JPH08213907A - A/d converter - Google Patents

A/d converter

Info

Publication number
JPH08213907A
JPH08213907A JP1934395A JP1934395A JPH08213907A JP H08213907 A JPH08213907 A JP H08213907A JP 1934395 A JP1934395 A JP 1934395A JP 1934395 A JP1934395 A JP 1934395A JP H08213907 A JPH08213907 A JP H08213907A
Authority
JP
Japan
Prior art keywords
resistance
element array
analog
resistive element
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1934395A
Other languages
Japanese (ja)
Inventor
Kimio Idei
喜美夫 出井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1934395A priority Critical patent/JPH08213907A/en
Publication of JPH08213907A publication Critical patent/JPH08213907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE: To improve the A/D conversion characteristic, especially its integration linearity by forming a resistive element array for dividing a reference voltage with impurity implantation by the ion implantation method so as to eliminate relative dispersion in components in the resistive element array. CONSTITUTION: Relative resistance dispersion between resistive elements is reduced by production of semiconductor resistive elements 12 such as polycrystal silicon elements used for a resistive element array through injection of an impurity 14 with the ion implantation method. Since the adoption of this ion implantation method is independent of the effect of temperature distribution in thermal diffusion, fluctuation due to a thermal cause depending on the position of impurity concentration of the resist elements with respect to the resistive element array is reduced and the relative dispersion in the resistance of the resistive element array is avoided. Then voltage dispersion of a reference voltage depending on the position of the resistive elements in the resistive element array is avoided by reducing the fluctuation in the resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体抵抗素子アレイ
を用いた、アナログ電圧変換回路を有する、アナログ/
デジタル変換装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analog / analog circuit having an analog voltage conversion circuit using a semiconductor resistance element array.
The present invention relates to a digital conversion device.

【0002】[0002]

【従来の技術】図2にアナログ/デジタル変換装置で用
いられる、従来の基準電圧分割抵抗アレイの生成方法を
示す。抵抗素子アレイを形成する各抵抗素子22は、多
結晶シリコン等の基盤21に対し、リン、砒素等のN型
不純物あるいはボロン等のP型不純物24を高温雰囲気
中での熱拡散により多結晶シリコン中に注入拡散するこ
とにより生成される。なお、23は各抵抗素子22間を
接続するアルミ等の配線素子である。
2. Description of the Related Art FIG. 2 shows a conventional method of generating a reference voltage dividing resistor array used in an analog / digital converter. Each resistance element 22 forming the resistance element array is made of polycrystalline silicon by thermal diffusion of N-type impurities such as phosphorus and arsenic or P-type impurities 24 such as boron to a substrate 21 such as polycrystalline silicon in a high temperature atmosphere. It is produced by injection diffusion. Reference numeral 23 is a wiring element such as aluminum which connects between the resistance elements 22.

【0003】以上のように構成された、半導体抵抗アレ
イ素子を用いた、アナログ/デジタル変換装置につい
て、図3を用いてその動作を説明する。図3は、半導体
抵抗素子アレイ分割による基準電圧分割回路を有する、
アナログ/デジタル変換装置の代表例の1つである、2
ステップ型アナログ/デジタル変換装置の4ビットの場
合の例を示すものである。
The operation of the analog / digital conversion device using the semiconductor resistance array element configured as described above will be described with reference to FIG. FIG. 3 has a reference voltage dividing circuit by dividing a semiconductor resistance element array,
2 which is one of the typical examples of analog / digital converters
It shows an example in the case of 4 bits of the step type analog / digital converter.

【0004】図3において、31は基準電圧分割用抵抗
アレイ、32は上位2ビットのアナログ入力と基準電圧
との比較を行う上位比較器、33は下位2ビットのアナ
ログ入力と基準電圧との比較を行う下位比較器、34は
上位比較器出力から上位2ビットのデジタル値に変換す
る上位2ビットエンコーダ、35は下位比較器出力から
下位2ビットのデジタル値に変換する下位2ビットエン
コーダ、36は上位2ビットのデジタル出力、37は下
位2ビットのデジタル出力である。
In FIG. 3, reference numeral 31 is a reference voltage dividing resistor array, 32 is an upper comparator for comparing the analog input of the upper 2 bits and the reference voltage, and 33 is a comparison between the analog input of the lower 2 bits and the reference voltage. A lower comparator for performing the above, 34 is an upper 2 bit encoder for converting an upper comparator output into a higher 2 bit digital value, 35 is a lower 2 bit encoder for converting a lower comparator output into a lower 2 bit digital value, and 36 is Upper 2 bits of digital output, 37 is lower 2 bits of digital output.

【0005】次に動作について説明する。2ステップ型
アナログ/デジタル変換器は、上位2ビットと下位2ビ
ットに分けて変換が行われる。第1ステップでは、上位
比較器CP1からCP3により、入力アナログ電圧Vi
nと参照電圧レベルV1,V2,V3とが比較される。
今、Vin>V1とすると、CP1出力がハイ、CP
2,CP3出力がロウとなる。
Next, the operation will be described. The 2-step type analog / digital converter is divided into upper 2 bits and lower 2 bits for conversion. In the first step, the upper analog comparators CP1 to CP3 are used to input the input analog voltage Vi.
n is compared with reference voltage levels V1, V2, V3.
Now, when Vin> V1, CP1 output is high, CP
2, CP3 output goes low.

【0006】第2ステップでは、CP1からCP3の出
力結果により、スイッチS1からS4が以下のようにコ
ントロールされる。
In the second step, the switches S1 to S4 are controlled as follows according to the output results of CP1 to CP3.

【0007】Vin>V1のときS1がオン Vin>V2のときS2がオン Vin>V3のときS3がオン Vin<V3のときS4がオン すなわち、上位コンパレータの出力結果により、下位コ
ンパレータ群に供給される抵抗アレイからの比較参照電
圧レベルが切り換えられる。
When Vin> V1, S1 is on. When Vin> V2, S2 is on. When Vin> V3, S3 is on. When Vin <V3, S4 is on. That is, it is supplied to the lower comparator group by the output result of the upper comparator. The comparison reference voltage level from the resistor array is switched.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、図3に
おいて、上位コンパレータ用の基準電圧V1,V2,V
3および、下位コンパレータ用の基準電圧であるS1か
らS12のスイッチからの出力電圧は、抵抗アレイによ
り基準電圧Vreft−Vrefbが分割されたもので
あるため、各抵抗値間の相対的なばらつきに連動して、
基準電圧V1,V2,V3およびS1からS12により
選択される基準電圧が変動する。
However, in FIG. 3, reference voltages V1, V2 and V for the upper comparators are used.
3 and the output voltages from the switches S1 to S12, which are the reference voltages for the lower comparator, are obtained by dividing the reference voltage Vreft-Vrefb by the resistance array, and therefore are interlocked with the relative variations between the resistance values. do it,
The reference voltages selected by the reference voltages V1, V2, V3 and S1 to S12 vary.

【0009】図3において、抵抗アレイを構成する各抵
抗素子R1,R2,・・・,R16の抵抗値のばらつき
が以下のような特性を持つとする。
In FIG. 3, it is assumed that variations in the resistance values of the resistance elements R1, R2, ..., R16 forming the resistance array have the following characteristics.

【0010】R1>R2>R3>R4 R8>R7>R6>R5 R9>R10>R11>R12 R16>R15>R14>R13 抵抗値の誤差が、上記のような特性の場合の抵抗値のば
らつきによるアナログ/デジタル変換特性を図4に示
す。このように、各抵抗素子の相対的抵抗値ばらつき
は、理想変換特性に対して、波のような変換特性を示
し、積分直線性の悪化をもたらす。
R1>R2>R3> R4 R8>R7>R6> R5 R9>R10>R11> R12 R16>R15>R14> R13 The error in the resistance value depends on the variation in the resistance value in the case of the above characteristics. The analog / digital conversion characteristics are shown in FIG. As described above, the relative resistance value variations of the respective resistance elements show a wave-like conversion characteristic with respect to the ideal conversion characteristic, and deteriorate the integral linearity.

【0011】従来の方式の場合、図2に示すように、熱
拡散装置内での熱の温度分布や不純物濃度分布が一様で
ないために、複数の同一形状の抵抗素子22を形成して
も、各抵抗素子22の抵抗値に誤差を生じる。そのた
め、二次元的に配置された抵抗アレイ全体で見た場合
に、各抵抗素子間で相対抵抗値に誤差分布が発生し、こ
の抵抗素子アレイにより生成されるアナログ/デジタル
変換装置内の複数の基準電圧値の分割値が一定となら
ず、アナログ入力値からデジタル出力値への変換時に理
想値との誤差が発生する。
In the conventional method, as shown in FIG. 2, even if a plurality of resistance elements 22 having the same shape are formed, the temperature distribution of heat and the impurity concentration distribution in the heat diffusion device are not uniform. , An error occurs in the resistance value of each resistance element 22. Therefore, when viewed as a whole of the two-dimensionally arranged resistance array, an error distribution occurs in the relative resistance value between the resistance elements, and a plurality of resistance elements in the analog / digital conversion device are generated by the resistance element array. The division value of the reference voltage value is not constant, and an error from the ideal value occurs when converting the analog input value to the digital output value.

【0012】本発明は、上記従来の問題点を解決するも
ので、抵抗アレイ内の相対ばらつきを無くし、アナログ
/デジタル変換特性の特に積分直線性を向上することを
目的とするものである。
The present invention solves the above-mentioned conventional problems, and it is an object of the present invention to eliminate the relative variation in the resistance array and to improve the integral linearity of the analog / digital conversion characteristic.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
に本発明のアナログ/デジタル変換装置は、多結晶シリ
コン等の配線抵抗素子にイオン注入方式によって、均一
な不純物注入を行なって形成された抵抗素子により、基
準電圧分割用抵抗アレイを形成するものである。
In order to achieve this object, the analog / digital converter of the present invention is formed by uniformly implanting impurities into a wiring resistance element such as polycrystalline silicon by an ion implantation method. The resistance element forms a reference voltage dividing resistance array.

【0014】[0014]

【作用】このイオン注入方式によれば、熱拡散における
温度分布の影響とは関係しないため、抵抗素子の不純物
濃度の抵抗アレイの位置による熱的要因による変動が低
減され、抵抗素子アレイの抵抗値の相対的なばらつきが
無くなる。この抵抗値の変動を低減することにより、ア
ナログ/デジタル変換時の基準電圧の抵抗アレイの位置
による電圧のばらつきをなくし、良好な変換特性が得ら
れる。
According to this ion implantation method, since it has nothing to do with the influence of the temperature distribution on the thermal diffusion, the fluctuation of the impurity concentration of the resistance element due to the thermal factor due to the position of the resistance array is reduced, and the resistance value of the resistance element array is reduced. There is no relative variation in. By reducing the variation of the resistance value, it is possible to eliminate the variation of the reference voltage at the time of analog / digital conversion due to the position of the resistor array, and to obtain good conversion characteristics.

【0015】[0015]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。図1において、14はイオン注入方
式により打ち込まれる不純物イオン、12はイオン注入
方式により生成された、抵抗アレイを構成する多結晶シ
リコン等の半導体抵抗素子、13は抵抗アレイの各抵抗
素子間を接続するアルミ等の配線素子、11はシリコン
等の半導体基盤である。本発明では、抵抗アレイに用い
られる半導体抵抗素子をイオン打ち込み方式で生成する
ことにより、抵抗素子間の相対抵抗値の低減を行ってい
る。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 14 is an impurity ion implanted by an ion implantation method, 12 is a semiconductor resistance element such as polycrystalline silicon forming a resistance array, which is generated by the ion implantation method, and 13 is a connection between the resistance elements of the resistance array. The wiring element 11 is made of aluminum or the like, and 11 is a semiconductor substrate made of silicon or the like. In the present invention, the relative resistance value between the resistance elements is reduced by generating the semiconductor resistance elements used in the resistance array by the ion implantation method.

【0016】このように本実施例によれば、基準電圧分
割用の抵抗アレイの各抵抗素子間の抵抗値の相対値の変
動が低減されており、そのために抵抗素子アレイからの
比較参照基準電圧の分割率の変動が少ないため、アナロ
グ/デジタル変換時の入力レベルに対する理論値からの
誤差が低減されることより、積分直線特性の改善が図ら
れる。図5に、本発明の実施例におけるアナログ/デジ
タル変換特性の図を示す。
As described above, according to this embodiment, the variation in the relative value of the resistance value between the resistance elements of the resistance array for dividing the reference voltage is reduced, and therefore the comparative reference voltage from the resistance element array is reduced. Since the fluctuation of the division ratio of is small, the error from the theoretical value with respect to the input level at the time of analog / digital conversion is reduced, so that the integral linear characteristic is improved. FIG. 5 shows a diagram of analog / digital conversion characteristics in the embodiment of the present invention.

【0017】[0017]

【発明の効果】以上のように本発明は、基準電圧分割用
の抵抗アレイを用いたアナログ/デジタル変換装置にお
いて、抵抗アレイの半導体抵抗素子の生成にイオン打ち
込み方式を用いた不純物注入を行うことにより、抵抗値
の相対値の変動を低減し、アナログ/デジタル変換特性
における積分直線性の特性向上が得られるものである。
As described above, according to the present invention, in the analog / digital conversion device using the resistance array for dividing the reference voltage, the impurity implantation using the ion implantation method is performed to generate the semiconductor resistance element of the resistance array. As a result, the variation of the relative value of the resistance value is reduced, and the integral linearity characteristic of the analog / digital conversion characteristic is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のアナログ/デジタル変換器の半導体抵
抗素子の生成方式を示す構造図
FIG. 1 is a structural diagram showing a method of generating a semiconductor resistance element of an analog / digital converter of the present invention.

【図2】従来の熱拡散による不純物注入での半導体抵抗
素子生成方式を示す構造図
FIG. 2 is a structural diagram showing a conventional semiconductor resistance element generation method by impurity implantation by thermal diffusion.

【図3】半導体抵抗素子アレイを用いた、アナログ/デ
ジタル変換装置の一例を示す構成図
FIG. 3 is a configuration diagram showing an example of an analog / digital conversion device using a semiconductor resistance element array.

【図4】従来の方式による半導体抵抗素子を用いた、ア
ナログ/デジタル変換特性を示す図
FIG. 4 is a diagram showing an analog / digital conversion characteristic using a semiconductor resistance element according to a conventional method.

【図5】本発明の実施例による半導体抵抗素子を用い
た、アナログ/デジタル変換特性を示す図
FIG. 5 is a diagram showing analog / digital conversion characteristics using a semiconductor resistance element according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 半導体基盤 12 多結晶シリコン抵抗素子 13 アルミ等の抵抗素子間配線 14 イオン打ち込みによる不純物注入 11 semiconductor substrate 12 polycrystalline silicon resistance element 13 wiring between resistance elements such as aluminum 14 impurity implantation by ion implantation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シリコン半導体素子を用いた、アナログ/
デジタル変換装置において、抵抗アレイを有する基準電
圧分割部と、分割抵抗アレイ電位と入力アナログ電位と
の電圧値を比較する比較器部と、比較器の結果出力をデ
ジタル値に変換するエンコード部とを有する変換装置に
おいて、基準電圧分割用の抵抗素子アレイをイオン打ち
込み方式による不純物注入で生成することを特徴とする
アナログ/デジタル変換装置。
1. An analog / based device using a silicon semiconductor device.
In the digital conversion device, a reference voltage division unit having a resistance array, a comparator unit that compares the voltage values of the divided resistance array potential and the input analog potential, and an encoding unit that converts the result output of the comparator into a digital value. In the converter, the analog / digital converter is characterized in that a resistance element array for dividing a reference voltage is generated by ion implantation of impurities.
JP1934395A 1995-02-07 1995-02-07 A/d converter Pending JPH08213907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1934395A JPH08213907A (en) 1995-02-07 1995-02-07 A/d converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1934395A JPH08213907A (en) 1995-02-07 1995-02-07 A/d converter

Publications (1)

Publication Number Publication Date
JPH08213907A true JPH08213907A (en) 1996-08-20

Family

ID=11996763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1934395A Pending JPH08213907A (en) 1995-02-07 1995-02-07 A/d converter

Country Status (1)

Country Link
JP (1) JPH08213907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809576B1 (en) 1998-01-23 2004-10-26 Renesas Technology Corp. Semiconductor integrated circuit device having two types of internal power supply circuits

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809576B1 (en) 1998-01-23 2004-10-26 Renesas Technology Corp. Semiconductor integrated circuit device having two types of internal power supply circuits

Similar Documents

Publication Publication Date Title
US6509854B1 (en) DA conversion circuit
US4496935A (en) Analog-digital converter with linear characteristic restoration circuit
JPH0239136B2 (en)
US20020084927A1 (en) Low voltage analog-to-digital converters with internal reference voltage and offset
JPS61120530A (en) Analog/digital converter
US6556161B2 (en) Digital to analog converter employing dynamic element matching
Takemoto et al. A fully parallel 10-bit A/D converter with video speed
US5350998A (en) Structure for temperature compensating the inverse saturation current of bipolar transistors
JPH09135169A (en) Anlog/digital converter
JPH08213907A (en) A/d converter
US4874964A (en) Current generating circuit
CN1980069A (en) Current source cell arrangement and digital-to-analog converter
US5367202A (en) Voltage reference ladder having improved linearity
US4323794A (en) Bias voltage generator for a monolithic integrated circuit
CN101059704A (en) Automatic shift current mirror
JP3760503B2 (en) Clamp circuit
US5381177A (en) CCD delay line capable of automatic adjustment of an input bias voltage to charge transfer regions
KR20190125746A (en) Ramp Signal Generator, and CMOS Image Sensor Using That
CN116320802A (en) Ramp signal generator and image sensor including the same
JP3172090B2 (en) AD converter
JPH0846515A (en) D/a converter
JPH03123121A (en) A/d converter
JP3024514B2 (en) Solenoid control device
KR0154788B1 (en) A/d converter with parallel comparator
KR930007651B1 (en) A/d converter with error detect means