 Gln Asp Leu Ala Thr Asn Glu Val Thr Thr Thr Ser Leu Asp Ser 190 195 200

【0071】 GCT TCG CGG TTT GGC CTG CCA TCT CTG GGG GGT AGG CGC CGG GCA 2285 Ala Ser Arg Phe Gly Leu Pro Ser Leu Gly Gly Arg Arg Arg Ala 205 210 215 ACC CCT CGG AGC CCA GGC GCG GAC GTA CAG GCG GCG GGT GCG CTG 2330 Thr Pro Arg Ser Pro Gly Ala Asp Val Gln Ala Ala Gly Ala Leu 220 225 230 ATG TGG GGC GTA CGC GCG GCT CCA GGG GCG CGG GTC GCA GCG GGA 2375 Met Trp Gly Val Arg Ala Ala Pro Gly Ala Arg Val Ala Ala Gly 235 240 245 GCT GAA ACG AGC GGT CCG GAC GAC GCC GAG GTG CCC TGC TTG TTG 2420 Ala Glu Thr Ser Gly Pro Asp Asp Ala Glu Val Pro Cys Leu Leu 250 255 260 GGC ATC TCA GCA GAG ACA CTG GTG CTG GTG GCA CCT CGC GAC GGC 2465 Gly Ile Ser Ala Glu Thr Leu Val Leu Val Ala Pro Arg Asp Gly 265 270 275 CGC GTG GTC TTC AAT TGT GCC TGT CGC GAC GTA TTG GCC TGG ACC 2510 Arg Val Val Phe Asn Cys Ala Cys Arg Asp Val Leu Ala Trp Thr 280 285 290 TTC TCA GAG CAC CAA CTC GAT CTG TAC CAC GGG CGC GGG GAG GCG 2555 Phe Ser Glu His Gln Leu Asp Leu Tyr His Gly Arg Gly Glu Ala 295 300 305 ATC ACG CTG CGG CTC GAC GGG GCC CCA GGG CAA GCC GTG GGC GAA 2600 Ile Thr Leu Arg Leu Asp Gly Ala Pro Gly Gln Ala Val Gly Glu 310 315 320 GTC GTG GCA CGT CTG CAG GTGAGGCAGT GTCAAAAACT AAGGTCCCCT 2648 Val Val Ala Arg Leu Gln 325 GGTCGGGTGC GTATCGGGGG CGGGGCCTAT TGGAAACTCC GTTAGCTGCT 2698GCT TCG CGG TTT GGC CTG CCA TCT CTG GGG GGT AGG CGC CGG GCA 2285 Ala Ser Arg Phe Gly Leu Pro Ser Leu Gly Gly Arg Arg Arg Ala 205 210 215 ACC CCT CGG AGC CCA GGC GCG GAC GTA CAG GCG GCG GGT GCG CTG 2330 Thr Pro Arg Ser Pro Gly Ala Asp Val Gln Ala Ala Gly Ala Leu 220 225 230 ATG TGG GGC GTA CGC GCG GCT CCA GGG GCG CGG GTC GCA GCG GGA 2375 Met Trp Gly Val Arg Ala Ala Pro Gly Ala Arg Val Ala Ala Gly 235 240 245 GCT GAA ACG AGC GGT CCG GAC GAC GCC GAG GTG CCC TGC TTG TTG 2420 Ala Glu Thr Ser Gly Pro Asp Asp Ala Glu Val Pro Cys Leu Leu 250 255 260 GGC ATC TCA GCA GAG ACA CTG GTG CTG GTG GCA CCT CGC GAC GGC 2465 Gly Ile Ser Ala Glu Thr Leu Val Leu Val Ala Pro Arg Asp Gly 265 270 275 CGC GTG GTC TTC AAT TGT GCC TGT CGC GAC GTA TTG GCC TGG ACC 2510 Arg Val Val Phe Asn Cys Ala Cys Arg Asp Val Leu Ala Trp Thr 280 285 290 TTC TCA GAG CAC CAA CTC GAT CTG TAC CAC GGG CGC GGG GAG GCG 2555 Phe Ser Glu His Gln Leu Asp Leu Tyr His Gly Arg Gly Glu Ala 295 300 305 ATC ACG CTG CGG CTC GA C GGG GCC CCA GGG CAA GCC GTG GGC GAA 2600 Ile Thr Leu Arg Leu Asp Gly Ala Pro Gly Gln Ala Val Gly Glu 310 315 320 GTC GTG GCA CGT CTG CAG GTGAGGCAGT GTCAAAAACT AAGGTCCCCT 2648 Val Val Ala Arg Leu Gln GT GG GG GG 325 GTGG GTTAGCTGCT 2698

【0072】 GTGGTGGGGC GGGGAAAAGG TACTTGCACA GGTGACTCTC AGAGTCTCCA 2748 ATTCGAATAC ACAACTATCA GGTAGGTCGC TAGGGCTCCT GGGGCATGCC 2798 GGGTTAAATC GATCGAGGCA GGGGCGGGAC CAGGGCGGGG CCTCTGTGAA 2848 GCCACGCCCC AAGGCCACTC TCACCCAGCC TTTCCTTGCA G CTG GTG 2895 Leu Val 330 AGC CGC GGG TGT GAG ACC AGA GAA CTA GCG CTG CCC AGA GAT GGC 2940 Ser Arg Gly Cys Glu Thr Arg Glu Leu Ala Leu Pro Arg Asp Gly 335 340 345 CAA GGT CGC CTG GGC TTC GAG GTG GAT GCA GAA GGC TTC ATC ACG 2985 Gln Gly Arg Leu Gly Phe Glu Val Asp Ala Glu Gly Phe Ile Thr 350 355 360 CAC GTG GAG CGC TTC ACG TTT GCG GAG ACC ACG GGG CTT CGG CCT 3030 His Val Glu Arg Phe Thr Phe Ala Glu Thr Thr Gly Leu Arg Pro 365 370 375 GGA GCT CGT TTG CTG CGA GTC TGC GGC CAG ACG CTG CCC AAG CTG 3075 Gly Ala Arg Leu Leu Arg Val Cys Gly Gln Thr Leu Pro Lys Leu 380 385 390 GGT CCC GAA GCT GCT GCC CAG ATG CTG CGC TCT GCG CCG AAG GTC 3120 Gly Pro Glu Ala Ala Ala Gln Met Leu Arg Ser Ala Pro Lys Val 395 400 405 TGC GTC ACG GTC CTA CCC CCA GAC GAG AGC GGC CGG CCG CAG AG 3164 Cys Val Thr Val Leu Pro Pro Asp Glu Ser Gly Arg Pro Gln Arg 410 415 420 GTCAGGGCAC CGGGTGGGGG TTGTGGGGGG TGGGTAGGAG GACTCAGCGG 3214 CTGGCCCATT CTGTGCCTCC CGTGTTAGCA TCAGCATGCT CTGAATCGTA 3264 CGGTATTCAT CTAGACTTGA AACTGTTTAA GCTCGTGCTT TCCCTCTCTA 3314 AAGGTTAAAT AGCTCCTTCT ATTATTTCAA TGTATTAGCT CCTCCACACC 3364[0072] GTGGTGGGGC GGGGAAAAGG TACTTGCACA GGTGACTCTC AGAGTCTCCA 2748 ATTCGAATAC ACAACTATCA GGTAGGTCGC TAGGGCTCCT GGGGCATGCC 2798 GGGTTAAATC GATCGAGGCA GGGGCGGGAC CAGGGCGGGG CCTCTGTGAA 2848 GCCACGCCCC AAGGCCACTC TCACCCAGCC TTTCCTTGCA G CTG GTG 2895 Leu Val 330 AGC CGC GGG TGT GAG ACC AGA GAA CTA GCG CTG CCC AGA GAT GGC 2940 Ser Arg Gly Cys Glu Thr Arg Glu Leu Ala Leu Pro Arg Asp Gly 335 340 345 CAA GGT CGC CTG GGC TTC GAG GTG GAT GCA GAA GGC TTC ATC ACG 2985 Gln Gly Arg Leu Gly Phe Glu Val Asp Ala Glu Gly Phe Ile Thr 350 355 360 CAC GTG GAG CGC TTC ACG TTT GCG GAG ACC ACG GGG CTT CGG CCT 3030 His Val Glu Arg Phe Thr Phe Ala Glu Thr Thr Gly Leu Arg Pro 365 370 375 GGA GCT CGT TTG CTG CGA GTC TGC GGC CAG ACG CTG CCC AAG CTG 3075 Gly Ala Arg Leu Leu Arg Val Cys Gly Gln Thr Leu Pro Lys Leu 380 385 390 GGT CCC GAA GCT GCT GCC CAG ATG CTG CGC TCT GCG CCG AAG GTC 3120 Gly Pro Glu Ala Ala Ala Gln Met Leu Arg Ser Ala Pro Lys Val 395 400 405 TGC GTC ACG GTC CTA CCC CCA GAC GAG AGC GGC C GG CCG CAG AG 3164 Cys Val Thr Val Leu Pro Pro Asp Glu Ser Gly Arg Pro Gln Arg 410 415 420 GTCAGGGCAC CGGGTGGGGG TTGTGGGGGG TGGGTAGGATC ATC

【0073】 AAGTACACAC TAATTGACCA CTTCCTATTC TAAACCCAAT ATAGGCAAAC 3414 TTTCCCCATA GAACCCCTAA TAGTAAATAC TTTTAGACTT TTGGAGCCAC 3464 TATTCTTGCC ACAGTCACTC GACTCTTTTG TAGGAAAATG AATGTGTGCC 3514 AGCATCTACT AAAACTATGA CTGGAATTTT AGGATTTGAT TTGGAGCTCC 3564 TTGTCTTGTG AAGGGGTAAA CCCAATGTAA GGTCAAAAAA AAAAAAAAAT 3614 CCAAGTAGAA ACACATTATG CTCAGACTGT GTAATTTTTA CATGCCATGA 3664 AGTACTCTAT TAATACCTTT TAAATTATTT AAACATCTAA GAACTAAGGC 3714 CAGAGAAGTG GCTCAGCCAT TAAGAGCATT TGCTGCTCTT GCAGAGGACC 3764 TGAGTTGGAT TCCTAGCACC CACACAGTGC TCTGTGACAG CCTGTATGTA 3814 ACTTCAGATC CAGGGGTCTC ACACCCTCTT CTGGTCTCCA CAGGTGTTGC 3864 ATTCACATGT GCCTGCTCCC TCCCCACGTA AATACACATA TACACATCAA 3914 TAAATAGTTC AAGATCTCTA AAAACTATTC TTAGCAGATA GGAGTTTCAA 3964 AGACTGGCAT GTGTGCTAAT AAAAAACAAA GAGAAGCATG GGCTGGATGG 4014 CTCCAGGCAG TGCACTGTGG ATGCTAAGCG ATTTATATTA CATTGTTTCC 4064 ACTGTAAATA CTCTTATGTA TGTTTGACAG AAAACAGAGA GAGTGGCCTG 4114 CTTAGGAGAC ATGGGCAGCC ATGGATACAA AGTTAACAGT GATATTTGTC 4164 TGCTGTAGAG TCAGGATGCC TGGAGCTCTC TTCCTTTTGG ATGTCTCTGG 4214 CAGTGGCTGG GATGGGGTGG ATGCTGTGGA GGGGATGGAG GGTCCTACCT 4264 GATGCTGCCC CACCCCCACC CTCCAG G AGC TTT TCG GAG CTC TAT ATG 4312 Ser Phe Ser Glu Leu Tyr Met 425 CTC TCT CTG AAG GAA CCC AGC CGG CGG GGG GGC CCA GAG CCA GTA 4357 Leu Ser Leu Lys Glu Pro Ser Arg Arg Gly Gly Pro Glu Pro Val 430 435 440 CAG GAT GAA ACT GGG AAG TTG GTC ATA TTG CCT CCC ACC AAG CAG 4402 Gln Asp Glu Thr Gly Lys Leu Val Ile Leu Pro Pro Thr Lys Gln 445 450 455 [0073] AAGTACACAC TAATTGACCA CTTCCTATTC TAAACCCAAT ATAGGCAAAC 3414 TTTCCCCATA GAACCCCTAA TAGTAAATAC TTTTAGACTT TTGGAGCCAC 3464 TATTCTTGCC ACAGTCACTC GACTCTTTTG TAGGAAAATG AATGTGTGCC 3514 AGCATCTACT AAAACTATGA CTGGAATTTT AGGATTTGAT TTGGAGCTCC 3564 TTGTCTTGTG AAGGGGTAAA CCCAATGTAA GGTCAAAAAA AAAAAAAAAT 3614 CCAAGTAGAA ACACATTATG CTCAGACTGT GTAATTTTTA CATGCCATGA 3664 AGTACTCTAT TAATACCTTT TAAATTATTT AAACATCTAA GAACTAAGGC 3714 CAGAGAAGTG GCTCAGCCAT TAAGAGCATT TGCTGCTCTT GCAGAGGACC 3764 TGAGTTGGAT TCCTAGCACC CACACAGTGC TCTGTGACAG CCTGTATGTA 3814 ACTTCAGATC CAGGGGTCTC ACACCCTCTT CTGGTCTCCA CAGGTGTTGC 3864 ATTCACATGT GCCTGCTCCC TCCCCACGTA AATACACATA TACACATCAA 3914 TAAATAGTTC AAGATCTCTA AAAACTATTC TTAGCAGATA GGAGTTTCAA 3964 AGACTGGCAT GTGTGCTAAT AAAAAACAAA GAGAAGCATG GGCTGGATGG 4014 CTCCAGGCAG TGCACTGTGG ATGCTAAGCG ATTTATATTA CATTGTTTCC 4064 ACTGTAAATA CTCTTATGTA TGTTTGACAG AAAACAGAGA GAGTGGCCTG 4114 CTTAGGAGAC ATGGGCAGCC ATGGATACAA AGTTAACAGT GATATTTGTC 4164 TGCTGTAGAG TCAGGATGCC TGGAGCTCTC TTCCTTTTGG ATGTCTCTGG 4214 CAGTGGCTGG GATGGGGTGG ATGCTGTGGA GGGGATGGAG GGTCCTACCT 4264 GATGCTGCCC CACCCCCACC CTCCAG G AGC TTT TCG GAG CTC TAT ATG 43GC Seruhe CTG AGC 43G Serpent Glu Pro Ser Arg Arg Gly Gly Pro Glu Pro Val 430 435 440 CAG GAT GAA ACT GGG AAG TTG GTC ATA TTG CCT CCC ACC AAG CAG 4402 Gln Asp Glu Thr Gly Lys Leu Val Ile Leu Pro Pro Thr Lys Gln 445 450 455

【0074】 CTG CTA CAT TTT TGC CTG AAA GAC AGC AGC AGT CCT CCG GGG CCT 4447 Leu Leu His Phe Cys Leu Lys Asp Ser Ser Ser Pro Pro Gly Pro 460 465 470 GGG GAT CTG ACT GAG GAG AGG ACA GAG TTC CTG CGC AGC CAC AAC 4492 Gly Asp Leu Thr Glu Glu Arg Thr Glu Phe Leu Arg Ser His Asn 475 480 485 TCC CTG TCA TCT GGA AG GTACACTCAC TGGGCCAGCC TTTTAGGACC 4539 Ser Leu Ser Ser Gly Ser 490 TGAAAGCACA GCTCTGGAAA AGCAGCTCTC CGTTCTGAGT CACCCCTACC 4589 CTCCTTAG C TCC CTG TCC GAT GAG GCT CCA GTC CTG CCC AAC ACC 4634 Ser Leu Ser Asp Glu Ala Pro Val Leu Pro Asn Thr 495 500 505 ACT CCA GAC CTC CTC CTT GTC ACC ACT GCC AAC CCA TCT GCA CCT 4679 Thr Pro Asp Leu Leu Leu Val Thr Thr Ala Asn Pro Ser Ala Pro 510 515 520 GGT ACT GAC AGA GAA ACA CCC CCT TCC CAG GTAAGCAGAA 4719 Gly Thr Asp Arg Glu Thr Pro Pro Ser Gln 525 530 ACAAACAGAG CTCTGGAGAT TCATTGCAGA GGTGACATTG GATGCTACAG 4769 CCTTGCTGTT CACTTTTGTC CCCAG GAC CAG TCA GGA AGC CCC AGT AGC 4818 Asp Gln Ser Gly Ser Pro Ser Ser 535 CAT GAA GAC ACC AGT GAC TCA GGC CCA GAA CTG AGG GCC TCC ATC 4863 His Glu Asp Thr Ser Asp Ser Gly Pro Glu Leu Arg Ala Ser Ile 540 545 550 CTG CTA CAT TTT TGC CTG AAA GAC AGC AGC AGT CCT CCG GGG CCT 4447 Leu Leu His Phe Cys Leu Lys Asp Ser Ser Ser Pro Pro Gly Pro 460 465 470 GGG GAT CTG ACT GAG GAG AGG ACA GAG TTC CTG CGC AGC CAC AAC 4492 Gly Asp Leu Thr Glu Glu Arg Thr Glu Phe Leu Arg Ser His Asn 475 480 485 TCC CTG TCA TCT GGA AG GTACACTCAC TGGGCCAGCC TTTTAGGACC 4539 Ser Leu Ser Ser Gly Ser 490 TGAAAGCACA GCTCTGGAAA AGCAGCTCTCCCCCCCTC CTCTCCGCCCT GAG GCT CCA GTC CTG CCC AAC ACC 4634 Ser Leu Ser Asp Glu Ala Pro Val Leu Pro Asn Thr 495 500 505 ACT CCA GAC CTC CTC CTT GTC ACC ACT GCC AAC CCA TCT GCA CCT 4679 Thr Pro Asp Leu Leu Leu Val Thr Thr Ala Asn Pro Ser Ala Pro 510 515 520 GGT ACT GAC AGA GAA ACA CCC CCT TCC CAG GTAAGCAGAA 4719 Gly Thr Asp Arg Glu Thr Pro Pro Ser Gln 525 530 ACAAACAGAG CTCTGGAGAT TCATTGCAGA GGTGACATTG GATGCTACAG 4769 CCTTGCTGTT CACTGA CAGCCCCC Asp Gln Ser Gly Ser Pro Ser Ser 535 CAT GAA GAC ACC AGT GAC TCA GGC CCA GAA CTG AGG GCC TCC ATC 4863 His Glu Asp Thr Ser Asp Ser Gly Pro Glu Leu Arg Ala Ser Ile 540 545 550

【0075】 CTG CCC AGA ACC TTG TCT CTG CGG AAT TCC ATC AGT AAG A 4903 Leu Pro Arg Thr Leu Ser Leu Arg Asn Ser Ile Ser Lys 555 560 565 GTGAGTCTGG AGCCAGGGAA TAGGGCAGGA GGAGAAGACA GCCCCTCCCC 4953 CCCATTCCAG CCCCTCCCTC CCCCCAGCCC CACCCTCCCT AAGCCTTCTC 5003 CTTTGACCTG CAG TT ATG TCG GAA GCT GGC AGT GAG ACC CTG GAG 5048 Ile Met Ser Glu Ala Gly Ser Glu Thr Leu Glu 570 575 GAT GAG TGG CAG TCC ATC TCA GAG ATC GCC TCC ACT TGC AAC ACA 5093 Asp Glu Trp Gln Ser Ile Ser Glu Ile Ala Ser Thr Cys Asn Thr 580 585 590 ATT CTG GAG TCA CTG TCC CGG GAG GTGAGGCCGC AAGGCCCAGA 5137 Ile Leu Glu Ser Leu Ser Arg Glu 595 600 GGGAGGAGCC AGGAGGATGT TTATCCCTTC AGACCTGCCC ACAGTCTCTC 5187 TCTCTCCTAT AG GGA CAA CCC ATC TCA GAG AGC GGA GAC CCC AAG 5232 Gly Gln Pro Ile Ser Glu Ser Gly Asp Pro Lys 605 610 GAA GCT TTA AAG TGT GAT TCT GA GTAAGTTTTC TGCCCTCACA 5275 Glu Ala Leu Lys Cys Asp Ser Glu 615 TACCCACTCT TGTGTGTGTG TCCTTCCCTG CCTGCCCATT GCAGTTGAAC 5325 ACTATCTAGG CTCTGCATCC ACAGATACCT AAGTCTCAGA AGACAGGGTT 5375 GGGTTCATTA TCAGTCAGGA GTGTCTGGGA GCCTGCACTG CTTCCGCTGA 5425 GTTCTGACCC CATGTCCTCA G G CCA GAA CCC GGG AGC CTG TCA GAA 5471 Pro Glu Pro Gly Ser Leu Ser Glu 620 625 [0075] CTG CCC AGA ACC TTG TCT CTG CGG AAT TCC ATC AGT AAG A 4903 Leu Pro Arg Thr Leu Ser Leu Arg Asn Ser Ile Ser Lys 555 560 565 GTGAGTCTGG AGCCAGGGAA TAGGGCAGGA GGAGAAGACA GCCCCTCCCC 4953 CCCATTCCAG CCCCTCCCTC CCCCCAGCCC CACCCTCCCT AAGCCTTCTC 5003 CTTTGACCTG CAG TT ATG TCG GAA GCT GGC AGT GAG ACC CTG GAG 5048 Ile Met Ser Glu Ala Gly Ser Glu Thr Leu Glu 570 575 GAT GAG TGG CAG TCC ATC TCA GAG ATC GCC TCC ACT TGC AAC ACA 5093 Asp Glu Trp Gln Ser Ile Ser Glu Ile Ala Ser Thr Cys Asn Thr 580 585 590 ATT CTG GAG TCA CTG TCC CGG GAG GTGAGGCCGC AAGGCCCAGA 5137 Ile Leu Glu Ser Leu Ser Arg Glu 595 600 GGGAGGAGCC AGGAGGATGT TTATCCCTTC AGACCTGCGC GCC GAC GAC CAG GCA CAG Pro Ile Ser Glu Ser Gly Asp Pro Lys 605 610 GAA GCT TTA AAG TGT GAT TCT GA GTAAGTTTTC TGCCCTCACA 5275 Glu Ala Leu Lys Cys Asp Ser Glu 615 TACCCACTCT TGTGTGTGTG TCCTTCCCTG CCTGCCTGTCAGCTAG ACTC 75 GGGTTCATTA TCAGTCAGGA GTGTCTGGGA GCCTGCACTG CTTCCGCTGA 5425 GTTCTGACCC CATGTCCTCA G G CCA GAA CCC GGG AGC CTG TCA GAA 5471 Pro Glu Pro Gly Ser Leu Ser Glu 620 625

【0076】 AAG GTC TCT CAC CTA GAG TCC ATG CTC TGG AAG CTC CAG GAG GAC 5516 Lys Val Ser His Leu Glu Ser Met Leu Trp Lys Leu Gln Glu Asp 630 635 640 CTG CAG AGG GTGAGGAGAG AGCCTGACGG GGGCGCACAG GGCTGCCCCT 5565 Leu Glu Arg 645 GGCAAGGCTC TGACTACCAT TCTTCAACCT AG GAG AAG GCG GAC AGG GCA 5615 Glu Lys Ala Asp Arg Ala 650 GCC TTG GAG GAG GAG GTT CGG AGC CTC AGA CAC AAC AAC CAG AGG 5660 Ala Leu Glu Glu Glu Val Arg Ser Leu Arg His Asn Asn Gln Arg 655 660 665 CTG CTG GCA GAG TCC GAG AGT GCC GCC ACC CGC CTG CTC CTG GCC 5705 Leu Leu Ala Glu Ser Glu Ser Ala Ala Thr Arg Leu Leu Leu Ala 670 675 680 TCT AAG CAT CTG GGT GCA CCC ACT ACT GAC CTG GCC 5741 Ser Lys His Leu Gly Ala Pro Thr Thr Asp Leu Ala 685 690 TGAGTTCCAA TCTGAATCTG GACCTGCTTG GAACTGCCTG GCCCCTCAGA 5791 GCAACTGGGT CATACTAGTG CCCTTCCTCA GGACTTCTTC CCTGCGCTGA 5841 GGCGCGTCTT AGCACTGCCC CCTCTTCCCA GCCCATTTGG TGGCTAATGC 5891 CTGTCCCTGT TTGTAAATAT CCTGTAAAGA AAAGGAGACA TCAGAGTTTA 5941 AAAAAAAGAA ACAACAAGAA GAAGCAAACA ACTCTATTTG TGTTTGTGTG 5991 TCAAGATACA GAGGAGGGGG AGTCATCCCC TTTCCAAGGT CATATCAAGC 6041 TCCTAGGAGC AGTAGGACAG GTCCCAGGGG GGACATTGAC TTAGTGTTAA 6091 TCTGGCACCA AGCAGAGGCT CTGAGGATAG AACACCCCCT TGGCTCCCCT 6141 TCATTTATTG GGTTCTCTTG GAAAGCAGGT GGCCACGCTT CATGCCTGTC 6191 TGTTTGGAGC AGGAGAGGGA ACACTTCGAG CCTGCAGAGC GAACAACCAG 6241 GGGTGGGCTC TGGCCATGCA GTATGGAATT CCCGAATAGG CCCTGCTAAG 6291 CTGAGCTTCA GAGCATCATT GACTACCACT GGATGGATCA CCTGTTGCAG 6341 GCCCCAGCCA GTGCCTCATC AGCCTCTCCC CAGGGCTGCC TCTGCCTCGA 6391 GAAGCCCAGA CCCTGAGAGA GGACAGGATA AACATGGCTG AGTAACAGTG 6441 GGGCCATGAG CACAAGGAAG CCTTCTCTGA GGAGGCTAAT AAAAGGACTG 6491 AGTTTTGAAA GTTGAGTTCA CCAGCAGATG TCACAGGTAT CCAGGAGAAA 6541 CACTCTAGGA GCCACTGGGC CGAATTTGAG GTACCGAAGG AATCAGGGTT 6591 ACAGAGCCTT TAAGCTGGGT CAGAAAGGGT CATGCCAAGG TCCACTAGGG 6641 ATCC 6645AAG GTC TCT CAC CTA GAG TCC ATG CTC TGG AAG CTC CAG GAG GAC 5516 Lys Val Ser His Leu Glu Ser Met Leu Trp Lys Leu Gln Glu Asp 630 635 640 CTG CAG AGG GTGAGGAGAGAGCCTGACGG GGGCGCACAG GGCTGCCCCT 5565 TGACTACCAT TCTTCAACCT AG GAG AAG GCG GAC AGG GCA 5615 Glu Lys Ala Asp Arg Ala 650 GCC TTG GAG GAG GAG GTT CGG AGC CTC AGA CAC AAC AAC CAG AGG 5660 Ala Leu Glu Glu Glu Val Arg Ser Leu Arg His Asn 655 Glu Glu 665 CTG CTG GCA GAG TCC GAG AGT GCC GCC ACC CGC CTG CTC CTG GCC 5705 Leu Leu Ala Glu Ser Glu Ser Ala Ala Thr Arg Leu Leu Leu Ala 670 675 680 TCT AAG CAT CTG GGT GCA CCC ACT ACT GAC CTG GCC 5741 Ser Lys His Leu Gly Ala Pro Thr Thr Asp Leu Ala 685 690 TGAGTTCCAA TCTGAATCTG GACCTGCTTG GAACTGCCTG GCCCCTCAGA 5791 GCAACTGGGT CATACTAGTG CCCTTCCTCA GGACTTCTTC CCTGCGCTGA 5841 GGCGCGTCTT AGCACTGCCC CCTCTTCCCA GCCCATTTGG TGGCTAATGC 5891 CTGTCCCTGT TTGTAAATAT CCTGTAAAGA AAAGGAGACA TCAGAGTTTA 5941 AAAAAAAGAA ACAACAAGAA GAAGCAAACA ACTCTATTTG TGTTTGT GTG 5991 TCAAGATACA GAGGAGGGGG AGTCATCCCC TTTCCAAGGT CATATCAAGC 6041 TCCTAGGAGC AGTAGGACAG GTCCCAGGGG GGACATTGAC TTAGTGTTAA 6091 TCTGGCACCA AGCAGAGGCT CTGAGGATAG AACACCCCCT TGGCTCCCCT 6141 TCATTTATTG GGTTCTCTTG GAAAGCAGGT GGCCACGCTT CATGCCTGTC 6191 TGTTTGGAGC AGGAGAGGGA ACACTTCGAG CCTGCAGAGC GAACAACCAG 6241 GGGTGGGCTC TGGCCATGCA GTATGGAATT CCCGAATAGG CCCTGCTAAG 6291 CTGAGCTTCA GAGCATCATT GACTACCACT GGATGGATCA CCTGTTGCAG 6341 GCCCCAGCCA GTGCCTCATC AGCCTCTCCC CAGGGCTGCC TCTGCCTCGA 6391 GAAGCCCAGA CCCTGAGAGA GGACAGGATA AACATGGCTG AGTAACAGTG 6441 GGGCCATGAG CACAAGGAAG CCTTCTCTGA GGAGGCTAAT AAAAGGACTG 6491 AGTTTTGAAA GTTGAGTTCA CCAGCAGATCAGCCACAGAGACACTAGTCAGAGCCATAGAGCCAGAGCCATAGGTACCGAGCCACTAGGCAGGACCCCAGGACGAGACC

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はSpan−Nのアミノ酸配列とGAP3
m蛋白質のアミノ酸配列とを比較した図である。
FIG. 1 is an amino acid sequence of Span-N and GAP3.
It is the figure which compared with the amino acid sequence of m protein.

【図2】図2はSPA−1蛋白質の構造の模式図であ
る。
FIG. 2 is a schematic diagram of the structure of SPA-1 protein.

【図3】図3はSPA−1蛋白質の組換え発現用プラス
ミドの作製過程を示す図である。
FIG. 3 is a diagram showing a process for producing a plasmid for recombinant expression of SPA-1 protein.

【図4】図4はSpan−Nが濃度依存的にRsr1G
TPaseを活性化することを示すグラフである。
FIG. 4 shows that Span-N is Rsr1G in a concentration-dependent manner.
It is a graph which shows activating TPase.

【図5】図5はSpan−Nが濃度依存的にRan1G
TPaseを活性化することを示すグラフである。
FIG. 5 shows that Span-N is Ran1G concentration-dependently.
It is a graph which shows activating TPase.

【図6】図6は本発明のSPA−1をコードするゲノム
DNAの制限酵素地図を示す。
FIG. 6 shows a restriction map of genomic DNA encoding SPA-1 of the present invention.

【図7】図7は、モノクローナル抗体F6及びH10の
GST及びGST/SpanN融合蛋白質への反応性を
示す電気泳動図であり、図面に代る写真である。
FIG. 7 is an electrophoretogram showing the reactivity of monoclonal antibodies F6 and H10 with GST and GST / SpanN fusion protein, and is a photograph as a drawing.

【図8】図8は、種々の領域を欠失させたSPA遺伝子
からの発現生成物の様子を示す電気泳動図であり、図面
に代る写真である。
FIG. 8 is an electrophoretogram showing the appearance of the expression product from the SPA gene in which various regions have been deleted, and is a photograph as a drawing.

【図9】図9は、動物細胞を血清飢餓と血清の再添加に
より同調培養した場合に、その動物細胞に導入されたS
PA−1遺伝子がその細胞に与える影響を示すものであ
り、生物の形態を表わす図面に代る写真である。
FIG. 9 shows S introduced into animal cells when the animal cells were subjected to synchronized culture by serum starvation and re-addition of serum.
Fig. 3 shows the effect of PA-1 gene on the cells, and is a photograph instead of a drawing showing the morphology of an organism.

【図10】図10は、動物細胞を血清飢餓と血清の再添
加により同調培養した場合に、その動物細胞に導入され
たSPA−1遺伝子がその細胞に与える影響を示す電気
泳動図であり、図面に代る写真である。
FIG. 10 is an electrophoretogram showing the effect of SPA-1 gene introduced into animal cells on the cells when the animal cells were subjected to synchronized culture by serum starvation and re-addition of serum. It is a photograph instead of a drawing.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12P 21/08 9281−4B C12N 5/00 B C12Q 1/68 9162−4B 15/00 ZNAC //(C12P 21/02 C12R 1:19) (C12P 21/08 C12R 1:91) 特許法第30条第1項適用申請有り 平成6年11月28日 日本分子生物学会発行の「第17回日本分子生物学会年会 プログラム・講演要旨集」に発表─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C12P 21/08 9281-4B C12N 5/00 B C12Q 1/68 9162-4B 15/00 ZNAC // (C12P 21/02 C12R 1:19) (C12P 21/08 C12R 1:91) Application for application of Article 30, Paragraph 1 of the Patent Act November 28, 1994 “The 17th Japanese Molecule Biology Society Annual Meeting Program / Lecture Summary "

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 哺乳類の細胞の細胞周期において、静止
状態では発現されず細胞周期進入後に核内に発現され
る、細胞分裂機構調節蛋白質。
1. A cell division mechanism regulating protein which is not expressed in a quiescent state in the cell cycle of mammalian cells but is expressed in the nucleus after entry into the cell cycle.
【請求項2】 図2に示す構造を有する、請求項1に記
載の細胞分裂機構調節蛋白質。
2. The cell division regulatory protein according to claim 1, which has the structure shown in FIG.
【請求項3】 配列番号:1に示すアミノ酸配列におい
て、1番目のメチオニンから693番目のアラニンまで
のアミノ酸配列を有する請求項1に記載の蛋白質であっ
て、該アミノ酸配列において1もしくは2以上のアミノ
酸が付加、欠失、あるいは置換された細胞分裂機構調節
蛋白質。
3. The protein according to claim 1, which has an amino acid sequence from the 1st methionine to the 693th alanine in the amino acid sequence shown in SEQ ID NO: 1, wherein 1 or 2 or more amino acid sequences are contained in the amino acid sequence. A cell division regulatory protein in which amino acids are added, deleted, or substituted.
【請求項4】 配列番号:1に示すアミノ酸配列におい
て、1番目のメチオニンから693番目のアラニンまで
のアミノ酸配列を有する、請求項1に記載のSPA−1
蛋白質。
4. The SPA-1 according to claim 1, which has an amino acid sequence from methionine at position 1 to alanine at position 693 in the amino acid sequence shown in SEQ ID NO: 1.
protein.
【請求項5】 請求項4に記載のSPA−1蛋白質の断
片であって、図2に示す構造を有するSpan−N又は
Span−C蛋白質断片。
5. A fragment of the SPA-1 protein according to claim 4, which is a Span-N or Span-C protein fragment having the structure shown in FIG.
【請求項6】 配列番号:1に示すアミノ酸配列におい
て、1番目のメチオニンから190番目のロイシンまで
のアミノ酸配列を有する、請求項5に記載のSpan−
N蛋白質断片。
6. The Span- according to claim 5, which has an amino acid sequence from methionine at position 1 to leucine at position 190 in the amino acid sequence shown in SEQ ID NO: 1.
N protein fragment.
【請求項7】 配列番号:1に示すアミノ酸配列におい
て、191番目のアラニンから327番目のロイシンま
でのアミノ酸配列を有する、請求項5に記載のSpan
−C蛋白質断片。
7. The span according to claim 5, which has an amino acid sequence from alanine at position 191 to leucine at position 327 in the amino acid sequence shown in SEQ ID NO: 1.
-C protein fragment.
【請求項8】 請求項1〜7のいずれか1項に記載の細
胞分裂機構調節蛋白質又はその断片をコードする遺伝子
及びそれらの遺伝子にハイブリダイズする遺伝子。
8. A gene encoding the protein for regulating cell division machinery or a fragment thereof according to any one of claims 1 to 7, and a gene that hybridizes to these genes.
【請求項9】 配列番号:1に示す塩基配列において、
1200番目のA(アデノシン)から3278番目のC
(シトシン)までの塩基配列を有する、請求項8に記載
の遺伝子。
9. In the base sequence shown in SEQ ID NO: 1,
1200th A (adenosine) to 3278th C
The gene according to claim 8, which has a base sequence up to (cytosine).
【請求項10】 遺伝子がcDNAである、請求項8に
記載の遺伝子。
10. The gene according to claim 8, wherein the gene is cDNA.
【請求項11】 請求項1〜7のいずれか1項に記載の
蛋白質又はその断片に対する抗体。
11. An antibody against the protein or fragment thereof according to any one of claims 1 to 7.
【請求項12】 モノクローナル抗体である、請求項1
1に記載の抗体。
12. The method according to claim 1, which is a monoclonal antibody.
The antibody according to 1.
【請求項13】 配列番号:2に示す配列中のエクソン
1〜4を含んで成るゲノムDNA。
13. Genomic DNA comprising exons 1 to 4 in the sequence shown in SEQ ID NO: 2.
【請求項14】 配列番号:3に示す配列中エクソン5
〜16を含んで成るゲノムDNA。
14. Exon 5 in the sequence shown in SEQ ID NO: 3.
Genomic DNA comprising ~ 16.
【請求項15】 配列番号:3に示す配列中オープンリ
ーディングフレームによりコードされているアミノ酸配
列をコードするゲノムDNA。
15. A genomic DNA encoding the amino acid sequence encoded by the open reading frame in the sequence shown in SEQ ID NO: 3.
【請求項16】 配列番号:3に示すオープンリーディ
ングフレームを含んで成るゲノムDNA。
16. Genomic DNA comprising the open reading frame set forth in SEQ ID NO: 3.
【請求項17】 配列番号:1又は3中のコード領域の
発現により得られるポリペプチド。
17. A polypeptide obtained by expression of the coding region in SEQ ID NO: 1 or 3.
JP05199995A 1994-05-30 1995-02-17 SPA-1 protein and gene encoding the same Expired - Fee Related JP3683000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05199995A JP3683000B2 (en) 1994-05-30 1995-02-17 SPA-1 protein and gene encoding the same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP13951394 1994-05-30
JP6-139513 1994-05-30
JP6-279712 1994-10-20
JP27971294 1994-10-20
JP6-332520 1994-12-13
JP33252094 1994-12-13
JP05199995A JP3683000B2 (en) 1994-05-30 1995-02-17 SPA-1 protein and gene encoding the same

Publications (2)

Publication Number Publication Date
JPH08217797A true JPH08217797A (en) 1996-08-27
JP3683000B2 JP3683000B2 (en) 2005-08-17

Family

ID=27462718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05199995A Expired - Fee Related JP3683000B2 (en) 1994-05-30 1995-02-17 SPA-1 protein and gene encoding the same

Country Status (1)

Country Link
JP (1) JP3683000B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010380A1 (en) * 1997-08-22 1999-03-04 Nagahiro Minato Human spa-1 protein and gene coding for the same
CN114163524A (en) * 2021-12-06 2022-03-11 郑州伊美诺生物技术有限公司 Antibody and application thereof in protein A detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010380A1 (en) * 1997-08-22 1999-03-04 Nagahiro Minato Human spa-1 protein and gene coding for the same
CN114163524A (en) * 2021-12-06 2022-03-11 郑州伊美诺生物技术有限公司 Antibody and application thereof in protein A detection
CN114163524B (en) * 2021-12-06 2023-08-11 郑州伊美诺生物技术有限公司 Antibody and application thereof in protein A detection

Also Published As

Publication number Publication date
JP3683000B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
JP3871339B2 (en) Vertebrate Apoptotic Genes: Compositions and Methods
CA2296598A1 (en) Isolation of a novel senescence-factor gene, p23
US6465200B2 (en) Transcription factor regulatory protein
EP0708112B1 (en) RPDL protein and DNA encoding the same
GB2282814A (en) Human transcription factor E2F-2
CA2251264A1 (en) Human hyaluronan receptor
US6087485A (en) Asthma related genes
WO1996031534A1 (en) ISOLATED NUCLEIC ACID MOLECULES ENCODING p57KIP2 AND USES OF SAME
JPH08217797A (en) Spa-1 protein and gene coding the same
AU2004234532A1 (en) SPEX compositions and methods of use
AU714793B2 (en) Novel stress proteins
EP1125947B1 (en) Human H37 protein and cDNA encoding the same
EP0422175B1 (en) Proteins which regulate the expression of vertebrate mhc class ii genes, dna sequences encoding them and pharmaceutical compositions
EP1197554A1 (en) Proliferation differentiation factor
US5831024A (en) SPA-1 protein
JP2552942B2 (en) Human b-FGF receptor gene
EP1065269B1 (en) Genomic gene encoding hm1.24 antigen protein and promoter thereof
EP0948618A1 (en) HUMAN POLYHOMEOTIC 2($i(hph2)) ACTS AS AN ONCOGENE
US5770717A (en) Nucleic acid encoding a stress-responsive subunit of human RNA polymerase II
JPH08140687A (en) Rpdl protein and dna encoding for the same
JPH10262680A (en) Rho target protein human mdi and gene thereof
CA2252965A1 (en) Novel suppressor of fused (sufu) gene
JP2001224378A (en) HUMAN PROTEIN AND cDNA [7]
WO1998045326A1 (en) Cell zinc finger polynucleotides and splice variant polypeptides encoded thereby
JP2001037482A (en) HUMAN PROTEIN AND cDNA

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050524

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees