JPH08216876A - In-pipe traveling device - Google Patents

In-pipe traveling device

Info

Publication number
JPH08216876A
JPH08216876A JP7025223A JP2522395A JPH08216876A JP H08216876 A JPH08216876 A JP H08216876A JP 7025223 A JP7025223 A JP 7025223A JP 2522395 A JP2522395 A JP 2522395A JP H08216876 A JPH08216876 A JP H08216876A
Authority
JP
Japan
Prior art keywords
pipe
moving device
laminated piezoelectric
legs
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7025223A
Other languages
Japanese (ja)
Inventor
Shinichiro Kawakita
晋一郎 川北
Nobuyuki Oya
信之 大矢
Koji Idogaki
孝治 井戸垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP7025223A priority Critical patent/JPH08216876A/en
Publication of JPH08216876A publication Critical patent/JPH08216876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Manipulator (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PURPOSE: To provide an in-pipe traveling device that is travelable in a state that the whole device keeps a stable attitude in a pipeline as in stableness. CONSTITUTION: This device is provided with an inertial body 1 and two piezoelectric elements 21 and 2b being connected to this inertial body and expansibly deformed by way of the impression and release of voltage. In this in-pipe traveling device, traveling by means of inertly driving the inertial body 1 with these piezoelectric elements 2a and 2b, each two of pins 4a, 4b and 4c, 4d in contact with a pipe wall each is installed in both ends in front and in the rear of the device, and these two by two pins 4a, 4b and 4c, 4d are symmetrically installed with one another to the center shaft. Since two by two pins are installed in both front and rear ends at the symmetrical position, these pins come to contact with the inner surface of a diametral part of a pipeline, whereby this device can be kept in a stable attitude, and thus even in the case of movements, this device can be kept in the stable attitude.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工業配管や生体管路な
どの内部を慣性力を利用して自走可能な管内移動装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-pipe moving device capable of self-propelling inside an industrial pipe or a living body pipe by utilizing inertial force.

【0002】[0002]

【従来の技術】最近、原子力発電プラントなどで使用さ
れている内径数mmの配管内の傷を検査する装置として、
マイクロ検査マシンが開発されている。この種のマイク
ロ検査マシンは、外径が数mmで上記配管内を自由に動き
得る大きさに形成されており、先端に管内の傷を検査す
るセンサーを有し、その後に駆動部を備えている。駆動
部は、慣性体に電圧の印加および解除により伸縮作動す
る圧電素子、例えば積層圧電体を連結して構成されてお
り、圧電素子の伸縮作用により慣性体の慣性を利用して
寸道移動するようになっている。
2. Description of the Related Art Recently, as a device for inspecting a flaw in a pipe having an inner diameter of several mm, which is used in a nuclear power plant or the like,
Micro inspection machines have been developed. This type of microinspection machine has an outer diameter of several mm and is formed in a size that allows it to move freely in the pipe, and has a sensor for inspecting the inside of the pipe at the tip, and a drive unit after that. There is. The drive unit is configured by connecting a piezoelectric element that expands and contracts by applying and releasing a voltage to the inertial body, for example, a laminated piezoelectric body, and moves in a path using the inertia of the inertial body due to the expansion and contraction of the piezoelectric element. It is like this.

【0003】すなわち、このような慣性力を利用した寸
道型の管内移動装置は、特開平4−176770号公報
に示されており、圧電素子に印加する駆動電圧を制御す
るとこの圧電素子が伸縮し、この伸縮作動のいずれか一
方の動きを慣性体の慣性により規制することによって装
置全体を移動させ、このような移動を繰り返して管内を
自走行するようになっている。
That is, a passage-type tube moving device utilizing such inertial force is disclosed in Japanese Patent Laid-Open No. 4-176770, and when the drive voltage applied to the piezoelectric element is controlled, the piezoelectric element expands and contracts. However, by restricting either one of the expansion and contraction movements by the inertia of the inertial body, the entire apparatus is moved, and such movement is repeated so that the tube itself travels.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記公
報に示された従来の管内移動装置は、伸縮作動する圧電
素子の一端に管内の摩擦力を受ける移動体を設けるとと
もに他端に上記移動体より質量の小さな慣性体を設け、
移動装置全体は上記移動体により支えられる構造となっ
ている。このため、装置全体は片端支持の構造となり、
自立が不安定であり、移動体の管壁との接触面積が大き
いので管壁表面の影響を大きく受けて移動が不安定であ
るという問題がある。
However, in the conventional in-pipe moving device disclosed in the above publication, a moving body that receives the frictional force in the pipe is provided at one end of the piezoelectric element that expands and contracts, and the other end is moved from the moving body. An inertial body with a small mass is provided,
The entire moving device has a structure supported by the moving body. Therefore, the entire device has a structure with one end support,
Since the self-standing is unstable and the contact area of the moving body with the pipe wall is large, there is a problem that the movement is unstable due to the influence of the surface of the pipe wall.

【0005】また、配管の通路が屈曲している場合、移
動装置の先端を屈曲方向へ向けて円滑に変更し難いとい
う不具合もある。この発明はこのような事情にもとづき
なされたもので、その目的とするところは、装置全体が
配管内で安定した姿勢を保ち、安定な状態で移動可能な
管内移動装置を提供しようとするものである。
Further, when the passage of the pipe is bent, it is difficult to smoothly change the tip of the moving device in the bending direction. The present invention has been made in view of the above circumstances, and an object thereof is to provide an in-pipe moving device capable of moving in a stable state with the entire device maintaining a stable posture in the pipe. is there.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、慣性
体と、この慣性体に連結され電圧の印加および解除によ
り伸縮変形する圧電素子とを備え、この圧電素子にて上
記慣性体を慣性駆動することにより移動する管内移動装
置において、上記装置の前後の端部にそれぞれ管壁に接
触する2個ずつの足を設け、これら2個づつの足は中心
軸に対して互いに対称に設けられていることを特徴とす
る管内移動装置である。
According to a first aspect of the present invention, there is provided an inertial body and a piezoelectric element which is connected to the inertial body and expands and contracts by applying and releasing a voltage. In an intra-tube moving device that moves by inertial drive, two front and rear end portions of the device are provided with two legs each in contact with a pipe wall, and these two legs are provided symmetrically with respect to a central axis. The in-pipe moving device is characterized in that

【0007】請求項2の発明は、前後合計4本の足は、
中心軸を通る平面上に設けられていることを特徴とする
請求項1に記載の管内移動装置である。請求項3の発明
は、前部の足と後部の足は中心軸の回りに互いに回転可
能に設けられていることを特徴とする請求項1に記載の
管内移動装置である。
According to the second aspect of the invention, the total of four legs in front and rear are
The in-pipe moving device according to claim 1, wherein the in-pipe moving device is provided on a plane passing through the central axis. The invention of claim 3 is the in-pipe moving device according to claim 1, wherein the front foot and the rear foot are provided so as to be rotatable relative to each other about the central axis.

【0008】請求項4の発明は、慣性体の両端に、一方
が伸びるときに他方が縮むように作動する圧電素子をそ
れぞれ連結したことを特徴とする請求項1ないし請求項
3のいずれか1に記載の管内移動装置である。
The invention according to claim 4 is characterized in that a piezoelectric element, which operates so that when one extends, the other contracts, is connected to both ends of the inertial body, respectively. It is the in-pipe moving device described.

【0009】[0009]

【作用】請求項1の発明によれば、装置の前後端部にそ
れぞれ2本ずつの足を対称位置に設けたので、これら足
がそれぞれ配管の直径部内面に接触するようになる。し
たがって配管内で装置の姿勢を安定した状態に保つこと
ができ、かつ前進または後進の場合でも装置を安定した
姿勢に保つことができる。
According to the first aspect of the present invention, since two feet are provided at each of the front and rear ends of the apparatus at symmetrical positions, the feet come into contact with the inner surface of the diameter portion of the pipe. Therefore, the posture of the device can be maintained in a stable state in the pipe, and the device can be kept in a stable posture even when moving forward or backward.

【0010】請求項2の発明によれば、前後合計4本の
足が中心軸を通る平面上に設けられているから、屈曲管
路を通るときに装置全体が回転して抵抗の少ない姿勢に
変わり、屈曲部を円滑に通過することができる。
According to the invention of claim 2, since a total of four front and rear legs are provided on a plane passing through the central axis, the device as a whole rotates to a posture with little resistance when passing through the bending conduit. Instead, it can smoothly pass through the bent portion.

【0011】請求項3の発明によれば、前後合計4本の
足のうち、前部の足と後部の足が中心軸の回りに互いに
回転可能に設けられているから、屈曲管路を通るときに
前部の足、または後部の足が独自に回転して抵抗の少な
い姿勢に変わり、屈曲部を円滑に通過することができ
る。
According to the third aspect of the present invention, the front foot and the rear foot out of a total of four front and rear feet are provided so as to be rotatable relative to each other around the central axis, and therefore, pass through the bending conduit. Sometimes, the front foot or the rear foot rotates independently to change into a posture with less resistance, and it is possible to smoothly pass through the bent portion.

【0012】請求項4の発明によれば、慣性体の両端
に、一方が伸びるときに他方が縮むように作動する圧電
素子をそれぞれ連結したから、1サイクルにおける寸道
距離が大きく、よって移動速度が早いとともに、前進の
場合と後進の場合とで動作の差を生じ無くすることがで
きる。
According to the fourth aspect of the present invention, piezoelectric elements that act so that when one extends the other contracts are connected to both ends of the inertial body, the path length in one cycle is large, and therefore the moving speed is high. It is possible to eliminate the difference in operation between the case of moving forward and the case of moving backward as soon as possible.

【0013】[0013]

【実施例】以下本発明について、図1ないし図7に示す
第1の実施例にもとづき説明する。図1は、管内移動装
置の全体の構成を示す半分を断面した側面図であり、同
図において符号1は慣性体としての重りである。この重
り1は比重の高い金属、例えば鉛などにより形成されて
おり、前後方向両端部にはそれぞれ急激な伸縮運動が可
能なアクチュエータ、すなわち電圧を印加すると伸縮作
動する圧電素子2a,2bが接合されている。本例の圧
電素子2a,2bは、数10層からなる積層構造の圧電
体(PZT)が用いられている。これら積層圧電体2
a,2bは上記重り1に対し急激な伸縮動作を減衰する
ことなく伝達するため、強固に接着または接合されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on the first embodiment shown in FIGS. FIG. 1 is a half sectional side view showing the entire structure of the in-pipe moving device. In FIG. 1, reference numeral 1 is a weight as an inertial body. The weight 1 is made of a metal having a high specific gravity, such as lead, and actuators capable of abrupt expansion and contraction, that is, piezoelectric elements 2a and 2b that expand and contract when a voltage is applied, are joined to both ends in the front-rear direction. ing. As the piezoelectric elements 2a and 2b of this example, a piezoelectric body (PZT) having a laminated structure composed of several tens of layers is used. These laminated piezoelectric bodies 2
Since a and 2b transmit a sudden expansion and contraction operation to the weight 1 without attenuating, they are firmly bonded or joined.

【0014】上記重り1および積層圧電体2a,2b
は、配管内の外乱から保護するためのシェル3により覆
われている。シェル3は放熱面積を確保するため金属製
の蛇腹形円筒形状をなしており、剛性を有している。な
お、このシェル3は伸縮作動してもよいが伸縮作動しな
くてもよい。シェル3の両端部は、上記積層圧電体2
a,2bのそれぞれ重り1が接合されていない前端部お
よび後端部に強固に接着または接合されている。
The weight 1 and the laminated piezoelectric bodies 2a and 2b
Are covered by a shell 3 for protection against disturbances in the pipe. The shell 3 has a bellows-shaped cylindrical shape made of metal in order to secure a heat radiation area and has rigidity. The shell 3 may be expanded / contracted but may not be expanded / contracted. Both ends of the shell 3 have the above-mentioned laminated piezoelectric body 2
The weights 1 of a and 2b are firmly bonded or joined to the front end portion and the rear end portion which are not joined.

【0015】なお、シェル3と積層圧電体2a,2b
は、シェル3と積層圧電体2a,2bとの電極(図示し
ない)との短絡を防ぐため、これら端部の接着部以外で
は接触しないように配置されており、かつシェル3と重
り1は、これらの間で摩擦抵抗が生じるのを防ぐため相
互に接触(干渉)しないように配置されている。
Incidentally, the shell 3 and the laminated piezoelectric bodies 2a, 2b
Is arranged so as to prevent short-circuiting between the shell 3 and the electrodes (not shown) of the laminated piezoelectric bodies 2a and 2b, so that the shell 3 and the weight 1 are not in contact with each other except for the bonding portions of these ends. They are arranged so as not to contact (interfere) with each other in order to prevent frictional resistance between them.

【0016】上記シェル3の前端部および後端部にはそ
れぞれ2本ずつの足4a,4bおよび4c,4dが取り
付けられている。これら足4a,4bおよび4c,4d
はそれぞれSUSなどの金属からなる細いワイヤにて形
成されており、各々前方斜め方向および後方斜め方向に
伸びていて、先端が配管壁の内面に当接するようになっ
ている。
Two feet 4a, 4b and 4c, 4d are attached to the front and rear ends of the shell 3, respectively. These feet 4a, 4b and 4c, 4d
Are formed of thin wires made of metal such as SUS, and extend in the front oblique direction and the rear oblique direction, respectively, so that the tip ends contact the inner surface of the pipe wall.

【0017】これら足4a,4bおよび4c,4dは、
それぞれ前側の2本の足4a,4bが重り1および積層
圧電体2a,2bを貫通する中心線に対し対称に配置さ
れており、かつそれぞれ後側の2本の足4c,4dも上
記中心線に対し対称に配置されている。本実施例では、
合計4本の足4a,4bおよび4c,4dが、図2に示
すように、装置の正面から見た場合に装置の直径上にあ
り、つまり4本の足4a,4bおよび4c,4dは配管
内面に接する点が上記中心線を通る同一平面上に位置す
るように形成されている。
These feet 4a, 4b and 4c, 4d are
The two front legs 4a and 4b are arranged symmetrically with respect to the center line passing through the weight 1 and the laminated piezoelectric bodies 2a and 2b, and the two rear legs 4c and 4d are also the above center lines. They are arranged symmetrically with respect to. In this embodiment,
A total of four legs 4a, 4b and 4c, 4d are on the diameter of the device when viewed from the front of the device, as shown in FIG. 2, ie four legs 4a, 4b and 4c, 4d are piped. The points contacting the inner surface are formed on the same plane passing through the center line.

【0018】上記積層圧電体2a,2bはそれぞれ配線
5および増幅器6を介して任意波形発生器7に接続され
ている。任意波形発生器7は電源8の電圧を、図3また
は図5に示すような数kHzの鋸歯形電圧波形などに任
意に変更設定し得るものであり、この任意波形発生器7
にて選定された電圧波形は上記増幅器6にて0〜100
Vに増幅され、配線5を介して積層圧電体2a,2bに
印加されるようになっている。
The laminated piezoelectric bodies 2a and 2b are connected to an arbitrary waveform generator 7 via a wiring 5 and an amplifier 6, respectively. The arbitrary waveform generator 7 can arbitrarily change and set the voltage of the power source 8 to a sawtooth voltage waveform of several kHz as shown in FIG. 3 or FIG.
The voltage waveform selected at is 0 to 100 at the amplifier 6.
It is amplified to V and applied to the laminated piezoelectric bodies 2a and 2b via the wiring 5.

【0019】このように構成された管内移動装置の作用
を説明する。図4は、管内移動装置が配管10の内部を
図の左から右に向かって移動する場合を示すものであ
る。上記任意波形発生器7にて、図3に示すような、緩
やかに立上がり、瞬時に0または負に戻されるような鋸
歯形波形の電圧を数kHz発生し、この鋸歯形電圧を増
幅器6にて増幅して積層圧電体2a,2bに印加する。
このとき、前部の積層圧電体2aに負の立上がり電圧を
印加するとともに、後部の積層圧電体2bに正の立上が
り電圧を印加する。すると、図4の(4−A)図ないし
(4−C)図に示す通り、前部の積層圧電体2aはゆっ
くり縮むとともに後部の積層圧電体2bはゆっくり伸び
る。この場合、前足4a,4bと後足4c,4dの距離
Lは変化せず、したがってシェル3の長さは変化しない
から、重り1のみが右方に移動する。
The operation of the in-pipe moving device configured as described above will be described. FIG. 4 shows a case where the in-pipe moving device moves inside the pipe 10 from left to right in the drawing. The arbitrary waveform generator 7 generates a voltage having a sawtooth waveform of several kHz which rises gently and is instantly returned to 0 or negative as shown in FIG. It is amplified and applied to the laminated piezoelectric bodies 2a and 2b.
At this time, a negative rising voltage is applied to the front laminated piezoelectric body 2a, and a positive rising voltage is applied to the rear laminated piezoelectric body 2b. Then, as shown in FIGS. 4A to 4C, the front laminated piezoelectric body 2a contracts slowly and the rear laminated piezoelectric body 2b slowly extends. In this case, the distance L between the front legs 4a, 4b and the rear legs 4c, 4d does not change, and therefore the length of the shell 3 does not change, so that only the weight 1 moves to the right.

【0020】(4−B)図は重り1が右側に移動途中の
状態を示し、(4−A)図に示す最初の位置から寸法a
だけ移動した時であり、(4−C)図は重り1が一番右
側へ移動した時の状態を示し、(4−B)図に示す位置
からさらに寸法b分移動した状態である。したがって、
(4−C)図に示す状態は、重り1が(4−A)図に示
す最初の位置から寸法a+bだけ移動した状態を示す。
FIG. 4 (B) shows a state in which the weight 1 is being moved to the right, and the dimension a from the initial position shown in FIG. 4 (A).
(4-C) shows the state in which the weight 1 has moved to the far right, and is the state in which the weight b has moved further from the position shown in (4-B). Therefore,
The state shown in (4-C) shows a state in which the weight 1 has moved by a dimension a + b from the initial position shown in (4-A).

【0021】このような重り1の移動後、印加電圧を急
に元に戻す。すると、縮んでいた前部の積層圧電体2a
は元の長さに急激に伸び、かつ伸びていた後部の積層圧
電体2bは元の長さに急激に縮む。このとき、重り1の
慣性力(静止力)が、各足4a,4bおよび4c,4d
と配管10の内面との静止摩擦力より大きくなるように
設定されていることにより重り1は動かず、しかも前足
4a,4bと後足4c,4dの距離Lは変化せず、シェ
ル3の長さも変化しないことから、各足4a,4bおよ
び4c,4dが配管10の内面と摺動して装置全体が図
4の(4−D)図に示すように前進する。
After such movement of the weight 1, the applied voltage is suddenly returned to the original value. Then, the contracted front laminated piezoelectric body 2a
Abruptly expands to the original length, and the expanded laminated piezoelectric body 2b at the rear part abruptly contracts to the original length. At this time, the inertial force (resting force) of the weight 1 is applied to each foot 4a, 4b and 4c, 4d.
The weight 1 does not move and the distance L between the front legs 4a and 4b and the rear legs 4c and 4d does not change because the static friction force between the inner surface of the pipe 10 and the inner surface of the pipe 10 is not changed. Since this does not change, the legs 4a, 4b and 4c, 4d slide on the inner surface of the pipe 10 and the entire apparatus advances as shown in (4-D) of FIG.

【0022】なお、この場合、足4a,4bおよび4
c,4dと配管10の内面との間に若干の摩擦抵抗があ
るため、重り1は微小量δだけ戻る。したがって、上記
のように、緩やかに立上がりかつ瞬時に元に戻されるよ
うな鋸歯形波形の電圧を1サイクルかけると、装置全体
は寸法X=a+b−δに相当する距離を前進移動するこ
とになる。以後、上記鋸歯形波形の電圧を複数サイクル
かければ、このサイクル数に応じて上記作動を返し、よ
って管内移動装置は配管10内を左から右に向けて順次
寸道する。
In this case, the legs 4a, 4b and 4
Since there is some frictional resistance between c and 4d and the inner surface of the pipe 10, the weight 1 returns by a minute amount δ. Therefore, as described above, when one cycle of the voltage having a sawtooth waveform that gradually rises and is instantly restored is applied, the entire apparatus moves forward by a distance corresponding to the dimension X = a + b-δ. . After that, if the sawtooth waveform voltage is applied for a plurality of cycles, the operation is returned according to the number of cycles, and thus the in-pipe moving device passes through the pipe 10 from left to right sequentially.

【0023】また逆に、上記第1の実施例の管内移動装
置を、配管10の内部を図の右から左に向かって移動す
る場合は、上記積層圧電体2a,2bにかける電圧の正
負を逆にする。すなわち、図示しないが、前部の積層圧
電体2aに正のゆっくりとした立上がり電圧を印加し、
かつ後部の積層圧電体2bに負のゆっくりとした立上が
り電圧を印加する。すると、図4の(4−A)図ないし
(4−C)図に示す場合と逆に、前部の積層圧電体2a
がゆっくり伸びるとともに後部の積層圧電体2bがゆっ
くり縮み、これにより重り1は左方に移動する。
On the contrary, when moving the inside of the pipe 10 from the right side to the left side of the drawing by the in-pipe moving device of the first embodiment, the positive and negative of the voltage applied to the laminated piezoelectric bodies 2a and 2b are changed. Reverse. That is, although not shown, a positive and slow rising voltage is applied to the front laminated piezoelectric body 2a,
In addition, a negative slow rising voltage is applied to the rear laminated piezoelectric material 2b. Then, contrary to the case shown in FIGS. 4 (A) to 4 (C), the laminated piezoelectric body 2a in the front portion is reversed.
Is slowly extended and the laminated piezoelectric body 2b at the rear portion is slowly contracted, whereby the weight 1 moves to the left.

【0024】この重り1の移動後、印加電圧を急に元に
戻すと、伸びていた前部の積層圧電体2aは元の長さに
急激に縮み、かつ縮んでいた後部の積層圧電体2bは元
の長さに急激に伸び、このとき、重り1の慣性力(静止
力)により、足4a,4bおよび4c,4dが配管10
の内面に摺動して左方向に移動する。よって、この場合
は、管内移動装置が配管10内を右から左に向けて寸道
する。
When the applied voltage is suddenly returned to the original value after the movement of the weight 1, the stretched front laminated piezoelectric material 2a is rapidly contracted to the original length, and the contracted rear laminated piezoelectric material 2b is contracted. Rapidly expands to the original length, and at this time, due to the inertial force (resting force) of the weight 1, the legs 4a, 4b and 4c, 4d are connected to the pipe 10
It slides on the inner surface of and moves to the left. Therefore, in this case, the pipe moving device passes through the pipe 10 from right to left.

【0025】前部の積層圧電体2aと後部の積層圧電体
2bとの構造を同一にしておけば、管内移動装置が右側
へ移動するときの寸道距離と、左側へ移動するときの寸
道距離を同じにすることができ、往路と復路の動作の差
を無くすことができる。
If the structure of the front laminated piezoelectric body 2a and the rear laminated piezoelectric body 2b are made the same, the path length when the in-tube moving device moves to the right side and the path length when moving to the left side. It is possible to make the distances the same, and it is possible to eliminate the difference between the forward and backward movements.

【0026】上記構成の管内移動装置は、任意波形発生
器7により図3とは異なる他の電圧波形を選択して積層
圧電体2a,2bに印加することによって他の動作によ
り前進および後進させることもできる。すなわち、図5
は、任意波形発生器7にて発生された瞬時に立上がりか
つ緩やかに0または負に戻されるような鋸歯形波形の電
圧波形を示し、図6はこの電圧波形を用いて管内移動装
置を前進移動させる場合を示す説明図である。
In the in-tube moving device having the above-mentioned configuration, the arbitrary waveform generator 7 selects another voltage waveform different from that shown in FIG. 3 and applies the voltage waveform to the laminated piezoelectric bodies 2a and 2b to move it forward and backward by another operation. You can also That is, FIG.
Shows a voltage waveform of a sawtooth waveform generated by the arbitrary waveform generator 7 that instantly rises and is gradually returned to 0 or negative. FIG. 6 uses this voltage waveform to move the in-pipe moving device forward. It is explanatory drawing which shows the case where it is made.

【0027】つまり、任意波形発生器7にて発生された
図5の鋸歯形電圧を増幅器6にて増幅して積層圧電体2
a,2bに印加する。このとき、前部の積層圧電体2a
に正の急激な立上がり電圧を印加するとともに、後部の
積層圧電体2bに負の急激な立上がり電圧を印加する。
すると、図6の(6−A)図から(6−B)図に示す通
り、前部の積層圧電体2aは急激に伸びるとともに後部
の積層圧電体2bは急激に縮む。
That is, the sawtooth voltage of FIG. 5 generated by the arbitrary waveform generator 7 is amplified by the amplifier 6, and the laminated piezoelectric material 2 is obtained.
It is applied to a and 2b. At this time, the laminated piezoelectric body 2a in the front part
A positive abrupt rising voltage is applied to, and a negative abrupt rising voltage is applied to the rear laminated piezoelectric material 2b.
Then, as shown in FIGS. 6-A to 6-B, the front laminated piezoelectric body 2a expands rapidly and the rear laminated piezoelectric body 2b contracts rapidly.

【0028】このとき、重り1の慣性力(静止力)が、
各足4a,4bおよび4c,4dと配管10の内面との
静止摩擦力より大きくなるように設定されているから重
り1は動かず、しかも前足4a,4bと後足4c,4d
の距離Lは変化せず、シェル3の長さも変化しないこと
から、各足4a,4bおよび4c,4dが配管10の内
面と摺動して装置全体が(6−B)図に示すように前進
する(前進距離X)。
At this time, the inertial force (static force) of the weight 1 is
The weight 1 does not move because it is set to be larger than the static frictional force between each foot 4a, 4b and 4c, 4d and the inner surface of the pipe 10, and the front feet 4a, 4b and the rear feet 4c, 4d.
Since the distance L does not change and the length of the shell 3 does not change, the legs 4a, 4b and 4c, 4d slide on the inner surface of the pipe 10 and the entire apparatus is moved as shown in Fig. 6-B. Move forward (forward distance X).

【0029】この後、これら積層圧電体2a,2bに印
加した電圧をそれぞれゆっくり戻す。すると、前部の積
層圧電体2aはゆっくり縮み、後部の積層圧電体2bは
ゆっくり伸びる。この場合、前足4a,4bと後足4
c,4dの距離Lは変化せず、したがってシェル3の長
さは変化しないから、重り1のみが(6−C)図および
(6−D)図に示すように右方へ移動する。
After that, the voltages applied to the laminated piezoelectric bodies 2a and 2b are slowly returned. Then, the front laminated piezoelectric body 2a contracts slowly, and the rear laminated piezoelectric body 2b slowly expands. In this case, the front legs 4a, 4b and the rear legs 4
Since the distance L of c and 4d does not change and therefore the length of the shell 3 does not change, only the weight 1 moves to the right as shown in FIGS. 6-C and 6-D.

【0030】(6−C)図は重り1が右側に移動する途
中の状態を示し、(6−B)図に示す位置から寸法aだ
け移動した時であり、(6−D)図は重り1が中立位置
へ移動した時の状態を示し、(6−C)図に示す位置か
らさらに寸法b分移動した状態である。したがって、
(6−D)図に示す状態は、重り1が(6−A)図に示
す最初の位置から寸法a+bだけ移動した状態を示し、
管内移動装置はX=a+bに相当する距離を前進移動す
ることになる。
FIG. 6-C shows a state in which the weight 1 is moving to the right side, when the weight 1 is moved from the position shown in FIG. 6-B by the dimension a, and FIG. 6-D shows the weight. 1 shows a state when 1 is moved to the neutral position, and is a state in which it is further moved by the dimension b from the position shown in (6-C). Therefore,
The state shown in (6-D) shows a state in which the weight 1 has moved by a dimension a + b from the initial position shown in (6-A).
The in-pipe moving device moves forward a distance corresponding to X = a + b.

【0031】このような寸道を1サイクル毎に繰り返
し、サイクル数に応じて管内移動装置は配管10内を左
から右に向けて順次前進する。逆に、上記管内移動装置
を配管10の右から左に向けて移動させる場合は、上記
図6に示した積層圧電体2a,2bにかける電圧の正負
を逆にし、図示しないが、前部の積層圧電体2aに負の
急激な立上がり電圧を印加し、後部の積層圧電体2bに
正の急激な立上がり電圧を印加する。すると、図6の
(6−A)図ないし(6−B)図に示す場合と逆に、前
部の積層圧電体2aが急激に縮むとともに後部の積層圧
電体2bが急激伸び、これにより重り1は左方に移動す
る。このとき、重り1の慣性力(静止力)により重り1
は動かず、各足4a,4bおよび4c,4dと配管10
の内面とが摺動して装置全体が(6−B)図と逆方向に
後進する。
Such a passage is repeated for each cycle, and the pipe moving device sequentially advances the pipe 10 from left to right according to the number of cycles. On the contrary, when the in-pipe moving device is moved from the right side to the left side of the pipe 10, the positive and negative voltages applied to the laminated piezoelectric bodies 2a and 2b shown in FIG. A negative abrupt rising voltage is applied to the laminated piezoelectric body 2a, and a positive abrupt rising voltage is applied to the rear laminated piezoelectric body 2b. Then, contrary to the case shown in FIGS. 6-A and 6-B, the front laminated piezoelectric body 2a contracts sharply and the rear laminated piezoelectric body 2b rapidly expands, whereby the weight is reduced. 1 moves to the left. At this time, the weight 1 is moved by the inertial force (static force) of the weight 1.
Does not move, each leg 4a, 4b and 4c, 4d and the pipe 10
The inner surface of the device slides and the entire device moves backward in the direction opposite to that in (6-B).

【0032】この後、印加電圧をゆっくりと元に戻す
と、縮んでいた前部の積層圧電体2aは元の長さにゆっ
くり伸びるとともに、伸びていた後部の積層圧電体2b
は元の長さにゆっくり縮み、よって重り1は前部の積層
圧電体2aと後部の積層圧電体2bとの中立位置に移動
する。
After that, when the applied voltage is slowly returned to the original value, the contracted front laminated piezoelectric material 2a slowly expands to the original length and the expanded rear laminated piezoelectric material 2b.
Contracts slowly to its original length, and therefore the weight 1 moves to the neutral position between the front laminated piezoelectric body 2a and the rear laminated piezoelectric body 2b.

【0033】このような動作を繰り返すことにより管内
移動装置は配管10の右から左に向けて移動することが
できる。この場合も、前部の積層圧電体2aと後部の積
層圧電体2bとの構造が同一であるから、管内移動装置
が右側へ移動するときの寸道距離と、左側へ移動すると
きの寸道距離を同じにすることができ、往路と復路の動
作の差を無くすことができる。
By repeating such an operation, the pipe moving device can move from the right side to the left side of the pipe 10. In this case also, since the front laminated piezoelectric body 2a and the rear laminated piezoelectric body 2b have the same structure, the path length when the in-tube moving device moves to the right side and the path length when moving to the left side. It is possible to make the distances the same, and it is possible to eliminate the difference between the forward and backward movements.

【0034】さらに、上記構造の管内移動装置は屈曲し
た管路を進む場合、走行方向を自分で変えながら円滑に
進むことができる。すなわち、屈曲管路12を進む場合
の作動を図7に示す。(7−A)図は、管内移動装置の
4本の足4a,4bおよび4c,4dと管壁との接触点
を含む平面が、屈曲管路12の屈曲方向と同一面である
状態である場合を示し、この状態で管内移動装置が管路
12の屈曲部に到達すると、いずれか一方の前足2aま
たは2bと屈曲した管壁との摩擦抵抗が増大する。この
まま前進を続けると、上記いずれか一方の前足2aまた
は2bに加わる抵抗を低減しようとして管内移動装置は
(7−B)図に示すように、右または左に回転(自転)
することになる。
Further, the in-pipe moving device having the above-mentioned structure can smoothly proceed while changing the traveling direction by itself when advancing along a curved pipe path. That is, FIG. 7 shows the operation in the case of traveling along the curved conduit 12. (7-A) is a state in which the plane including the contact points between the four legs 4a, 4b and 4c, 4d of the intra-tube moving device and the tube wall is flush with the bending direction of the bending conduit 12. In this case, when the in-pipe moving device reaches the bent portion of the duct 12 in this state, the frictional resistance between one of the front legs 2a or 2b and the bent pipe wall increases. If the forward movement is continued as it is, the in-pipe moving device rotates to the right or the left (rotates) as shown in (7-B) in an attempt to reduce the resistance applied to one of the front legs 2a or 2b.
Will be done.

【0035】このため、管内移動装置は屈曲管路12内
で螺旋状に回転し、(7−C)図に示すように、4本の
足4a,4bおよび4c,4dと管壁との接触点を含む
平面が、屈曲管路12の屈曲方向と垂直な姿勢となり、
これにより摩擦抵抗の少ない姿勢となり、この状態で前
進する。
As a result, the in-pipe moving device spirally rotates in the bending conduit 12, and the four legs 4a, 4b and 4c, 4d come into contact with the pipe wall as shown in FIG. 7C. The plane including the points is in a posture perpendicular to the bending direction of the bending conduit 12,
As a result, the posture is such that there is little frictional resistance, and the robot moves forward in this state.

【0036】これは、上記4本の足4a,4bおよび4
c,4dが同一平面内に配置されていることによって可
能であり、よってこのような構成であれば、屈曲した管
路12を自分で方向転換しながら円滑に進むことができ
る。
This is the above-mentioned four legs 4a, 4b and 4
This is possible because c and 4d are arranged in the same plane. Therefore, with such a configuration, it is possible to smoothly proceed while changing the direction of the bent conduit 12 by itself.

【0037】このようなことから、上記の管内移動装置
に探傷センサー(図示しない)を取り付けておけば、上
記管内移動装置の前進または後進に応じて探傷センサー
を管内で前進または後進させることができ、管内面の傷
などを検査することができる。 しかも、積層圧電体2
a、2bは小形のものを作ることができ、外径6mm、長
さ20mm程度のマイクロ検査マシンの製造も可能であ
る。
For this reason, if a flaw detection sensor (not shown) is attached to the above-mentioned in-pipe moving device, the flaw detection sensor can be moved forward or backward in the pipe in accordance with the forward or backward movement of the in-pipe moving device. It is possible to inspect the inner surface of the pipe for scratches. Moreover, the laminated piezoelectric body 2
A and 2b can be made small, and a micro inspection machine having an outer diameter of 6 mm and a length of about 20 mm can be manufactured.

【0038】図8および図9は、本発明の第2の実施例
を示す管内移動装置の図である。この実施例の場合は、
前部積層圧電体2aおよび後部積層圧電体2bにそれぞ
れ放熱フィン6a,6bを取り付けてある。一般に積層
圧電体は、電圧の印加および解除による伸縮作用によっ
て発熱する性質があり、このため前部積層圧電体2aお
よび後部積層圧電体2bのそれぞれ端部に放熱フィン2
0a,20bを取り付けておくと、これら放熱フィン2
0a,20bの放熱作用により放熱されるから積層圧電
体の温度上昇を抑制することができ、寿命特性が向上す
る。
FIG. 8 and FIG. 9 are views of a pipe moving device showing a second embodiment of the present invention. In this example,
Radiating fins 6a and 6b are attached to the front laminated piezoelectric body 2a and the rear laminated piezoelectric body 2b, respectively. Generally, the laminated piezoelectric material has a property of generating heat by the expansion and contraction action by applying and releasing a voltage. Therefore, the radiation fins 2 are provided at the end portions of the front laminated piezoelectric material 2a and the rear laminated piezoelectric material 2b, respectively.
0a and 20b are attached, these radiation fins 2
Since the heat is radiated by the heat radiating action of 0a and 20b, the temperature rise of the laminated piezoelectric material can be suppressed, and the life characteristics are improved.

【0039】図10および図11は、本発明の第3の実
施例を示す。この管内移動装置は、前足4a,4bおよ
び後足4c,4dの少なくともいずれか一方が、シェル
3に対して支軸30,30により回転可能に取り付けら
れた例である。このようにすれば、図7に示すような屈
曲管路12を進む場合、屈曲部で前足4a,4bの一方
に摩擦抵抗が加わった場合、管内移動装置の全体が螺旋
状に回転(自転)することなく、前足4a,4bのみが
回転して屈曲方向を含む面に対して垂直姿勢になり、屈
曲部を円滑に進むことができる。なお、後足4c,4d
が屈曲部に差し掛かった場合も後足4c,4dのみが回
転して摩擦の少ない姿勢になる。
10 and 11 show a third embodiment of the present invention. This in-pipe moving device is an example in which at least one of the front legs 4a, 4b and the rear legs 4c, 4d is rotatably attached to the shell 3 by the support shafts 30, 30. With this configuration, when the frictional resistance is applied to one of the front legs 4a and 4b at the bending portion when advancing along the bending duct 12 as shown in FIG. 7, the entire intra-tube moving device rotates spirally (rotates). Without doing so, only the front legs 4a, 4b rotate and take a vertical posture with respect to the plane including the bending direction, and the bending portion can be smoothly advanced. In addition, hind legs 4c and 4d
Even when the human body approaches the bent portion, only the rear legs 4c and 4d rotate to be in a posture with less friction.

【0040】図12は本発明の第4の実施例を示す。こ
の実施例は、重り1の一端のみに圧電素子、つまり積層
圧電体2を接合したものである。すなわち、前記第1な
いし第3の実施例では、重り1の前後にそれぞれ積層圧
電体2a,2bを接合した構造の管内移動装置を説明し
たが、図12に示す第4の実施例は、重り1の一端に積
層圧電体2を接合した構造である。積層圧電体2の端部
にはシェル3の一端が接合されており、このシェル3の
他端は重り1から離れている。そして、シェル3の前端
部に2個の前足4a,4bが取り付けられているととも
に、シェル3の後端部に2個の後足4c,4dが取り付
けられている。
FIG. 12 shows a fourth embodiment of the present invention. In this embodiment, the piezoelectric element, that is, the laminated piezoelectric body 2 is bonded to only one end of the weight 1. That is, in the first to third embodiments, the in-tube moving device having the structure in which the laminated piezoelectric bodies 2a and 2b are joined to the front and rear of the weight 1 has been described, but the fourth embodiment shown in FIG. 1 has a structure in which the laminated piezoelectric body 2 is joined to one end of the laminated body 1. One end of a shell 3 is joined to the end of the laminated piezoelectric body 2, and the other end of the shell 3 is separated from the weight 1. Two front legs 4a and 4b are attached to the front end of the shell 3, and two rear legs 4c and 4d are attached to the rear end of the shell 3.

【0041】このような構造の場合でも、積層圧電体2
が急激に縮むまたは伸びるときには、重り1の慣性力で
重り1は移動せずにシェル3が前または後ろに移動し、
上記積層圧電体2がゆっくり伸びるまたは縮むときにシ
ェル3は、足4a,4bおよび4c,4dと管壁との摩
擦で動かず、重り1が移動する。よって、前または後に
寸道可能である。なお、上記第1ないし第3の実施例で
はシェル3を使用したが、これらの実施例ではシェル3
を省略してもよい。
Even in the case of such a structure, the laminated piezoelectric material 2
Is contracted or extended rapidly, the inertial force of the weight 1 does not move the weight 1 but the shell 3 moves forward or backward,
When the above-mentioned laminated piezoelectric body 2 slowly expands or contracts, the shell 3 does not move due to the friction between the legs 4a, 4b and 4c, 4d and the tube wall, and the weight 1 moves. Therefore, it is possible to go forward or backward. Although the shell 3 is used in the first to third embodiments, the shell 3 is used in these embodiments.
May be omitted.

【0042】[0042]

【発明の効果】以上説明したように請求項1の発明によ
れば、装置の前後端部にそれぞれ設けた2本ずつの足が
配管の直径部内面に接触するようになり、装置の姿勢を
配管内で安定した状態に保つことができ、かつ前進また
は後進する場合でも装置を安定した姿勢に保つことがで
きる。
As described above, according to the first aspect of the present invention, two feet provided at each of the front and rear ends of the device come into contact with the inner surface of the diameter portion of the pipe, so that the posture of the device is maintained. The stable state can be maintained in the pipe, and the device can be maintained in a stable posture even when moving forward or backward.

【0043】また、請求項2の発明によれば、合計4本
の足を中心軸を通る平面上に設けたから、屈曲管路を通
るときに装置全体が回転して抵抗の少ない姿勢に変わ
り、屈曲部を円滑に通過することができる。
According to the second aspect of the invention, since the total of four legs are provided on the plane passing through the central axis, the entire device rotates to change to a posture with less resistance when passing through the bending conduit, It can smoothly pass through the bent portion.

【0044】請求項3の発明によれば、前後合計4本の
足のうち、前部の足と後部の足を中心軸の回りに互いに
回転可能に設けたから、屈曲管路を通るときに前部の
足、または後部の足が独自に回転して抵抗の少ない姿勢
に変わり、屈曲部を円滑に通過することができる。
According to the third aspect of the present invention, the front foot and the rear foot out of the total of four front and rear feet are rotatably provided around the central axis. The legs of the lower part or the legs of the rear part rotate independently to change to a posture with less resistance, and can smoothly pass through the bent portion.

【0045】請求項4の発明によれば、慣性体の両端に
それぞれ圧電素子を連結したから、圧電素子を1つ用い
る場合に比べて、1サイクルにおける寸道距離が大きく
なり、よって移動速度が早くなるとともに、前進の場合
と後進の場合とで動作の差を無くすこともできる。
According to the invention of claim 4, since the piezoelectric elements are connected to both ends of the inertial body, the path length in one cycle becomes large as compared with the case where one piezoelectric element is used, and therefore the moving speed is increased. It becomes faster, and it is possible to eliminate the difference in operation between the case of moving forward and the case of moving backward.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す管内移動装置の一
部断面した側面図。
FIG. 1 is a partially sectional side view of an in-pipe moving device showing a first embodiment of the present invention.

【図2】同管内移動装置の一部断面した正面面。FIG. 2 is a partially sectional front view of the in-pipe moving device.

【図3】同実施例の任意波形発生装置で選択された鋸歯
形電圧波形の1種を示す電圧波形図。
FIG. 3 is a voltage waveform diagram showing one kind of sawtooth voltage waveform selected by the arbitrary waveform generator of the embodiment.

【図4】同波形の電圧を印加して管内移動装置を前進さ
せるときの作用を示し、(4−A)図ないし(4−D)
図は動作順に示す説明図。
FIG. 4 is a view showing an action when a voltage of the same waveform is applied to advance the intra-tube moving device, and FIGS.
The figure is explanatory drawing shown in order of operation.

【図5】任意波形発生装置で選択された鋸歯形電圧波形
の他の種類を示す電圧波形図。
FIG. 5 is a voltage waveform diagram showing another type of sawtooth voltage waveform selected by the arbitrary waveform generator.

【図6】同波形の電圧を印加して管内移動装置を前進さ
せるときの作用を示し、(6−A)図ないし(6−D)
図は作動順に示す説明図。
FIG. 6 is a view showing an action when the intra-tube moving device is moved forward by applying a voltage having the same waveform, and (6-A) to (6-D).
The figure is an explanatory view showing the order of operation.

【図7】同管内移動装置が屈曲管路を進む場合の作用を
示し、(7−A)図ないし(7−C)図は作動順に示す
説明図。
FIG. 7 is an explanatory view showing an operation when the intra-pipe moving device advances along a bent pipe path, and FIGS. 7 (A) to 7 (C) are operation diagrams.

【図8】本発明の第2の実施例を示す管内移動装置の一
部断面した側面図。
FIG. 8 is a side view, partly in section, of a moving device in a tube showing a second embodiment of the present invention.

【図9】同管内移動装置の一部断面した正面面。FIG. 9 is a partially sectional front view of the in-pipe moving device.

【図10】本発明の第3の実施例を示す管内移動装置の
断面図。
FIG. 10 is a cross-sectional view of a pipe moving device showing a third embodiment of the present invention.

【図11】同管内移動装置の正面面。FIG. 11 is a front view of the in-pipe moving device.

【図12】本発明の第4の実施例を示す管内移動装置の
断面図。
FIG. 12 is a sectional view of a pipe moving device showing a fourth embodiment of the present invention.

【符号の説明】 1…重り(慣性体) 2a,2b…積層圧電体 3…シェル 4a,4b…前足 4c,4d…後足 7…任意波形発生器 8…電源 10…配管 12…屈曲管路 20a,20b…放熱フィン 30…支軸[Explanation of Codes] 1 ... Weight (inertial body) 2a, 2b ... Laminated piezoelectric body 3 ... Shell 4a, 4b ... Front foot 4c, 4d ... Rear foot 7 ... Arbitrary waveform generator 8 ... Power supply 10 ... Piping 12 ... Bending conduit 20a, 20b ... Radiating fin 30 ... Spindle

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // G02B 23/24 B62D 57/02 J Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI technical display area // G02B 23/24 B62D 57/02 J

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 慣性体と、この慣性体に連結され電圧の
印加および解除により伸縮変形する圧電素子とを備え、
この圧電素子にて上記慣性体を慣性駆動することにより
移動する管内移動装置において、 上記装置の前後の端部にそれぞれ管壁に接触する2個ず
つの足を設け、これら2個づつの足は中心軸に対して互
いに対称に設けられていることを特徴とする管内移動装
置。
1. An inertial body, and a piezoelectric element that is connected to the inertial body and expands and contracts by applying and releasing a voltage,
In the intra-tube moving device that moves by inertially driving the inertial body with this piezoelectric element, two feet that come into contact with the tube wall are provided at the front and rear ends of the device, and these two feet are An in-pipe moving device, which is provided symmetrically with respect to a central axis.
【請求項2】 前後合計4本の足は、中心軸を通る平面
上に設けられていることを特徴とする請求項1に記載の
管内移動装置。
2. The in-pipe moving device according to claim 1, wherein a total of four front and rear legs are provided on a plane passing through the central axis.
【請求項3】 前部の足と後部の足は中心軸の回りに互
いに回転可能に設けられていることを特徴とする請求項
1に記載の管内移動装置。
3. The in-pipe moving device according to claim 1, wherein the front foot and the rear foot are provided so as to be rotatable relative to each other about a central axis.
【請求項4】 慣性体の両端に、一方が伸びるときに他
方が縮むように作動する圧電素子をそれぞれ連結したこ
とを特徴とする請求項1ないし請求項3のいずれか1に
記載の管内移動装置。
4. The in-pipe moving device according to claim 1, further comprising piezoelectric elements which are connected to both ends of the inertial body so that when the other extends, the other contracts. .
JP7025223A 1995-02-14 1995-02-14 In-pipe traveling device Pending JPH08216876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7025223A JPH08216876A (en) 1995-02-14 1995-02-14 In-pipe traveling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7025223A JPH08216876A (en) 1995-02-14 1995-02-14 In-pipe traveling device

Publications (1)

Publication Number Publication Date
JPH08216876A true JPH08216876A (en) 1996-08-27

Family

ID=12159975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7025223A Pending JPH08216876A (en) 1995-02-14 1995-02-14 In-pipe traveling device

Country Status (1)

Country Link
JP (1) JPH08216876A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004026758A1 (en) * 2002-09-20 2004-04-01 Eamex Corporation Driver and method of producing the same
WO2004066830A1 (en) * 2003-01-30 2004-08-12 Olympus Corporation Medical device
KR100811530B1 (en) * 2006-12-04 2008-03-10 건국대학교 산학협력단 6 beef or pork hocks transfer robot that use piezoelectric actuator
USRE40305E1 (en) 1998-07-31 2008-05-06 Zuli Holdings Ltd. Apparatus and method for selectively positioning a device and manipulating it
JP2022527023A (en) * 2019-03-29 2022-05-27 ロビューテ A microrobot configured to move through viscous material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE40305E1 (en) 1998-07-31 2008-05-06 Zuli Holdings Ltd. Apparatus and method for selectively positioning a device and manipulating it
WO2004026758A1 (en) * 2002-09-20 2004-04-01 Eamex Corporation Driver and method of producing the same
WO2004066830A1 (en) * 2003-01-30 2004-08-12 Olympus Corporation Medical device
JP2004229922A (en) * 2003-01-30 2004-08-19 Olympus Corp Medical device
US7637864B2 (en) 2003-01-30 2009-12-29 Olympus Corporation Medical device
JP4503930B2 (en) * 2003-01-30 2010-07-14 オリンパス株式会社 Medical equipment
KR100811530B1 (en) * 2006-12-04 2008-03-10 건국대학교 산학협력단 6 beef or pork hocks transfer robot that use piezoelectric actuator
JP2022527023A (en) * 2019-03-29 2022-05-27 ロビューテ A microrobot configured to move through viscous material

Similar Documents

Publication Publication Date Title
US6531861B1 (en) Movement actuator/sensor systems
Becker et al. On the mechanics of bristle-bots-modeling, simulation and experiments
Firouzeh et al. Robogami: A fully integrated low-profile robotic origami
Fukuda et al. Steering mechanism of underwater micro mobile robot
Bertetto et al. In-pipe inch-worm pneumatic flexible robot
US5994820A (en) Electromechanical positioning unit
JP4364434B2 (en) Thin film shape memory alloy actuator and manufacturing method thereof
JP6349267B2 (en) 3D displacement measuring device and 3D displacement measuring system
Omori et al. An underground explorer robot based on peristaltic crawling of earthworms
Kishi et al. Development of a peristaltic crawling inspection robot for 1-inch gas pipes with continuous elbows
Qu et al. Modeling legged microrobot locomotion based on contact dynamics and vibration in multiple modes and axes
JPH08216876A (en) In-pipe traveling device
WO2009084304A1 (en) Actuator system and method for controlling the same
Takeshima et al. Geometric estimation of the deformation and the design method for developing helical bundled-tube locomotive devices
Bernardes et al. Design of an origami bendy straw for robotic multistable structures
Hoshina et al. Development of spherical ultrasonic motor as a camera actuator for pipe inspection robot
Wen et al. Design, performance analysis, and experiments of a soft robot for rescue
Steiner et al. Toward magneto-electroactive endoluminal soft (MEESo) robots
JPS5948710A (en) Fiber scope
JP2008211885A (en) Transducer and its manufacturing process
Takeshima et al. Six-braided tube in-pipe locomotive device
Bupe et al. Electronically reconfigurable virtual joints by shape memory Alloy-Induced buckling of curved sheets
JPH0493188A (en) Robot for inspecting pipe interior
Zhang et al. Driving flip origami motions with thermal-responsive shape memory alloy
Toyama et al. Development of a thin pneumatic rubber actuator generating 3-DOF motion