JPH08216114A - Manufacture of acoustic material - Google Patents

Manufacture of acoustic material

Info

Publication number
JPH08216114A
JPH08216114A JP7022792A JP2279295A JPH08216114A JP H08216114 A JPH08216114 A JP H08216114A JP 7022792 A JP7022792 A JP 7022792A JP 2279295 A JP2279295 A JP 2279295A JP H08216114 A JPH08216114 A JP H08216114A
Authority
JP
Japan
Prior art keywords
veneer
resin
low
specific gravity
wood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7022792A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yano
浩之 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7022792A priority Critical patent/JPH08216114A/en
Publication of JPH08216114A publication Critical patent/JPH08216114A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To manufacture an acoustic material which is applied for the use as an interior finish material of the acoustic site of various musical instrument or a concert hall by chemically and physically treating a low specific weight material. CONSTITUTION: A low-specific-weight veneer obtained by low-specific-weight timber is impregnated with low-molecular-weight thermosetting resin to obtain resin-impregnated veneer. Then, one resin-impregnated veneer or a plurality of resin-impregnated veneers obtained by matching fiber directions and laminating are pressed and heated to obtain a consolidated resin treated material. The treated material is used as a front layer material, the low-specific-weight veneer obtained from the low-specific-weight timer is used as a core layer material, and the veneer and the core material are laminated, then pressed and heated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ピアノ、ギター、バイ
オリン等の種々の音響部位とかコンサートホール等の内
装材料に好適に使用される音響材料の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an acoustic material suitable for use in various acoustic parts such as a piano, a guitar, a violin, and interior materials such as a concert hall.

【0002】[0002]

【従来の技術】森林の保護は地球環境にとって必要不可
欠の課題であり、森林の利用における理想循環系の確立
が急務とされている。特に、我が国は、国土の70%が
森林におおわれているにも拘わらず、木材消費量の60
%近くを海外の森林資源に依存しており、このような消
費形態の改善は、諸外国からも強く求められている。
2. Description of the Related Art The protection of forests is an essential issue for the global environment, and there is an urgent need to establish an ideal circulation system in forest utilization. In particular, Japan consumes 60% of its wood consumption despite the fact that 70% of its land is covered with forests.
Nearly 80% depend on foreign forest resources, and improvements in such consumption patterns are also strongly demanded by other countries.

【0003】このような状況下、楽器用木材資源のほと
んどを輸入に頼っている我が国の楽器産業界の将来はも
っとも憂慮すべきところである。又、酸性雨による良質
のドイツトウヒの枯渇、森林保護に基づく、ブラジリア
ンローズウッド材の伐採、輸出禁止措置など、良質の楽
器材料の確保は、環境問題と深く関わって年毎に困難に
なっている。実際、これまで最高級ギターの裏板に用い
られてきたブラジリアンローズウッドは、産出国からの
輸出が禁じられ、もはや入手できなく、又、高級なギタ
ー、ピアノ、バイオリンの響板に用いられるドイツトウ
ヒも酸性雨の影響による森林の疲弊に伴い、材質の低下
と共に、その生産量が減少している。
Under such circumstances, the future of the musical instrument industry in Japan, which relies on importing most of the wood resources for musical instruments, is the most alarming one. In addition, it is difficult to secure good quality musical instrument materials, such as depletion of high-quality German spruce due to acid rain, felling of Brazilian rosewood materials based on forest protection, export ban, etc. There is. In fact, the Brazilian rosewood, which has been used as the back plate of the finest guitars until now, is prohibited from export from the country of origin, is no longer available, and is also used in the soundboards of high-end guitars, pianos and violins. As for spruce trees, due to the effects of acid rain, the production of the spruce trees has declined along with the deterioration of the materials.

【0004】ところで、ドイツトウヒやアカエゾマツな
どトウヒ属の木材は他の木材と異なる音響特性を有して
いる。これは木材を叩いてみれば分かるような性質で、
バイオリン製作者は、トウヒ属の中から、木を叩きなが
ら良材を選び出している。そこで、本発明者が、バイオ
リン製作者が判断した結果と木材の音響的性質との関係
について調べてみると、トウヒ属の木材、なかでも良材
は、木目の方向において、ヤング率を比重で割った比動
的ヤング率(以下において単に比ヤング率と称する場合
もある)という値が大きく、内部摩擦という値が小さい
ことが判明した。ヤング率が大きい材料ほど変形しにく
いので、良材は軽い(比重が小さい)わりに変形しにく
い、すなわち、駒をはさんで弦から受ける力などに良く
耐えることができるものである。又、比動的ヤング率が
大きいことは、木材の中を伝わる音速が大きいことを示
し、これは比重が小さいことをあわせて木材が振れやす
いことにも関係する。一方、内部摩擦は、振動の吸収し
やすさに関係し、この値が小さい木材ほど、木材内部で
の振動摩擦が小さく、木材に吸収される振動エネルギー
が少なくなる。良材は、振動しやすく、且つ振動を吸収
しにくい。すなわち、弦から与えられた振動を音に変換
する効率に優れている。このことから、響板用木材の比
重を増大させることなしに、比動的ヤング率をさらに大
きく、あるいは内部摩擦をさらに小さくできれば、楽器
の音質が向上するものと考えられる。さらに、高比重材
(比重0.7〜1.1程度)が得られれば、ギターやバ
イオリンの裏板用材となると考えられる。
By the way, spruce wood such as German spruce and red spruce has acoustic characteristics different from those of other woods. This is a property that can be understood by hitting wood,
The violin maker selects good wood from the spruce genus by striking wood. Therefore, when the present inventor examined the relationship between the result determined by the violin maker and the acoustic properties of wood, the spruce wood, especially good wood, had Young's modulus divided by specific gravity in the grain direction. It was found that the value of specific dynamic Young's modulus (hereinafter sometimes simply referred to as the specific Young's modulus) is large and the value of internal friction is small. Since a material having a higher Young's modulus is less likely to be deformed, a good material is lighter (having a smaller specific gravity) but is less likely to be deformed, that is, it can withstand a force received from a string by sandwiching a piece. Further, a large specific dynamic Young's modulus indicates that the speed of sound transmitted through the wood is large, and this is also related to the fact that the wood easily shakes due to the small specific gravity. On the other hand, the internal friction is related to the ease of absorbing vibration, and the smaller the value of the wood, the smaller the vibration friction inside the wood and the less the vibration energy absorbed by the wood. A good material is easy to vibrate and hard to absorb the vibration. That is, it is excellent in the efficiency of converting the vibration given from the strings into sound. From this, it is considered that the sound quality of the musical instrument is improved if the specific Young's modulus or the internal friction can be further reduced without increasing the specific gravity of the soundboard wood. Furthermore, if a high specific gravity material (specific gravity of about 0.7 to 1.1) is obtained, it is considered to be a material for a back plate of a guitar or a violin.

【0005】このように、弦楽器響板材料の音響特性に
おいて、響板材料に求められる性質は、楽器や使用部位
によって大きく異なり、バイオリン、ギターの表板、ピ
アノ響板の場合、ドイツトウヒ、シトカスプルースのよ
うな低比重、高比弾性、低減衰の響板材料が用いられ
る。
As described above, in the acoustic characteristics of the string board soundboard material, the properties required of the soundboard material greatly differ depending on the musical instrument and the part to be used, and in the case of the violin, the front plate of the guitar and the piano soundboard, the German spruce and Sitka. A soundboard material having low specific gravity, high specific elasticity and low damping such as spruce is used.

【0006】[0006]

【発明が解決しようとする課題】一方、我が国の森林資
源に目を転じると、例えば、戦後、大規模な植林が行な
われたスギ材は、低比重で軟質であるが故に、強度的性
質や耐久性が劣り、付加価値の高い有効な利用法が見出
されておらず、多くはいまだに森林に放置された状態で
ある。その一方で、ピアノ、ギターあるいはバイオリン
の製作現場においては、すでに品質を落とした響板材料
の使用が余儀なくされており、近い将来、楽器の関わる
文化全体を巻き込んだ重大な問題へと発展する恐れがあ
り、楽器が関わる文化のレベルを保つためには、再生可
能な森林資源を基にした、新しい木質系音響材料の開発
が望まれる。
On the other hand, turning to Japan's forest resources, for example, cedar wood that has undergone large-scale afforestation after the war has low strength and softness due to its low specific gravity. Many of them are still abandoned in the forest because they have poor durability and no effective use with high added value has been found. On the other hand, the production of pianos, guitars, or violins is already forced to use soundboard materials of poor quality, which could lead to serious problems involving the entire culture of musical instruments in the near future. Therefore, in order to maintain the level of culture related to musical instruments, it is desirable to develop new wood-based acoustic materials based on renewable forest resources.

【0007】一方、本発明者は以下のような知見を持っ
ている。すなわち、比動的ヤング率(比弾性)に関し
て、楽器材料としての木材の長所は、その細胞壁構造な
らびに多孔構造に起因した高比弾性にあり、化学処理で
は、放射方向(木目と直交し、且つ樹木の中心から外周
の方向)の比動的ヤング率は増大するが、繊維方向(木
目に沿った方向)での増大は難しい。しかし、表層部に
高弾性の材料を、芯層部には低比重の材料を配置した複
合積層とすれば、繊維方向の比動的ヤング率の増大が可
能となる。
On the other hand, the present inventor has the following knowledge. In other words, regarding specific dynamic Young's modulus (specific elasticity), the advantage of wood as a musical instrument material is that it has a high specific elasticity due to its cell wall structure and porous structure. The specific Young's modulus increases in the direction from the center to the outer circumference of the tree), but it is difficult to increase in the fiber direction (the direction along the grain). However, if a highly elastic material is arranged in the surface layer part and a material having a low specific gravity is arranged in the core layer part, the composite Young's modulus in the fiber direction can be increased.

【0008】また、内部摩擦(tanδ)に関して、木
材構成成分間の相互作用を低下させる化学処理では、比
重をあまり増大させずに、内部摩擦を低下できる。分子
量300程度の熱硬化性樹脂、例えばフェノール樹脂を
用いた処理では、内部摩擦を、繊維方向では30〜40
%、それに垂直な放射方向で、40〜50%低下でき
る。従って、低分子量の熱硬化性樹脂を含浸させたもの
を表層材として用いると、効率良く、内部摩擦を低下す
ることができる。
Regarding the internal friction (tan δ), the chemical treatment for reducing the interaction between the wood constituents can reduce the internal friction without increasing the specific gravity so much. In the treatment using a thermosetting resin having a molecular weight of about 300, for example, a phenol resin, the internal friction is 30 to 40 in the fiber direction.
%, In the radial direction perpendicular thereto, it can be reduced by 40 to 50%. Therefore, when a material impregnated with a low molecular weight thermosetting resin is used as the surface layer material, the internal friction can be efficiently reduced.

【0009】さらに、放射音の周波数特性が、楽器の音
色と深く関わることから、響板材料のハイカット性(高
周波成分のカット)が重要である。放射音の周波数特性
は、材料の段階では、内部摩擦の周波数依存性のコント
ロール及びE/κG値のコントロールで制御できる。従
って、高弾性材を表層材とし、低比重材を芯層材として
用いた積層構造の形成がE/κG値の増大(ハイカット
性の付与)に有用である。
Further, since the frequency characteristic of the radiated sound is deeply related to the timbre of the musical instrument, the high cut property (cutting of high frequency components) of the soundboard material is important. The frequency characteristic of the radiated sound can be controlled by controlling the frequency dependence of the internal friction and controlling the E / κG value at the material stage. Therefore, the formation of a laminated structure using the high-elasticity material as the surface layer material and the low specific gravity material as the core layer material is useful for increasing the E / κG value (giving high-cut property).

【0010】本発明は、上記従来の課題に鑑みて上記知
見に基づいてなされたもので、その目的とするところ
は、低比重材に化学的及び物理的処理を施して種々の楽
器の音響部位やコンサートホール等の内装材料に好適に
使用が可能な音響材料の製造方法を提供するにある。
The present invention has been made based on the above findings in view of the above conventional problems, and an object of the present invention is to provide a low specific gravity material with chemical and physical treatments to produce acoustic parts of various musical instruments. Another object of the present invention is to provide a method of manufacturing an acoustic material that can be suitably used as an interior material for a concert hall or the like.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、請求項1の発明は、低比重木材より得られる低比重
単板に低分子量の熱硬化性樹脂を含浸させて樹脂含浸単
板を得、この後1枚の樹脂含浸単板、或いは繊維方向を
合わせて積み重ねた複数枚の樹脂含浸単板を圧締加熱し
て圧密樹脂処理材を得、この圧密樹脂処理材を表層材と
し、低比重木材より得られる低比重単板を芯層材とし
て、これらを複合積層し、次いで圧締加熱することに特
徴を有している。
In order to solve the above problems, the invention of claim 1 is a resin-impregnated veneer obtained by impregnating a low specific gravity veneer obtained from low specific gravity wood with a thermosetting resin having a low molecular weight. After that, one resin-impregnated veneer or a plurality of resin-impregnated veneers stacked with their fiber directions aligned is pressed and heated to obtain a consolidated resin-treated material, which is used as a surface layer material. It is characterized in that a low specific gravity veneer obtained from low specific gravity wood is used as a core layer material, these are compositely laminated, and then compression heating is performed.

【0012】また請求項2の発明は、低比重木材より得
られる低比重単板を密閉状態で圧密熱処理して圧密熱処
理単板を得、この後1枚の圧密熱処理単板、或いは繊維
方向を合わせて積層した複数枚の圧密熱処理単板を圧密
熱処理材とし、この圧密熱処理材を表層材として、低比
重木材より得られる低比重単板を芯層材として、これら
を複合積層し、次いで圧締加熱することに特徴を有して
いる。
According to the second aspect of the present invention, a low specific gravity veneer obtained from low specific gravity wood is subjected to a consolidation heat treatment in a closed state to obtain a consolidation heat treated veneer, after which one consolidation heat treated veneer or fiber direction is applied. A plurality of consolidated heat-treated veneers laminated together is used as a heat-treated compacted material, this heat-treated consolidated material is used as a surface layer material, and a low-density specific veneer obtained from low-density wood is used as a core layer material. It is characterized by tightening and heating.

【0013】また請求項1又は請求項2記載の低比重木
材はスギ材であるのが好ましい。
The low specific gravity wood according to claim 1 or 2 is preferably cedar wood.

【0014】[0014]

【作用】しかして、請求項1の発明では、低比重木材よ
り得られる低比重単板に低分子量の熱硬化性樹脂を含浸
させて樹脂含浸単板を得、この後1枚の樹脂含浸単板、
或いは繊維方向を合わせて積み重ねた複数枚の樹脂含浸
単板を圧締加熱して圧密樹脂処理材を得、この圧密樹脂
処理材を表層材とし、低比重木材より得られる低比重単
板を芯層材として、これらを複合積層し、次いで圧締加
熱するものであり、また、請求項2の発明では、低比重
木材より得られる低比重単板を密閉状態で圧密熱処理し
て圧密熱処理単板を得、この後1枚の圧密熱処理単板、
或いは繊維方向を合わせて積層した複数枚の圧密熱処理
単板を圧密熱処理材とし、この圧密熱処理材を表層材と
して、低比重木材より得られる低比重単板を芯層材とし
て、これらを複合積層し、次いで圧締加熱するものであ
り、いずれの場合も、例えばスギ材のような未利用木材
を原料とした低比重単板(芯層材)と圧密樹脂処理材
(表層材)との複合積層、或いは低比重単板と圧密熱処
理材(表層材)との複合積層によって、最高級のドイツ
トウヒに匹敵する低比重で比動的ヤング率の高い良材が
得られるようになる。従って、我が国の森林資源を有効
に利用でき、しかも圧締加熱条件を変えることにより、
得られる材料の比重を容易に変えることができ、また、
含浸させる熱硬化性樹脂の種類を変えることにより、或
いは密閉状態で圧密熱処理する条件を変えることによ
り、種々の音響特性を具備させることができるものであ
り、種々の楽器の音響部位に使用できる音響材料を容易
に製造することができるものである。
According to the invention of claim 1, a low-specific-gravity veneer obtained from a low-specific-gravity wood is impregnated with a low-molecular-weight thermosetting resin to obtain a resin-impregnated veneer. Board,
Alternatively, a plurality of resin-impregnated veneers stacked with their fiber directions aligned are pressed and heated to obtain a consolidated resin-treated material, and this consolidated resin-treated material is used as the surface layer material, and a low specific gravity veneer obtained from low specific gravity wood is used as the core. As a layer material, these are compositely laminated and then pressed and heated, and in the invention of claim 2, a low specific gravity veneer obtained from a low specific gravity wood is subjected to a consolidation heat treatment in a closed state to perform a consolidation heat treatment veneer. After this, one consolidation heat treated veneer,
Alternatively, a plurality of consolidation heat-treated veneers laminated with the fiber directions aligned is used as a consolidation heat treatment material, the consolidation heat treatment material is used as a surface layer material, and a low specific gravity veneer obtained from low specific gravity wood is used as a core layer material, and these are composite laminated. Then, compression heating is performed, and in each case, a composite of a low specific gravity veneer (core layer material) and a consolidated resin treated material (surface layer material) made from unused wood such as cedar wood By laminating or composite laminating of low specific gravity veneer and consolidated heat-treated material (surface layer material), it becomes possible to obtain a good material having a low specific gravity comparable to that of German spruce of the highest grade and a high specific dynamic Young's modulus. Therefore, Japan's forest resources can be effectively used, and by changing the pressure heating condition,
The specific gravity of the obtained material can be easily changed, and
Various acoustic characteristics can be provided by changing the type of thermosetting resin to be impregnated or by changing the conditions of consolidation heat treatment in a closed state, and acoustics that can be used for the acoustic parts of various musical instruments. The material can be easily manufactured.

【0015】以下、本発明を、材料設計の観点に立ち、
未利用の低比重木材を原料とした低分子量フェノール樹
脂含浸圧密処理により楽器響板材料を製造する方法と、
密閉系での圧密熱処理により楽器響板材料を製造する方
法とに分けて説明する。本発明で使用する低比重木材と
しては、比重が0.38以下のものであれば、その種類
は特に制約を受けないが、未利用木材の森林資源を有効
利用する観点から、スギ材のような低比重木材が好まし
い。この低比重木材は15年生以上、好ましくは20年
生以上である。15年生未満であると音響特性が劣り、
又、丸太の直径が小さくて表面積の大きい低比重単板が
得られない。
The present invention will be described below from the viewpoint of material design.
A method of manufacturing a musical instrument soundboard material by a low molecular weight phenol resin impregnation consolidation treatment using an unused low specific gravity wood as a raw material,
A method of manufacturing a musical instrument soundboard material by a consolidation heat treatment in a closed system will be separately described. The low-specific-gravity wood used in the present invention is not particularly limited in its type as long as its specific gravity is 0.38 or less, but from the viewpoint of effectively utilizing the forest resources of unused wood, Low specific gravity wood is preferred. The low specific gravity wood is 15 years old or more, preferably 20 years old or more. If you are under 15th grade, the acoustic characteristics will be inferior,
Further, a low specific gravity veneer having a small log diameter and a large surface area cannot be obtained.

【0016】最初に、低分子量フェノール樹脂含浸圧密
処理により楽器響板材料を製造する方法を説明する。低
比重木材から例えばロータリレースを用いてロータリ単
板(低比重単板)を製造する。厚さは1〜3mm程度で
ある。次に、このロータリ単板を樹脂溶液槽に浸漬して
熱硬化性樹脂を含浸させる。熱硬化性樹脂としては、フ
ェノール樹脂を採用できる。この熱硬化性樹脂は、平均
分子量が、200〜800程度のものであれば、メラミ
ン樹脂等の熱硬化性樹脂も使用できる。平均分子量が、
200以下のものは入手しがたく、また平均分子量が8
00を越えて1000程度になると、ロータリ単板の細
胞壁内に浸入できず、音響特性の向上が見られなくな
り、樹脂を含浸させる効果が低減するからである。また
熱硬化性樹脂の濃度は、処理による重量増加が少ないよ
うにするために、好ましくは5〜10wt%である。
First, a method of manufacturing a musical instrument soundboard material by a low molecular weight phenol resin impregnation consolidation treatment will be described. A rotary veneer (low specific gravity veneer) is manufactured from low specific gravity wood by using, for example, a rotary lace. The thickness is about 1 to 3 mm. Next, this rotary veneer is immersed in a resin solution tank to impregnate it with a thermosetting resin. A phenol resin can be used as the thermosetting resin. As the thermosetting resin, a thermosetting resin such as a melamine resin can be used as long as it has an average molecular weight of about 200 to 800. The average molecular weight is
Those below 200 are hard to obtain and have an average molecular weight of 8
This is because if it exceeds about 00 and becomes about 1000, it cannot penetrate into the cell wall of the rotary veneer, the improvement of the acoustic characteristics cannot be seen, and the effect of impregnating the resin is reduced. The concentration of the thermosetting resin is preferably 5 to 10 wt% in order to reduce the weight increase due to the treatment.

【0017】熱硬化性樹脂を含浸させた単板を風乾、自
然乾燥等させて単板の含水率を10〜20wt%まで低
下させ、樹脂含浸単板を製造する。次いで、1枚の樹脂
含浸単板、或いは繊維方向を合わせて積み重ねた複数枚
の樹脂含浸単板を一定条件下で圧締加熱して所定の厚さ
の圧密樹脂処理材を製造する。この場合、裏割れが内側
となるように積層する。
The veneer impregnated with the thermosetting resin is air-dried, naturally dried or the like to reduce the water content of the veneer to 10 to 20 wt% to produce a resin-impregnated veneer. Next, one resin-impregnated veneer or a plurality of resin-impregnated veneers stacked with their fiber directions aligned is pressed and heated under certain conditions to produce a consolidated resin-treated material having a predetermined thickness. In this case, the layers are laminated so that the back cracks are on the inside.

【0018】その後、この圧密樹脂処理材を表層材と
し、比重0.35〜0.38程度のスギ材より得られる
低比重単板を芯層材として、これらを複合積層する。こ
のとき、芯層材と表層材とを任意の厚さ構成になるよう
数枚重ねると共に、接着剤で接着し、次いで圧締加熱す
る。ここで、芯層材の比重は好ましくは0.15〜0.
38、積層材の比重は0.5以下、好ましくは0.4〜
0.48である。又、入手し易さやコスト、更には全体
の重量の増大を考慮して、表層材を選択するのが重要で
ある。また、芯層材と表層材とを繊維方向を合わせて積
層することにより、音響特性が一段と向上するものであ
る。尚、圧密樹脂処理材と低比重単板とを接着する接着
剤は、イソシアネート系樹脂接着剤、或いは他の熱硬化
性樹脂接着剤(フェノール樹脂、尿素樹脂、エポキシ樹
脂、レゾルシノール樹脂等)が使用可能である。
Thereafter, the compacted resin treated material is used as a surface layer material, and a low specific gravity veneer obtained from a cedar material having a specific gravity of about 0.35 to 0.38 is used as a core layer material, and these are compositely laminated. At this time, several core layer materials and surface layer materials are piled up so as to have an arbitrary thickness, and they are adhered with an adhesive, followed by pressure heating. Here, the specific gravity of the core layer material is preferably 0.15 to 0.
38, the specific gravity of the laminated material is 0.5 or less, preferably 0.4 to
It is 0.48. In addition, it is important to select the surface layer material in consideration of availability, cost, and increase in the total weight. Further, by stacking the core layer material and the surface layer material so that the fiber directions are aligned, the acoustic characteristics are further improved. As the adhesive for bonding the compacted resin treated material and the low specific gravity veneer, an isocyanate resin adhesive or other thermosetting resin adhesive (phenol resin, urea resin, epoxy resin, resorcinol resin, etc.) is used. It is possible.

【0019】次に、密閉系での圧密熱処理により楽器響
板材料を製造する方法を説明する。先ず、スギ材などよ
り得られる厚さ2mmの低比重単板を一定条件で圧締加
熱して圧密熱処理単板を製造する。そして、1枚の圧密
熱処理単板、或いは繊維方向を合わせて積層した複数枚
の圧密熱処理単板を圧密熱処理材とし、この圧密熱処理
材を表層材として、比重0.35〜0.38程度のスギ
材より得られる低比重単板を芯層材として、これらを接
着剤を介して積み重ね、一定条件下で圧締加熱する。こ
こで、表層材と芯層材との積層時には、表層材と芯層材
との複合材が任意の厚さとなるように、圧密熱処理単板
を数枚重ねる。また、芯層材と表層材とを繊維方向を合
わせて積層することにより、音響特性が一段と向上する
ものである。尚、圧密熱処理材と低比重単板とを接着す
る接着剤は、イソシアネート系樹脂接着剤、或いは他の
熱硬化性樹脂接着剤(フェノール樹脂、尿素樹脂、エポ
キシ樹脂、レゾルシノール樹脂等)が使用可能である。
Next, a method of manufacturing a musical instrument soundboard material by consolidation heat treatment in a closed system will be described. First, a 2 mm-thick low specific gravity veneer obtained from cedar wood or the like is pressed and heated under constant conditions to produce a consolidated heat-treated veneer. Then, one consolidation heat-treated veneer or a plurality of consolidation heat-treated veneers laminated in the fiber direction is used as a consolidation heat-treated material, and this consolidation heat-treated material is used as a surface layer material, and the specific gravity is about 0.35 to 0.38. A low specific gravity veneer obtained from cedar wood is used as a core layer material, and these are stacked with an adhesive, and heated under pressure under constant conditions. Here, when laminating the surface layer material and the core layer material, several consolidation heat treatment single plates are stacked so that the composite material of the surface layer material and the core layer material has an arbitrary thickness. Further, by stacking the core layer material and the surface layer material so that the fiber directions are aligned, the acoustic characteristics are further improved. An isocyanate resin adhesive or another thermosetting resin adhesive (phenolic resin, urea resin, epoxy resin, resorcinol resin, etc.) can be used as the adhesive for bonding the heat-treated compaction material and the low specific gravity veneer. Is.

【0020】次に、本発明を実施例に基づいて具体的に
説明する。 (実施例1)20年生のスギ材からロータリレースによ
り厚さ2mm、比重0.32の低比重単板を得た。次い
で、この低比重単板を5%濃度の低分子量フェノール樹
脂溶液(平均分子量300)に1週間浸漬し、1週間の
風乾を経て、70℃で12時間加熱して樹脂含浸単板を
得た。さらに1枚の樹脂含浸単板を熱盤温度170℃、
圧締圧力50kgf/cm2 、熱圧時間15分で圧締加
熱する。厚さはディスタンスバーで規制する。次いで、
圧力を除荷後、170℃の乾燥器内で、1時間加熱し
て、厚さ0.99mmの低分子量フェノール樹脂圧密処
理材を製造した。
Next, the present invention will be specifically described based on examples. (Example 1) A low specific gravity veneer having a thickness of 2 mm and a specific gravity of 0.32 was obtained from a 20th grade cedar wood by rotary lace. Then, this low specific gravity veneer was immersed in a 5% concentration low molecular weight phenolic resin solution (average molecular weight 300) for 1 week, air-dried for 1 week, and heated at 70 ° C. for 12 hours to obtain a resin-impregnated veneer. . Furthermore, one resin-impregnated veneer is heated to 170 ° C,
Pressing and heating is performed at a pressing pressure of 50 kgf / cm 2 and a hot pressing time of 15 minutes. The thickness is regulated by the distance bar. Then
After unloading the pressure, it was heated in a dryer at 170 ° C. for 1 hour to produce a low molecular weight phenol resin consolidation treatment material having a thickness of 0.99 mm.

【0021】その後、この低分子量フェノール樹脂含浸
圧密処理材を表層材とし、厚さ6.01mmのスギまさ
目板を芯層材として、表層材と芯層材とを繊維方向を揃
えてイソシアネート接着剤を介して積み重ね、次いで、
圧締圧力5kgf/cm2 、熱盤温度170℃、熱圧時
間15分で圧締加熱して、厚さ7.96mmの積層材を
製造した。
After that, the low molecular weight phenol resin impregnated and consolidated material was used as a surface layer material, and a cedar siding plate having a thickness of 6.01 mm was used as a core layer material, and the surface layer material and the core layer material were aligned in the fiber direction and isocyanate bonded. Stack through the agent, then
The laminated material having a thickness of 7.96 mm was manufactured by pressing and heating at a pressing pressure of 5 kgf / cm 2 , a hot plate temperature of 170 ° C., and a hot pressing time of 15 minutes.

【0022】この積層材の音響的性質を後述する両端自
由たわみ振動法によって測定した。測定雰囲気は20
℃、65%R.H.とし、試料材料は幅40mm、長さ
250mmとし、また試料は、いずれも一度全乾状態と
した後、2週間以上、前記雰囲気下で調湿してから測定
に供した。結果を表1に示す。
The acoustic properties of this laminated material were measured by the both end free flexural vibration method described later. Measurement atmosphere is 20
C, 65% R.C. H. The sample material had a width of 40 mm and a length of 250 mm, and each of the samples was once completely dried and then conditioned under the atmosphere for 2 weeks or more and then subjected to the measurement. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】(実施例2)実施例1と同様な方法で2枚
の樹脂含浸単板を製造し、この2枚の樹脂含浸単板を繊
維方向を揃えて積層し、実施例1と同様な圧締加熱条件
で厚さ1.15mmの低分子量フェノール樹脂含浸圧密
処理材を製造した。この低分子量フェノール樹脂含浸圧
密処理材を表層材とし、厚さ5.97mmのスギまさ目
板を芯層材として、表層材と芯層材とを繊維方向を揃え
てイソシアネート接着剤を介して積み重ね、次いで、実
施例1と同様な圧締加熱条件で厚さ8.19mmの積層
材を製造した。この積層材の音響的性質を実施例1と同
じ条件で測定した。結果を表2に示す。
(Example 2) Two resin-impregnated veneers were produced in the same manner as in Example 1, and these two resin-impregnated veneers were laminated in the same fiber direction, and the same as in Example 1. A low-molecular-weight phenol resin-impregnated consolidation-treated material having a thickness of 1.15 mm was manufactured under pressure heating conditions. This low molecular weight phenolic resin-impregnated and consolidated material is used as a surface layer material, and a cedar slat plate having a thickness of 5.97 mm is used as a core layer material, and the surface layer material and the core layer material are stacked with isocyanate adhesives aligned in the fiber direction. Then, a laminated material having a thickness of 8.19 mm was manufactured under the same pressing and heating conditions as in Example 1. The acoustic properties of this laminated material were measured under the same conditions as in Example 1. Table 2 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】ここで、本実施例2のように、比重0.3
程度、比動的ヤング率20GPa程度の材料を芯層に、
比重1.0、比動的ヤング率20GPaの材料を表層に
用いた場合は、芯層材に対する表層材の厚さ比(表層材
は、上層と下層の2枚であるが、この場合の厚さ比は、
芯層に対する上層、あるいは下層材の厚さ比をいう)を
0.2程度とした場合は、積層材の比動的ヤング率は最
大値30GPaとなる。しかし、この場合、積層材の比
重が0.5程度になる。ここで、ピアノ響板材料、或い
はギター表板材料等としては、前記実施例1のように、
厚さ比を0.1程度とし、積層材の比重を0.4〜0.
45程度にした方が、比動的ヤング率は、28GPaま
で低下するが、実際のドイツトウヒ材とほぼ等しい比重
ならびに比動的ヤング率が得られ、音響変換効率を考え
たときは有用である。 (実施例3)実施例1と同様な方法で3枚の樹脂含浸単
板を製造し、この3枚の樹脂含浸単板を繊維方向を揃え
て積層し、実施例1と同様な圧締加熱条件で厚さ2.3
8mmの低分子量フェノール樹脂含浸圧密処理材を得
た。この低分子量フェノール樹脂含浸圧密処理材を表層
材とし、厚さ6.03mmのスギまさ目板を芯層材とし
て、表層材と芯層材とを繊維方向を揃えてイソシアネー
ト接着剤を介して積み重ね、次いで、実施例1と同様な
圧締加熱条件で厚さ10.25mmの積層材を製造し
た。この積層材の音響的性質を実施例1と同じ条件で測
定した。結果を表3に示す。
Here, as in the second embodiment, the specific gravity is 0.3.
, A material having a specific dynamic Young's modulus of about 20 GPa for the core layer,
When a material having a specific gravity of 1.0 and a specific dynamic Young's modulus of 20 GPa is used for the surface layer, the thickness ratio of the surface layer material to the core layer material (the surface layer material is the upper layer and the lower layer. The ratio is
When the thickness ratio of the upper layer or the lower layer material to the core layer is about 0.2, the relative dynamic Young's modulus of the laminated material becomes the maximum value of 30 GPa. However, in this case, the specific gravity of the laminated material is about 0.5. Here, as the piano soundboard material or the guitar surface board material, etc., as in the first embodiment,
The thickness ratio is about 0.1, and the specific gravity of the laminated material is 0.4 to 0.
When it is set to about 45, the specific dynamic Young's modulus decreases to 28 GPa, but the specific gravity and the specific dynamic Young's modulus almost equal to those of the actual German spruce wood are obtained, which is useful when considering the acoustic conversion efficiency. . (Example 3) Three resin-impregnated veneers were produced in the same manner as in Example 1, and these three resin-impregnated veneers were laminated with their fiber directions aligned, and the same compression heating as in Example 1 was performed. Thickness of 2.3
An 8 mm low molecular weight phenolic resin-impregnated consolidation material was obtained. This low molecular weight phenolic resin-impregnated and consolidated material is used as a surface layer material, and a 6.03 mm-thick cedar siding plate is used as a core layer material, and the surface layer material and the core layer material are stacked with an isocyanate adhesive in the same fiber direction. Then, a laminated material having a thickness of 10.25 mm was manufactured under the same pressing and heating conditions as in Example 1. The acoustic properties of this laminated material were measured under the same conditions as in Example 1. The results are shown in Table 3.

【0027】[0027]

【表3】 [Table 3]

【0028】(実施例4)厚さ2mmのベニヤを、密閉
状態において圧締圧力7.1kgf/cm2 、熱盤温度
180℃、加熱時間15分間の条件下で圧密熱処理し、
その後、密閉状態を解除した後、さらに30分圧締加熱
して1枚の厚さ0.86mmの圧密熱処理単板(圧密熱
処理材)を製造した。その後、この圧密熱処理単板を表
層材とし、厚さ5.92mmのスギまさ目板を芯層材と
して、表層材と芯層材とを繊維方向を揃えてイソシアネ
ート接着剤を介して積み重ね、次いで、圧締圧力5kg
f/cm2 、熱盤温度170℃、熱圧時間15分で圧締
加熱して、厚さ7.49mmの積層材を製造した。この
積層材の音響的性質を実施例1と同じ条件で測定した。
結果を表4に示す。
(Example 4) A veneer having a thickness of 2 mm was subjected to consolidation heat treatment under the conditions of a pressure of 7.1 kgf / cm 2 , a heating plate temperature of 180 ° C and a heating time of 15 minutes in a closed state.
Then, after releasing the hermetically closed state, the plate was further heated by pressing for 30 minutes to produce a single 0.86 mm thick consolidated heat-treated plate (consolidated heat-treated material). After that, this consolidated heat-treated veneer was used as a surface layer material, and a cedar-grained board having a thickness of 5.92 mm was used as a core layer material, and the surface layer material and the core layer material were stacked in the fiber direction in alignment with an isocyanate adhesive. , Clamping pressure 5kg
The laminated material having a thickness of 7.49 mm was manufactured by pressing and heating at f / cm 2 , a hot plate temperature of 170 ° C., and a hot pressing time of 15 minutes. The acoustic properties of this laminated material were measured under the same conditions as in Example 1.
The results are shown in Table 4.

【0029】[0029]

【表4】 [Table 4]

【0030】(実施例5)実施例4と同様な方法で2枚
の圧密熱処理単板を製造し、この2枚の圧密熱処理単板
を繊維方向を揃えて積層し、実施例1と同様な圧締加熱
条件で厚さ1.71mmの圧密熱処理材を得た。次い
で、この圧密熱処理材を表層材とし、厚さ5.77mm
のスギまさ目板を芯層材として、表層材と芯層材とを繊
維方向を揃えてイソシアネート接着剤を介して積み重
ね、次いで、実施例4と同様な圧締加熱条件で厚さ9.
03mmの積層材を製造した。この積層材の音響的性質
を実施例1と同じ条件で測定した。結果を表5に示す。
(Embodiment 5) Two consolidation heat-treated veneers were produced in the same manner as in Example 4, and the two consolidation heat-treated veneers were laminated with their fiber directions aligned to each other. A compacted heat-treated material having a thickness of 1.71 mm was obtained under the pressure heating condition. Next, this consolidated heat-treated material was used as the surface layer material, and the thickness was 5.77 mm.
Using the cedar slab of No. 2 as the core layer material, the surface layer material and the core layer material are stacked with isocyanate adhesives aligned in the fiber direction, and then the thickness is set under the same pressing and heating conditions as in Example 4.
A 03 mm laminated material was produced. The acoustic properties of this laminated material were measured under the same conditions as in Example 1. The results are shown in Table 5.

【0031】[0031]

【表5】 [Table 5]

【0032】(実施例6)厚さ2.0mm程度の3枚の
スギ板目板を繊維方向が互いに直交する方向に向くよう
に上下3層に積み重ねて接着し、厚さ6.01mmの1
枚の合板を製造した。この合板を芯層材とし、実施例4
と同様な方法で製造した厚さ0.99mmの圧密熱処理
材を表層材として、芯層材と表層材とを繊維方向を揃え
てイソシアネート接着剤を介して積み重ね、次いで、実
施例4と同様な圧締加熱条件で厚さ7.96mmの積層
材を製造した。この積層材の音響的性質を実施例1と同
じ条件で測定した。結果を表6に示す。本実施例では、
芯層材を3枚のスギまさ目板で構成すると共に、3枚の
スギまさ目板を繊維方向が互いに直交するように積層し
たことにより、割れに強く、寸法安定性が一段と向上す
ることが判った。
(Embodiment 6) Three cedar grain plates having a thickness of about 2.0 mm are stacked and adhered in the upper and lower three layers so that the fiber directions are orthogonal to each other.
A sheet of plywood was produced. Using this plywood as the core layer material, Example 4
Using the 0.99 mm thick consolidated heat-treated material produced by the same method as the surface layer material, the core layer material and the surface layer material were stacked with isocyanate adhesives aligned in the fiber direction, and then the same as in Example 4. A laminated material having a thickness of 7.96 mm was manufactured under pressure heating conditions. The acoustic properties of this laminated material were measured under the same conditions as in Example 1. The results are shown in Table 6. In this embodiment,
Since the core layer material is composed of three cedar slabs and the three cedar slat plates are laminated so that the fiber directions are orthogonal to each other, it is resistant to cracking and dimensional stability is further improved. understood.

【0033】[0033]

【表6】 [Table 6]

【0034】(比較例)3枚の厚さ3.0mmのスギロ
ータリー単板を繊維方向を互いに直交させて積層して厚
さ9.0mmの合板を得た。この合板の音響的性質を実
施例1と同じ条件で測定した。結果を表7に示す。この
比較例では、本発明の実施例に示されているような低分
子量フェノール樹脂含浸圧密処理方法、及び密閉系での
圧密熱処理方法は採用しておらず、積層材の比動的ヤン
グ率は14.0GPaと低くなることが判った。尚、芯
層材の繊維方向と直交する方向における比動的ヤング率
及び内部摩擦に関しては測定不能であった。
(Comparative Example) Three 3.0 mm thick cedar rotary veneers were laminated with their fiber directions orthogonal to each other to obtain a 9.0 mm thick plywood. The acoustic properties of this plywood were measured under the same conditions as in Example 1. The results are shown in Table 7. In this comparative example, the low molecular weight phenolic resin impregnated consolidation treatment method and the consolidation heat treatment method in a closed system as shown in the examples of the present invention are not adopted, and the relative dynamic Young's modulus of the laminated material is It was found to be as low as 14.0 GPa. The specific dynamic Young's modulus and internal friction in the direction perpendicular to the fiber direction of the core layer material could not be measured.

【0035】[0035]

【表7】 [Table 7]

【0036】一方、バイオリン用ドイツトウヒの音響特
性を測定したところ、比重は0.34〜0.47、比動
的ヤング率(×10GPa)に関しては、繊維方向(木
目に沿った方向)が2.26〜2.94、接線方向(木
目と直交する方向)が0.14〜0.22、内部摩擦
(×10-3)に関しては繊維方向が6.10〜7.6
2、接線方向が17〜19という測定結果が得られた。
On the other hand, when the acoustic characteristics of the German spruce for violin were measured, the specific gravity was 0.34 to 0.47, and the specific dynamic Young's modulus (× 10 GPa) was 2 in the fiber direction (the direction along the grain). .26 to 2.94, tangential direction (direction orthogonal to wood grain) is 0.14 to 0.22, and fiber direction is 6.10 to 7.6 with respect to internal friction (× 10 −3 ).
2 and the measurement result that the tangential direction was 17 to 19 was obtained.

【0037】また、従来の楽器響板材料のハイカット性
を示すE/κG値を測定したところ、従来の響板では
「25」、スギ材では「18」、比較例の積層材では
「20」、ドイツトウヒでは「25」であるのに対し
て、本実施例で製造された楽器響板材料では「28」と
増大していることが判った。以上のように、本発明の実
施例において、スギ材を原料とする楽器響板材料は、最
終的には高級なギター、ピアノ、バイオリンの響板に用
いられているドイツトウヒと音響特性はあまり変わりな
く、スギ材に化学的処理及び物理的処理を施すことによ
り、音響材料として好適に採用できることが判る。
Further, when the E / κG value showing the high cut property of the conventional instrument soundboard material was measured, it was “25” for the conventional soundboard, “18” for the cedar wood, and “20” for the laminated material of the comparative example. It was found that the value was "25" in German spruce, whereas it was increased to "28" in the musical instrument soundboard material manufactured in this example. As described above, in the embodiments of the present invention, the musical instrument soundboard material made of cedar wood is not so good in acoustic properties as German spruce which is finally used in high-grade guitar, piano and violin soundboards. It can be seen that the cedar material can be suitably used as an acoustic material by subjecting the cedar material to chemical treatment and physical treatment.

【0038】尚、比動的ヤング率と内部摩擦は以下に示
すように両端自由たわみ振動法により求めた。即ち、本
発明の実施例で得られた楽器響板材料を幅40mm、長
さ250mmに切断して試料を作成した。この試料を一
度全乾状態とした後、2週間以上、20℃、65%R.
H.の測定囲気下で調湿してから測定を行なう。この試
料として、ねじれ振動を生じにくい棒状試片を用い、各
モードに対応した振動の節の位置で、絹糸あるいは木綿
糸によりできるだけ正確に支持する。発振器からの信号
を電力増幅器で増幅して電磁石に入力する。試料に貼り
付けた薄鉄片を介して電磁的に試料を加振する。試料の
振動応答の検出を試料の一端で、試料の振動を妨げない
ように非接触変位計を用いて行なう。発振器の周波数を
変えていきながら最も大きな振幅(ピークレベル)が得
られる周波数を捜し、これを共振周波数とする。
The specific Young's modulus and the internal friction were determined by the flexural vibration method at both ends as shown below. That is, the instrument soundboard material obtained in the example of the present invention was cut into a sample having a width of 40 mm and a length of 250 mm. After the sample was completely dried, it was kept at 20 ° C. and 65% R.C. for 2 weeks or more.
H. Measurement is performed after adjusting the humidity in the atmosphere. As this sample, a rod-shaped test piece that does not easily generate torsional vibration is used, and the sample is supported as accurately as possible by a silk thread or a cotton thread at a vibration node position corresponding to each mode. The signal from the oscillator is amplified by the power amplifier and input to the electromagnet. The sample is electromagnetically excited through a thin iron piece attached to the sample. The vibration response of the sample is detected at one end of the sample using a non-contact displacement meter so as not to disturb the vibration of the sample. While changing the frequency of the oscillator, the frequency at which the maximum amplitude (peak level) is obtained is searched for, and this is used as the resonance frequency.

【0039】比動的ヤング率(E/γ)は共振周波数
(fr )と試料形状から以下の第1式により求められ
る。 fr =mn 2 h(E/γ)1/2 /(4×31/2 πL 2) ……(1) mn :モード次数(n)で決まる定数、m1 は4.7
3、m2 は7.8 53、n>2では、(2n+1)π/2 L:試料長(cm) h:試料厚さ(cm) 続いて、共振点で加振を止め減衰波形をスペクトルアナ
ライザーの波形記憶メモリに取り込み、これをスペクト
ル解析機能でフーリエ変換してピークレベル値を得る。
一定時間毎に減衰波形を移動させて、それに伴うピーク
レベル値の変化を読み取る。経過時間とピークレベル値
の関係について回帰直線式を求め、そこからピークレベ
ル値が6.02減少するのに要する時間T(sec)
(振動振幅が半分になる時間)を計算する。半減時間T
と共振周波数(fr )から以下の第2式を用いて対数減
衰率(λ)を計算する。
The specific Young's modulus (E / γ) is obtained from the resonance frequency ( fr ) and the sample shape by the following first equation. f r = m n 2 h (E / γ) 1/2 / (4 × 3 1/2 πL 2 ) ... (1) m n : a constant determined by the mode order (n), m 1 is 4.7
3, m 2 is 7.8 53, and when n> 2, (2n + 1) π / 2 L: sample length (cm) h: sample thickness (cm) Subsequently, excitation is stopped at the resonance point and the attenuation waveform is spectrum. The peak level value is obtained by performing Fourier transform on the waveform storage memory of the analyzer and using the spectrum analysis function.
The decay waveform is moved at regular intervals, and the changes in the peak level value accompanying it are read. A regression line equation is obtained for the relationship between the elapsed time and the peak level value, and the time T (sec) required for the peak level value to decrease by 6.02
Calculate (time when the vibration amplitude becomes half). Half time T
Then, the logarithmic attenuation rate (λ) is calculated from the resonance frequency ( fr ) using the following second equation.

【0040】 λ=0.6932/(T×fr ) ……(2) 対数減衰率(λ)をπで削除して内部摩擦(tanδ)
を求める。また、寸法安定性は、前記試料を一度全乾状
態とした後、20℃、65%R.H.の雰囲気下で、2
週間以上調湿し、試料の繊維方向と直交する方向の膨潤
率を測定することにより評価した。
[0040] λ = 0.6932 / (T × f r) ...... (2) internal friction logarithmic decay rate (λ) was deleted in π (tanδ)
Ask for. In addition, the dimensional stability is as follows. H. Under the atmosphere of 2
It was evaluated by measuring the swelling ratio in the direction orthogonal to the fiber direction of the sample after conditioning the humidity for a week or more.

【0041】[0041]

【発明の効果】上述のように請求項1の発明にかかる音
響材料の製造方法は、低比重木材より得られる低比重単
板に低分子量の熱硬化性樹脂を含浸させて樹脂含浸単板
を得、この後1枚の樹脂含浸単板、或いは繊維方向を合
わせて積み重ねた複数枚の樹脂含浸単板を圧締加熱して
圧密樹脂処理材を得、この圧密樹脂処理材を表層材と
し、低比重木材より得られる低比重単板を芯層材とし
て、これらを複合積層し、次いで圧締加熱するものであ
り、また、請求項2の発明にかかる音響材料の製造方法
は、低比重木材より得られる低比重単板を密閉状態で圧
密熱処理して圧密熱処理単板を得、この後1枚の圧密熱
処理単板、或いは繊維方向を合わせて積層した複数枚の
圧密熱処理単板を圧密熱処理材とし、この圧密熱処理材
を表層材として、低比重木材より得られる低比重単板を
芯層材として、これらを複合積層し、次いで圧締加熱す
るものであり、このように本発明にあっては、低比重木
材を原料とする圧密樹脂処理材と低比重木材とを複合積
層することにより、或いは低比重木材を原料とする圧密
熱処理材と低比重木材とを複合積層することにより、例
えばスギ材のような未利用の低比重木材から最高級のド
イツトウヒに匹敵する比動的ヤング率が高く且つ内部摩
擦の小さい良材を得るのが可能となる。従って、我が国
の森林資源を有効に利用でき、しかも圧締加熱条件を変
えることにより、得られる材料の比重を容易に変えるこ
とができ、また、含浸させる熱硬化性樹脂の種類を変え
ることにより、或いは密閉状態で圧密熱処理する条件を
変えることにより、種々の音響特性を具備させることが
できるので、種々の楽器の音響部位に使用できる音響材
料を容易に製造できるものである。
As described above, in the method for producing an acoustic material according to the invention of claim 1, a low specific gravity veneer obtained from low specific gravity wood is impregnated with a low molecular weight thermosetting resin to form a resin impregnated veneer. After that, one resin-impregnated veneer or a plurality of resin-impregnated veneers stacked with their fiber directions aligned is pressed and heated to obtain a consolidated resin-treated material, which is used as a surface layer material. A low-specific-gravity veneer obtained from low-specific-gravity wood is used as a core layer material, and these are compositely laminated and then pressed and heated. The method for producing an acoustic material according to the invention of claim 2 is a low-specific-gravity wood. The low specific gravity veneer thus obtained is subjected to a consolidation heat treatment in a sealed state to obtain a consolidation heat treatment veneer, and then one consolidation heat treatment veneer or a plurality of consolidation heat treatment veneers laminated with fiber directions aligned As a material, this compaction heat treated material is used as a surface layer material A low specific gravity veneer obtained from wood is used as a core layer material, these are compositely laminated, and then compression heating is performed. Thus, in the present invention, a consolidated resin treatment material using low specific gravity wood as a raw material And a low specific gravity wood in a composite layer, or a composite heat-treated material and a low specific gravity wood in which a low specific gravity wood is used as a raw material, for example, from an unused low specific gravity wood such as cedar wood to the highest grade. It is possible to obtain a good material having a high specific dynamic Young's modulus and a small internal friction comparable to that of German spruce. Therefore, the forest resources of Japan can be effectively used, and the specific gravity of the obtained material can be easily changed by changing the pressure heating condition, and by changing the type of thermosetting resin to be impregnated, Alternatively, since various acoustic characteristics can be provided by changing the conditions of the consolidation heat treatment in a closed state, it is possible to easily manufacture an acoustic material that can be used for the acoustic parts of various musical instruments.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 低比重木材より得られる低比重単板に低
分子量の熱硬化性樹脂を含浸させて樹脂含浸単板を得、
この後1枚の樹脂含浸単板、或いは繊維方向を合わせて
積み重ねた複数枚の樹脂含浸単板を圧締加熱して圧密樹
脂処理材を得、この圧密樹脂処理材を表層材とし、低比
重木材より得られる低比重単板を芯層材として、これら
を複合積層し、次いで圧締加熱することを特徴とする音
響材料の製造方法。
1. A resin-impregnated veneer is obtained by impregnating a low-specific-gravity veneer obtained from low-specific-gravity wood with a low-molecular-weight thermosetting resin.
After that, one resin-impregnated single plate or a plurality of resin-impregnated single plates stacked with their fiber directions aligned is pressed and heated to obtain a consolidated resin-treated material. A method for producing an acoustic material, characterized in that a low specific gravity veneer obtained from wood is used as a core layer material, and these are laminated in a composite manner and then compressed and heated.
【請求項2】 低比重木材より得られる低比重単板を密
閉状態で圧密熱処理して圧密熱処理単板を得、この後1
枚の圧密熱処理単板、或いは繊維方向を合わせて積層し
た複数枚の圧密熱処理単板を圧密熱処理材とし、この圧
密熱処理材を表層材として、低比重木材より得られる低
比重単板を芯層材として、これらを複合積層し、次いで
圧締加熱することを特徴とする音響材料の製造方法。
2. A low specific gravity veneer obtained from low specific gravity wood is heat treated in a sealed state to obtain a consolidated heat treated veneer.
A single compaction heat-treated veneer or a plurality of compaction heat-treated veneers laminated in the fiber direction is used as a consolidation heat-treated material, and the consolidation heat-treated material is used as a surface layer material, and a low specific gravity veneer obtained from low specific gravity wood is used as a core layer A method for producing an acoustic material, which comprises compounding these as a material, and then compressing and heating.
【請求項3】 低比重木材はスギ材であることを特徴と
する請求項1又は請求項2記載の音響材料の製造方法。
3. The method for producing an acoustic material according to claim 1, wherein the low specific gravity wood is a cedar wood.
JP7022792A 1995-02-10 1995-02-10 Manufacture of acoustic material Withdrawn JPH08216114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7022792A JPH08216114A (en) 1995-02-10 1995-02-10 Manufacture of acoustic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7022792A JPH08216114A (en) 1995-02-10 1995-02-10 Manufacture of acoustic material

Publications (1)

Publication Number Publication Date
JPH08216114A true JPH08216114A (en) 1996-08-27

Family

ID=12092537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7022792A Withdrawn JPH08216114A (en) 1995-02-10 1995-02-10 Manufacture of acoustic material

Country Status (1)

Country Link
JP (1) JPH08216114A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025260A (en) * 2006-07-24 2008-02-07 Asahi Woodtec Corp Floor material and its manufacturing method
JP2011020400A (en) * 2009-07-17 2011-02-03 Bishu Mokuzai Kogyo Kk Densified board presenting natural texture and method for manufacturing the same
JP2011242320A (en) * 2010-05-20 2011-12-01 Naigai Kogyo Co Ltd Glulam strength measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025260A (en) * 2006-07-24 2008-02-07 Asahi Woodtec Corp Floor material and its manufacturing method
JP2011020400A (en) * 2009-07-17 2011-02-03 Bishu Mokuzai Kogyo Kk Densified board presenting natural texture and method for manufacturing the same
JP2011242320A (en) * 2010-05-20 2011-12-01 Naigai Kogyo Co Ltd Glulam strength measurement method

Similar Documents

Publication Publication Date Title
Obataya et al. Vibrational properties of wood along the grain
White et al. Straw-reinforced polyester composites
Lee et al. Physical and mechanical properties of strandboard made from moso bamboo
Yano et al. Chemical treatment of wood for musical instruments
US4678715A (en) Process for improving wood and use of the improved wood
Kılıç The effects of the force loading direction on bending strength and modulus of elasticity in laminated veneer lumber (LVL)
Ferrández-García et al. Acoustic and thermal evaluation of palm panels as building material
da Silva Bertolini et al. Acoustic absorption and thermal insulation of wood panels: Influence of porosity
Göken et al. A study on the correlation between wood moisture and the damping behaviour of the tonewood spruce
Obataya et al. Effects of seasoning on the vibrational properties of wood for the soundboards of string instruments
Yano et al. Materials for guitar back plates made from sustainable forest resources
TWI291165B (en) Method for manufacturing wood elements for musical instruments, wood elements for musical instruments obtained thereby, and musical instrument therewith
JP3465287B2 (en) Acoustic material
Liu et al. Study on properties of radiata pine wood treated with furfuryl alcohol as fretboard materials for string instruments
Ono et al. Acoustic characteristics of carbon fiber-reinforced synthetic wood for musical instrument soundboards
JP2007196692A (en) Manufacturing process of wooden instrument material, wooden instrument material manufactured by the process and musical instrument using the wooden instrument material
US11900900B2 (en) Modified wood, method of manufacturing same, and musical instrument
JPH08216114A (en) Manufacture of acoustic material
Chui et al. Effects of resin impregnation and process parameters on some properties of poplar LVL
CN108766391A (en) A kind of bamboo wood guitar musical instrument and its manufacturing method
Yano et al. Controlling the timbre of wooden musical instruments by chemical modification
Ramos et al. Physico-mechanical properties of arc-laminated giant bamboo using thermally modified segments
Park et al. Effect of green tea content on dynamic modulus of elasticity of hybrid boards composed of green tea and wood fibers, and prediction of static bending strength performances by flexural vibration test
Chung et al. Effects of bamboo species, steam-heating treatment, and adhesives on mechanical properties and dimensional stability of oriented bamboo scrimber boards
JPH0746269B2 (en) Method for manufacturing soundboard for musical instrument

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507