JPH0821398A - Rotor blade of compressor - Google Patents

Rotor blade of compressor

Info

Publication number
JPH0821398A
JPH0821398A JP15770994A JP15770994A JPH0821398A JP H0821398 A JPH0821398 A JP H0821398A JP 15770994 A JP15770994 A JP 15770994A JP 15770994 A JP15770994 A JP 15770994A JP H0821398 A JPH0821398 A JP H0821398A
Authority
JP
Japan
Prior art keywords
force
moving blade
compressor
pressure difference
static pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15770994A
Other languages
Japanese (ja)
Inventor
Kenji Kobayashi
健児 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP15770994A priority Critical patent/JPH0821398A/en
Publication of JPH0821398A publication Critical patent/JPH0821398A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To improve compressing efficiency by forming an inclined flow passage with its exit located more in a radial outside direction than its entrance between a casing and a rotationally-driven disk and disposing a reverse chamber part in a part of a rotor blade attached to the disk. CONSTITUTION:When a reverse chamber part 41 is disposed on a rotor blade 40, a part of compressed air flows along the projecting surface 42 or the recessed surface 43 of the reverse chamber part 41. When a part of compressed air meanders in the vicinity of the reverse chamber part 41, a centrifugal force fo and a static pressure difference DELTAp in a circumferentia direction are applied to the compressed air flow. A resultant force consisting of this centrifugal force fo and the static pressure difference DELTAp is provided with a component in a direction opposite to that of a divided force fc of a Coriori's force and thus thease offset each other. Therefore, by balancing the vector sum of the centrifugal force fo and the static pressure difference DELTAp with the devided pressure fc of the Corioli's force, an imbalanced component of these can be reduced in the vicinity of a hub 2 and a casing. Also generation of a secondary flow among rows of the rotor blades 40 can be limited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧縮機の動翼に係り、
特に、コリオリ力による影響を低減して圧縮機の高効率
化を図るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moving blade of a compressor,
In particular, it is intended to improve the efficiency of the compressor by reducing the influence of Coriolis force.

【0002】[0002]

【従来の技術】図3は、斜流圧縮機の構造例を示してい
る。該斜流圧縮機では、ケーシング1と回転駆動される
ハブ(ディスク)2との間に、入口よりも出口が半径外
方向となる傾斜状態の流路3が形成されており、ハブ2
に一体に取り付けられた動翼4により空気を圧縮して、
流路3の後方に送り出すようにしている。
2. Description of the Related Art FIG. 3 shows an example of the structure of a mixed flow compressor. In the mixed flow compressor, a flow path 3 is formed between the casing 1 and a hub (disk) 2 that is rotationally driven, in an inclined state in which the outlet is radially outward with respect to the inlet.
The air is compressed by the moving blades 4 integrally attached to the
It is sent out to the rear of the flow path 3.

【0003】また、航空機に使用されるガスタービンエ
ンジンにおける関連技術として提案されているヨーロッ
パ特許出願公開番号0201318にも、斜流圧縮機の
適用技術が記載されている。
European Patent Application Publication No. 0201318, which has been proposed as a related technique for a gas turbine engine used in an aircraft, also describes a technique for applying a mixed flow compressor.

【0004】これらの斜流圧縮機では、図3に示すよう
に、動翼4の間の圧縮空気流Lが軸方向に対して斜めに
流れるために、半径方向の速度成分に対してコリオリ力
が働くことが知られている。
In these mixed-flow compressors, as shown in FIG. 3, the compressed air flow L between the moving blades 4 flows obliquely with respect to the axial direction, so that the Coriolis force is applied to the velocity component in the radial direction. Is known to work.

【0005】[0005]

【発明が解決しようとする課題】しかし、圧縮空気流L
は、動翼4におけるケーシング側とハブ側との近傍で減
速されるために、ケーシング1及びハブ2の近傍の流速
が、大部分を占める主流部分の流速よりも遅くなる現象
が発生し、圧縮空気流Lが全体的に湾曲することによっ
て生じる遠心力foと、その方向のコリオリ力の分力f
cとが、ケーシング1及びハブ2の近傍で小さくなる。
したがって、図4の矢印で示すように動翼4が移動する
場合に、主流部分では動翼4の湾曲形状に基づく正圧面
と負圧面との間の静圧差Δpと、遠心力fo及びコリオ
リ力の分力fcの和が平衡するが、ケーシング1及びハ
ブ2の近傍においては、静圧差Δpと遠心力fo及びコ
リオリ力の分力fcとの和に大きな不平衡成分が生じ、
該不平衡成分に基づいて図5に矢印で示すような二次流
れが発生し、圧縮効率を低下させる要因となる。
However, the compressed air flow L
Is decelerated in the vicinity of the casing side and the hub side of the moving blade 4, so that a phenomenon occurs in which the flow velocity in the vicinity of the casing 1 and the hub 2 becomes slower than the flow velocity in the mainstream portion, which occupies most of the compression. Centrifugal force fo generated by the air flow L being curved as a whole and the component force f of the Coriolis force in that direction.
c becomes smaller near the casing 1 and the hub 2.
Therefore, when the moving blade 4 moves as shown by the arrow in FIG. 4, in the mainstream portion, the static pressure difference Δp between the pressure surface and the suction surface based on the curved shape of the moving blade 4, the centrifugal force fo, and the Coriolis force. However, in the vicinity of the casing 1 and the hub 2, a large unbalanced component is generated in the sum of the static pressure difference Δp and the centrifugal force fo and the component force fc of the Coriolis force.
A secondary flow as indicated by an arrow in FIG. 5 is generated based on the unbalanced component, which causes a reduction in compression efficiency.

【0006】本発明は、これらの課題に鑑みてなされた
もので、ケーシング及びハブ近傍における静圧差、遠心
力及びコリオリ力の分力による二次流れの発生を抑制し
て、圧縮効率を向上させることを目的としている。
The present invention has been made in view of these problems, and suppresses the generation of a secondary flow due to the component of static pressure difference, centrifugal force and Coriolis force in the vicinity of the casing and the hub, and improves the compression efficiency. Is intended.

【0007】[0007]

【課題を解決するための手段】本発明に係る圧縮機の動
翼にあっては、ケーシングと回転駆動されるディスクと
の間に、入口よりも出口が半径外方向となる傾斜状態の
流路が形成され、ディスクに動翼が取り付けられる圧縮
機において、動翼の一部に逆キャンバ部が配される構成
を採用する。そして、逆キャンバ部が、動翼の翼弦長の
中央近傍より後方位置に配される構成や、逆キャンバ部
が、動翼の断面形状を蛇行させて形成される構成を付加
する。この場合における動翼のキャンバ角は、逆キャン
バ部を付けない場合と同等に設定される。
In a moving blade of a compressor according to the present invention, between a casing and a rotationally driven disk, a flow path in an inclined state in which an outlet is radially outward rather than an inlet In the compressor in which the blade is formed and the moving blade is attached to the disk, a configuration in which the reverse camber portion is arranged in a part of the moving blade is adopted. Further, a configuration in which the reverse camber portion is disposed at a position rearward from the vicinity of the center of the chord length of the moving blade and a configuration in which the reverse camber portion is formed by meandering the cross-sectional shape of the moving blade are added. In this case, the camber angle of the moving blade is set to be equal to that when the reverse camber portion is not attached.

【0008】[0008]

【作用】各動翼に導入された空気は、動翼のキャンバに
基づいて圧縮されるとともに、流路が半径外方向に導か
れていることに基づく遠心力によっても圧縮されるが、
ケーシングとディスクとの間の流路が、半径外方向に導
かれていると、圧縮空気流の半径方向の速度成分に対し
てコリオリ力が働く。この場合にあって、動翼の一部に
逆キャンバ部が配されていると、逆キャンバ部の近傍で
空気流が蛇行することに基づいて遠心力が生じ、これが
コリオリ力の分力及び動翼の正圧面と負圧面との間の静
圧差と相殺されることにより二次流れの発生を抑制す
る。また、半径方向速度成分を生じさせる構造の動翼に
おいて、逆キャンバ部がその動翼の後方位置に配される
と、この部分では圧縮空気流の速度成分が大きくなるこ
とにより、前述の相殺が大きくなされて二次流れの発生
が抑制され、圧縮機の性能向上が図られる。
The air introduced into each moving blade is compressed not only by the camber of the moving blade but also by the centrifugal force due to the fact that the flow passage is guided radially outward,
When the flow path between the casing and the disk is guided radially outward, a Coriolis force acts on the radial velocity component of the compressed air flow. In this case, if the reverse camber portion is arranged in a part of the moving blade, centrifugal force is generated due to the meandering of the air flow in the vicinity of the reverse camber portion. The generation of the secondary flow is suppressed by canceling out the static pressure difference between the pressure surface and the suction surface of the blade. Further, in a moving blade having a structure that produces a velocity component in the radial direction, when the reverse camber portion is arranged at the rear position of the moving blade, the velocity component of the compressed air flow increases in this portion, which causes the above-mentioned cancellation. The generation of the secondary flow is suppressed to be large, and the performance of the compressor is improved.

【0009】[0009]

【実施例】以下、本発明に係る圧縮機の動翼の一実施例
について、図1、図2及び図3に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a moving blade of a compressor according to the present invention will be described below with reference to FIGS. 1, 2 and 3.

【0010】該一実施例にあっては、前述の図3に示す
ケーシング1と回転駆動されるディスク(ハブ)2との
間に、入口よりも出口が半径外方向となる傾斜状態の流
路3が配されるとともに、ディスク2に、図3とは形状
及び機能の異なる動翼40が動翼が取り付けられる。
In the embodiment, between the casing 1 shown in FIG. 3 and the disk (hub) 2 which is rotationally driven, the flow passage is in an inclined state in which the outlet is radially outward rather than the inlet. 3, the moving blades 40 having different shapes and functions from those in FIG. 3 are attached to the disk 2.

【0011】つまり、動翼40には、その一部、つま
り、図1及び図2に示すように、翼弦長の中央近傍より
後方位置に断面形状を蛇行させた状態の逆キャンバ部4
1が配される。
That is, as shown in FIGS. 1 and 2, a part of the moving blade 40, that is, the reverse camber portion 4 in a state where the cross-sectional shape is meandered to a position rearward from the vicinity of the center of the chord length.
1 is allocated.

【0012】このような動翼40であると、ディスク2
が図1の白抜きの矢印で示すように回転すると、各動翼
40に導入された空気が、動翼40の間を通過する際の
減速により圧縮されるが、図3のように流路3が半径外
方向に導かれていることに基づくコリオリ力も発生す
る。
With such a rotor blade 40, the disk 2
Is rotated as shown by the white arrow in FIG. 1, the air introduced into each moving blade 40 is compressed by deceleration when passing between the moving blades 40, but as shown in FIG. Coriolis force is also generated due to the fact that 3 is guided radially outward.

【0013】図1に示すように、動翼40に、逆キャン
バ部41が配されている場合には、圧縮空気流Lの一部
が、逆キャンバ部41における凸面42または凹面43
に沿って流れる。圧縮空気流Lの一部が、逆キャンバ部
41の近傍で蛇行すると、この蛇行に基づいて、圧縮空
気流Lに遠心力foと周方向の静圧差Δpとが働く。主
流部においてこの遠心力foと静圧差Δpとの合力は、
コリオリ力の分力fcと相反する方向の成分を有して相
殺し合うため、遠心力fo及び静圧差Δpのベクトル和
をコリオリ力の分力fcと平衡させると、ハブ2及びケ
ーシング1の近傍においては、これらの不平衡成分を小
さくでき、各動翼40の列の間における二次流れの発生
を抑制できることになる。
As shown in FIG. 1, when the reverse camber portion 41 is arranged on the moving blade 40, a part of the compressed air flow L is a convex surface 42 or a concave surface 43 in the reverse camber portion 41.
Flowing along. When a part of the compressed air flow L meanders in the vicinity of the reverse camber portion 41, the centrifugal force fo and the circumferential static pressure difference Δp act on the compressed air flow L based on the meandering. In the mainstream part, the resultant force of this centrifugal force fo and the static pressure difference Δp is
Since the components of the Coriolis force are in the directions opposite to the component fc of the Coriolis force and cancel each other out, when the vector sum of the centrifugal force fo and the static pressure difference Δp is balanced with the component force fc of the Coriolis force, the vicinity of the hub 2 and the casing 1 is obtained. In the above, these unbalanced components can be reduced, and the generation of the secondary flow between the rows of the moving blades 40 can be suppressed.

【0014】また、逆キャンバ部41の位置は、動翼4
0における翼弦長の中央近傍よりも後方となるように設
定される。この場合には、圧縮効率の高くなる部分に、
遠心力fo及び静圧差Δpが作用して全体の平衡が図ら
れる。
The position of the reverse camber portion 41 is determined by the moving blade 4
It is set to be behind the vicinity of the center of the chord length at 0. In this case, in the part where the compression efficiency is high,
The centrifugal force fo and the static pressure difference Δp act to balance the whole body.

【0015】そして、逆キャンバ部41が、動翼40の
断面形状を腹側に湾曲(蛇行)させることによってて形
成されていると、動翼40の壁の厚さが実質的に変化し
ていないために、機械的強度への影響が少なくなり、か
つ、圧縮比は、動翼40の入口及び出口の形状によって
のみ設定されるために、逆キャンバ部41の有無によっ
て影響されない。
When the reverse camber portion 41 is formed by curving (meandering) the cross-sectional shape of the moving blade 40 to the ventral side, the wall thickness of the moving blade 40 substantially changes. Since it does not exist, the mechanical strength is less affected, and the compression ratio is set only by the shape of the inlet and the outlet of the moving blade 40, and therefore is not affected by the presence or absence of the reverse camber portion 41.

【0016】また、逆キャンバ部41に、凸面42及び
凹面43が配されていると、その両方で圧縮空気流Lを
蛇行させるため、両方の和の遠心力fo及び静圧差Δp
でコリオリ力の分力fcを打ち消すことになる。
If the reverse camber portion 41 is provided with the convex surface 42 and the concave surface 43, the compressed air flow L is meandered by both of them, so that the sum of the centrifugal force fo and the static pressure difference Δp.
Then, the component force fc of the Coriolis force is canceled.

【0017】[0017]

【発明の効果】本発明に係る圧縮機の動翼によれば、以
下のような効果を奏する。 (1) 動翼の一部に逆キャンバ部が配されることによ
り、コリオリ力による翼間の二次流れの発生を抑制し
て、圧縮効率を向上させることができる。 (2) 逆キャンバ部が、動翼の翼弦長の中央近傍より
後方位置に配されることにより、圧縮効率が高くなる部
分に遠心力や静圧差を作用させて、コリオリ力の分力と
の平衡を図り、圧縮機の一層の高効率化を達成すること
ができる。 (3) 逆キャンバ部が、蛇行状態に形成されることに
より、動翼の壁の厚さへの影響を少なくし、圧縮比に影
響を及ぼさないで、圧縮効率の向上を図ることができ
る。
The compressor blade according to the present invention has the following effects. (1) By disposing the reverse camber portion in a part of the moving blade, it is possible to suppress the generation of the secondary flow between the blades due to the Coriolis force and improve the compression efficiency. (2) By placing the reverse camber portion at a position rearward of the vicinity of the center of the chord length of the moving blade, centrifugal force or static pressure difference is applied to a portion where the compression efficiency is increased, and a component force of the Coriolis force is generated. It is possible to achieve balance between the two and to achieve even higher efficiency of the compressor. (3) Since the reverse camber portion is formed in a meandering state, it is possible to reduce the influence on the thickness of the wall of the moving blade and to improve the compression efficiency without affecting the compression ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る圧縮機の動翼の一実施例を示す一
部を省略した展開図である。
FIG. 1 is a partially omitted development view showing an embodiment of a moving blade of a compressor according to the present invention.

【図2】本発明に係る圧縮機の動翼の一実施例を示す一
部を省略した斜視図である。
FIG. 2 is a partially omitted perspective view showing an embodiment of a moving blade of a compressor according to the present invention.

【図3】圧縮機の構造例を示す一部を断面した正面図で
ある。
FIG. 3 is a partially sectional front view showing a structural example of a compressor.

【図4】翼間に生じるコリオリ力の影響を説明する図3
のA−A矢視展開図である。
FIG. 4 is a diagram for explaining the influence of Coriolis force generated between blades.
FIG. 3 is a development view taken along line AA of FIG.

【図5】コリオリ力に基づく翼間の二次流れを示す側断
面図である。
FIG. 5 is a side sectional view showing a secondary flow between blades based on Coriolis force.

【符号の説明】[Explanation of symbols]

1 ケーシング 2 ディスク(ハブ) 3 流路 40 動翼 41 逆キャンバ部 42 凸面 43 凹面 fc コリオリ力の分力 fo 遠心力 Δp 静圧差 L 圧縮空気流 1 Casing 2 Disk (hub) 3 Flow path 40 Moving blade 41 Reverse camber part 42 Convex surface 43 Concave surface fc Coriolis force component force fo Centrifugal force Δp Static pressure difference L Compressed air flow

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ケーシング(1)と回転駆動されるディ
スク(2)との間に、入口よりも出口が半径外方向とな
る傾斜状態の流路(3)が形成され、ディスクに動翼が
取り付けられる圧縮機であって、動翼(40)の一部に
逆キャンバ部(41)が配されることを特徴とする圧縮
機の動翼。
1. An inclined flow path (3) is formed between a casing (1) and a disk (2) which is rotationally driven so that an outlet is radially outward from an inlet, and a moving blade is formed on the disk. A compressor blade to be attached, wherein a reverse camber section (41) is arranged on a part of the rotor blade (40).
【請求項2】 逆キャンバ部(41)が、動翼(40)
の翼弦長の中央近傍より後方位置に配されることを特徴
とする請求項1記載の圧縮機の動翼。
2. The reverse camber section (41) has a rotor blade (40).
The moving blade of the compressor according to claim 1, wherein the moving blade is disposed rearward of the vicinity of the center of the chord length of the compressor.
【請求項3】 逆キャンバ部(41)が、動翼(40)
の断面形状を蛇行させて形成されることを特徴とする請
求項1または2記載の圧縮機の動翼。
3. The reverse camber section (41) has a rotor blade (40).
The moving blade of the compressor according to claim 1 or 2, wherein the cross-sectional shape of the compressor is formed in a meandering shape.
JP15770994A 1994-07-08 1994-07-08 Rotor blade of compressor Withdrawn JPH0821398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15770994A JPH0821398A (en) 1994-07-08 1994-07-08 Rotor blade of compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15770994A JPH0821398A (en) 1994-07-08 1994-07-08 Rotor blade of compressor

Publications (1)

Publication Number Publication Date
JPH0821398A true JPH0821398A (en) 1996-01-23

Family

ID=15655664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15770994A Withdrawn JPH0821398A (en) 1994-07-08 1994-07-08 Rotor blade of compressor

Country Status (1)

Country Link
JP (1) JPH0821398A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105257596A (en) * 2015-09-28 2016-01-20 北京图正实验室科技有限公司 Bird wing type high-pressure axial flow fan vane and counter rotating axial flow fan comprising same
WO2019087281A1 (en) * 2017-10-31 2019-05-09 三菱重工エンジン&ターボチャージャ株式会社 Turbine rotor blade, turbo charger, and manufacturing method for turbine rotor blade

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105257596A (en) * 2015-09-28 2016-01-20 北京图正实验室科技有限公司 Bird wing type high-pressure axial flow fan vane and counter rotating axial flow fan comprising same
CN105257596B (en) * 2015-09-28 2016-06-15 北京图正实验室科技有限公司 Wing shaped blade of high-pressure axial fan and Counter rotating axial flow Fan thereof
WO2017054387A1 (en) * 2015-09-28 2017-04-06 北京图正实验室科技有限公司 Bird's wing type high-pressure axial flow fan blade and counter-rotating axial flow fan thereof
TWI638101B (en) * 2015-09-28 2018-10-11 北京圖正實驗室科技有限公司 Bird wing-shaped high pressure axial fan blade and rotating axial flow fan thereof
WO2019087281A1 (en) * 2017-10-31 2019-05-09 三菱重工エンジン&ターボチャージャ株式会社 Turbine rotor blade, turbo charger, and manufacturing method for turbine rotor blade
US11421535B2 (en) 2017-10-31 2022-08-23 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine blade, turbocharger, and method of producing turbine blade

Similar Documents

Publication Publication Date Title
JP3482668B2 (en) Centrifugal fluid machine
US7765786B2 (en) Aircraft engine with separate auxiliary rotor and fan rotor
RU2220329C2 (en) Curved blade of compressor
CA2495186C (en) Recirculation structure for turbocompressors
JP4540282B2 (en) Supersonic external compression diffuser and its design method
US6283705B1 (en) Variable vane with winglet
US5112195A (en) Radial flow rotors
JP2004516401A (en) Mixed-flow and centrifugal compressors for gas turbine engines
US4344737A (en) Crossover duct
JP2001289050A (en) Variable capacity turbo supercharger
WO2006038903A1 (en) Turbocharger compressor with non-axisymmetric deswirl vanes
KR20060039396A (en) Centrifugal compressor and method of manufacturing impeller
US4251183A (en) Crossover duct assembly
JP2003517525A (en) Compressor end wall bleed system
JP2004068770A (en) Axial flow compressor
US5513952A (en) Axial flow compressor
JP4115180B2 (en) Impeller and centrifugal compressor
JP6854687B2 (en) Multi-stage fluid machine
JPH0821398A (en) Rotor blade of compressor
JPH09144550A (en) Turbine for supercharger
JPH08500410A (en) Vortex pump
JPH09256997A (en) Moving blade for axial flow compressor
JPH0849696A (en) Impulse wave generation preventing structure of impeller blade of high pressure ratio centrifugal compressor
JP2021156266A (en) Turbine and supercharger
JPH01318790A (en) Flashing vane of multistage pump

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002