JPH08213664A - Multilayered ceramics piezoelectric element - Google Patents

Multilayered ceramics piezoelectric element

Info

Publication number
JPH08213664A
JPH08213664A JP7034310A JP3431095A JPH08213664A JP H08213664 A JPH08213664 A JP H08213664A JP 7034310 A JP7034310 A JP 7034310A JP 3431095 A JP3431095 A JP 3431095A JP H08213664 A JPH08213664 A JP H08213664A
Authority
JP
Japan
Prior art keywords
piezoelectric element
laminated
surface electrode
electrodes
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7034310A
Other languages
Japanese (ja)
Other versions
JP3432321B2 (en
Inventor
Toru Ezaki
徹 江崎
Takahiro Yamakawa
孝宏 山川
Yutaka Maruyama
裕 丸山
Nobuyuki Kojima
信行 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Nihon Cement Co Ltd
Original Assignee
Canon Inc
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12410597&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08213664(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Canon Inc, Nihon Cement Co Ltd filed Critical Canon Inc
Priority to JP03431095A priority Critical patent/JP3432321B2/en
Priority to US08/592,859 priority patent/US5770916A/en
Priority to EP96300503A priority patent/EP0725450B1/en
Priority to DE69607666T priority patent/DE69607666T2/en
Priority to KR1019960002054A priority patent/KR100239285B1/en
Publication of JPH08213664A publication Critical patent/JPH08213664A/en
Application granted granted Critical
Publication of JP3432321B2 publication Critical patent/JP3432321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/503Piezoelectric or electrostrictive devices having a stacked or multilayer structure with non-rectangular cross-section orthogonal to the stacking direction, e.g. polygonal, circular
    • H10N30/505Annular cross-section
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/106Langevin motors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/063Forming interconnections, e.g. connection electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Connection electrodes of multilayer piezoelectric or electrostrictive devices, e.g. external electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Connection electrodes of multilayer piezoelectric or electrostrictive devices, e.g. external electrodes
    • H10N30/874Connection electrodes of multilayer piezoelectric or electrostrictive devices, e.g. external electrodes embedded within piezoelectric or electrostrictive material, e.g. via connections

Abstract

PURPOSE: To provide a multilayered ceramic piezoelectric element wherein the resonance frequency difference of each phase is small and energy loss is little when the element is used in a Langevin type ultrasonic motor, by forming the upper surface and the lower surface of the element except surface electrodes, in planes wherein the difference of unevenness is smaller than or equal to a specific value. CONSTITUTION: A PZT system piezoelectric sheet is used, an inner electrode is formed by a printing method, and a multilayered ceramic piezoelectric element 1 in which 15 layers are laminated is formed. After insulator is stuck on the side surfaces of the respective piezoelectric sheets every other layers, interlayer wirings 3 are connected by using conductive paste, and then baked. The upper surface and the lower surface of the element are formed in flat planes wherein the difference of unevenness in each surface is at most 20μm. Surface electrodes 4 connected with the interlayer wirings 3 are formed on the flat upper surface of the element by a sputtering method. Every four forming positions of the surface electrodes 4 are collectively constituted in the front part and the rear part of the upper surface of the element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばランジュバン型
超音波モータに好適な積層セラミックス圧電体素子に関
し、更に詳しくは、位相の異なる2相以上の高周波信号
を用いて駆動するときに、その各相の共振周波数の差が
小さく、しかもエネルギー損失の少ない積層セラミック
ス圧電体素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated ceramics piezoelectric element suitable for, for example, a Langevin type ultrasonic motor, and more specifically, when it is driven by using high-frequency signals of two or more phases different in phase from each other. The present invention relates to a laminated ceramic piezoelectric element having a small difference in phase resonance frequency and a small energy loss.

【0002】[0002]

【従来の技術】従来、例えばランジュバン型の超音波モ
ータに使用される振動素子としては、特開平3−407
67号公報や、特開平3−117384号公報等に記載
されているように、厚み方向の分極方向が左右或いは前
後で逆の単板の圧電素子板を、電極板を挟んで複数枚重
ね合わせた構造のものが用いられている(図8参照)。
しかし近年では、この構造を一体化した、いわゆる積層
セラミックス圧電体素子を用いることにより、駆動電圧
の低減、及び素子の小型化を図る試みがなされている。
2. Description of the Related Art Conventionally, as a vibrating element used in, for example, a Langevin type ultrasonic motor, Japanese Patent Laid-Open No. 3-407 is known.
No. 67, JP-A-3-117384, etc., a plurality of single piezoelectric element plates whose polarization directions in the thickness direction are reversed left and right or front and back are overlapped with an electrode plate sandwiched therebetween. The one having the different structure is used (see FIG. 8).
However, in recent years, attempts have been made to reduce the drive voltage and downsize the element by using a so-called laminated ceramics piezoelectric element that integrates this structure.

【0003】ここで、積層セラミックス圧電体素子10
1は、図7のように例えば円環が4分割されているよう
な電極パターンが形成された内部電極102が各層間ご
とに存在し、それらが積層方向に1層おきに層間配線1
03により接続され、表面には表面電極104が前記層
間配線103と接続された構造を成している。そしてこ
の素子101は、例えば正の電圧を印加した時に第1象
限及び第2象限は厚みが増加し、第3象限及び第4象限
は厚みが減少する(勿論、負の電圧を印加した際には、
各々の象限は逆の挙動を取る)ように分極が成されてい
る。そして、この素子101を駆動させる際には、第1
象限及び第3象限(以下、“A相”)に対しては同じ位
相の共振周波数信号を入力し、第2象限及び第4象限
(以下、“B相”)には前記信号に対して位相を90度
ずらした共振周波数信号を入力することにより、首ふり
振動を行なわせる構造のものとなっている。
Here, the laminated ceramics piezoelectric element 10 is used.
1, there is an internal electrode 102 having an electrode pattern formed such that a ring is divided into four, for example, as shown in FIG. 7, for each interlayer, and the internal electrodes 102 are provided every other layer in the stacking direction.
03, and the surface electrode 104 is connected to the interlayer wiring 103 on the surface. Then, in this element 101, for example, when a positive voltage is applied, the thickness increases in the first quadrant and the second quadrant, and the thickness decreases in the third quadrant and the fourth quadrant (of course, when a negative voltage is applied. Is
Each quadrant behaves in the opposite way). When driving the element 101, the first
Resonant frequency signals of the same phase are input to the quadrant and the third quadrant (hereinafter, "A phase"), and the phase is relative to the signal in the second quadrant and the fourth quadrant (hereinafter, "B phase"). By inputting a resonance frequency signal that is shifted by 90 degrees, the vibration of the neck is caused.

【0004】上記した積層セラミックス圧電体素子は、
素子を構成する各々の層の厚みを単板素子の厚みに比べ
て充分薄く、そして多層化出来るため、駆動に必要とさ
れる電圧を大幅に低減でき、素子の小型化及び低電圧駆
動化を図ることが可能となるなど、多くの優れた特性を
有する素子である。
The above-mentioned laminated ceramics piezoelectric element is
The thickness of each layer that makes up the device is sufficiently smaller than the thickness of a single-plate device, and since it can be multi-layered, the voltage required for driving can be greatly reduced, and the device can be made smaller and driven at lower voltage. This is an element having many excellent characteristics such as being capable of being achieved.

【0005】[0005]

【発明が解決しようとする課題】しかしながらここで、
上述した積層セラミックス圧電体素子を使って、実際に
ランジュバン型の超音波モータ又はアクチュエータを作
ってみると、その振動子のA相とB相との共振周波数の
差(ΔF)が大きく、また機械的品質係数(Qm)も単
板素子を使った場合よりも劣り、実用化に充分なモータ
又はアクチュエータは得られなかった。
However, here,
When a Langevin type ultrasonic motor or actuator is actually manufactured using the above-mentioned laminated ceramics piezoelectric element, the difference (ΔF) in resonance frequency between the A phase and the B phase of the vibrator is large, and The quality factor (Qm) was also inferior to the case of using a single-plate element, and a motor or actuator sufficient for practical use could not be obtained.

【0006】本発明は、上述した積層セラミックス圧電
体素子をランジュバン型の超音波モータ又はアクチュエ
ータに使用した場合の不具合に鑑み成されたものであっ
て、その目的は、ランジュバン型の超音波モータ又はア
クチュエータに使用した場合においても、各相の共振周
波数の差が小さく、しかもエネルギー損失の少ない積層
セラミックス圧電体素子を提供することと、さらに、そ
の素子に給電する方法を提供することにある。
The present invention has been made in view of the problems when the above-mentioned laminated ceramics piezoelectric element is used in a Langevin type ultrasonic motor or actuator, and its object is to provide a Langevin type ultrasonic motor or Another object of the present invention is to provide a laminated ceramics piezoelectric element having a small difference in resonance frequency of each phase and a small energy loss even when used for an actuator, and further to provide a method for supplying power to the element.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記した
目的を達成すべく鋭意研究を重ねた結果、積層セラミッ
クス圧電体素子をランジュバン型の超音波モータ又はア
クチュエータに使用した場合における、各相の共振周波
数の差(ΔF)、及び機械的品質係数(Qm)に影響を
与えるのは、素子の上下面の平滑性にあるとの知見を
得、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to achieve the above-mentioned objects, the present inventors have found that when a laminated ceramic piezoelectric element is used in a Langevin type ultrasonic motor or actuator, The inventors have found that it is the smoothness of the upper and lower surfaces of the device that affects the difference (ΔF) in the resonance frequency of the phases and the mechanical quality factor (Qm), and completed the present invention.

【0008】即ち、本発明は、ランジュバン型の超音波
モータ又はアクチュエータに使用する積層セラミックス
圧電体素子において、該素子の表面電極を除く部分の上
下面を、その面内の凹凸の差が20μm以下の平面に形
成した積層セラミックス圧電体素子とした。また、本発
明は、上記表面電極の各々の面積を、0.002mm2以上 0.2
mm2 以下とすると共に、該表面電極の各々を、素子面上
より突出して形成した積層セラミックス圧電体素子とし
た。さらに、本発明は、上記表面電極の各々の突出量
を、1μm以上20μm以下に形成した積層セラミック
ス圧電体素子とした。また、本発明は、上記表面電極
を、素子の面内においてバランス良く配置した積層セラ
ミックス圧電体素子とした。さらに、本発明は、上記素
子の内部に存在する電極間を、素子の内部に形成した層
間配線により接続した積層セラミックス圧電体素子とし
た。さらにまた、本発明は、上記積層セラミックス圧電
体素子に給電する方法として、配線基板を用いることと
した。以下、上記した本発明の各々を、更に詳細に説明
する。
That is, according to the present invention, in a laminated ceramics piezoelectric element used in a Langevin type ultrasonic motor or actuator, the upper and lower surfaces of the element excluding the surface electrodes have a difference in unevenness of 20 μm or less within the surface. The laminated ceramics piezoelectric element formed on the plane of Further, the present invention, the area of each of the above surface electrode, 0.002mm 2 or more 0.2
The laminated ceramic piezoelectric element was formed to have a surface area of 2 mm 2 or less and each of the surface electrodes protruding from the element surface. Furthermore, the present invention provides a laminated ceramics piezoelectric element in which the protrusion amount of each of the surface electrodes is 1 μm or more and 20 μm or less. Further, the present invention provides a laminated ceramics piezoelectric element in which the surface electrodes are arranged in a well-balanced manner within the surface of the element. Furthermore, the present invention provides a laminated ceramic piezoelectric element in which electrodes existing inside the element are connected by interlayer wiring formed inside the element. Furthermore, according to the present invention, a wiring board is used as a method for supplying power to the above-mentioned laminated ceramics piezoelectric element. Hereinafter, each of the above-described present inventions will be described in more detail.

【0009】先ず、本発明では、素子の上下面の平滑性
について、その面内の凹凸の差が20μm以下の平面に
形成することを規定している。これは、素子の上下面内
各々の凹凸の差が20μmより大きいと、ランジュバン
型の超音波モータ又はアクチュエータに使用した際に、
全体としての機械的品質係数(Qm)が低下し、さらに
相ごとの共振周波数の差(ΔF)も大きくなることが試
験により判明したためである。
First, in the present invention, regarding the smoothness of the upper and lower surfaces of the element, it is specified that the unevenness in the surface is formed on a flat surface of 20 μm or less. This means that when the difference between the unevenness in the upper and lower surfaces of the element is larger than 20 μm, when used in a Langevin type ultrasonic motor or actuator,
This is because the test revealed that the mechanical quality factor (Qm) as a whole was lowered and the difference (ΔF) in resonance frequency between the phases was also increased.

【0010】このような平滑な上下面を有する積層セラ
ミックス圧電体素子の作り方としては、大きく分けると
2通りの方法がある。1つは、焼成後に反り修正(再焼
成)、或いは加工(ラップ)を施すことによって、平面
度の高い素子を製造する方法であり、この場合において
は、表面電極等はその後に形成すれば良い。もう一つ
は、変形或いは反りが生じないように、成形、焼成等の
工程を慎重に制御しながら製造する方法である。本発明
においては、上記したいずれの方法でも良く、その作り
方は特には限定されない。
There are roughly two methods for producing a laminated ceramics piezoelectric element having such smooth upper and lower surfaces. One is a method of manufacturing an element having high flatness by performing warp correction (re-baking) or processing (lap) after firing, and in this case, the surface electrode and the like may be formed after that. . The other is a method of manufacturing while carefully controlling steps such as molding and firing so that deformation or warpage does not occur. In the present invention, any of the methods described above may be used, and the method for making the method is not particularly limited.

【0011】なお、上記した本発明においては、表面電
極の高さは考慮されていないので、この発明の素子を使
用する場合においては、表面電極の高さをキャンセルで
きるような端子の取り方をする必要がある。具体的に
は、この表面電極に接続する電極板の端子部分を、電極
の高さ分だけへこませておく等の対策が必要となる。
In the present invention described above, the height of the surface electrode is not taken into consideration. Therefore, when the device of the present invention is used, the terminal should be arranged so as to cancel the height of the surface electrode. There is a need to. Specifically, it is necessary to take a measure such as denting the terminal portion of the electrode plate connected to the surface electrode by the height of the electrode.

【0012】また、上記素子の上下面内における凹凸の
差(表面電極部分を除く)を測定する際には、素子を平
面上に置いて非接触式の形状測定装置などで3次元的に
測定することが、その値を正確に測定できることから好
ましい。これは、接触式の形状測定装置、例えば表面粗
さ計でも測定することは可能であるが、例えば素子の裏
面が凸となっている場合には、針圧などにより容易に素
子が動き、正確な測定が困難となるためである。
Further, when measuring the difference in unevenness (excluding the surface electrode portion) in the upper and lower surfaces of the element, the element is placed on a plane and three-dimensionally measured by a non-contact type shape measuring device or the like. Is preferable because the value can be measured accurately. This can be measured with a contact-type shape measuring device, for example, a surface roughness meter, but if the back surface of the element is convex, for example, the element will move easily due to needle pressure, etc. This is because it becomes difficult to perform accurate measurements.

【0013】次に、本発明では、上記要件に加えて、個
々の表面電極を0.002mm2以上0.2mm2以下の面積とすると
共に、該表面電極の各々を素子面上より突出して形成す
ることを規定している。これは、このような表面電極を
持つ素子とすれば、電極板を用いて表面電極との接続が
可能となり、共振周波数の差(ΔF)がより小さい素子
と成ると共に、機械的品質係数(Qm)も高くなるため
である。即ち、表面電極の面積が0.002mm2より小さい
と、接続部分の抵抗値が大きくなって機械的品質係数
(Qm)が低下し、また面積が0.2mm2より大きいと、フ
レキシブル基板などを用いても電極厚み、又はその突出
量の影響を排除することができず、相間の共振周波数の
差(ΔF)が大きくなることが試験により判明したため
である。また、この表面電極は、電極板との接続を確実
にするために、素子面上より突出していることが望まし
い。
[0013] Next, in the present invention, in addition to the above requirements, the individual surface electrode with a 0.002 mm 2 or more 0.2 mm 2 or less of the area, forming each of the surface electrodes protrude from the element surface Is prescribed. This is because if an element having such a surface electrode can be connected to the surface electrode by using an electrode plate, it becomes an element having a smaller resonance frequency difference (ΔF) and a mechanical quality factor (Qm). ) Is also high. That is, when the area of the surface electrode is smaller than 0.002 mm 2 , the resistance value of the connecting portion becomes large and the mechanical quality factor (Qm) is lowered, and when the area is larger than 0.2 mm 2 , a flexible substrate is used. This is because it was found by a test that the influence of the electrode thickness or the amount of protrusion thereof cannot be eliminated, and the difference (ΔF) in the resonance frequency between the phases becomes large. Further, it is desirable that the surface electrode protrudes from the element surface in order to ensure connection with the electrode plate.

【0014】上記のような表面電極を形成する方法とし
ては、印刷法によるのが最も簡単で良いが、この形成方
法に限定されず、例えばCVD法やスパッタ法などを用
いても良く、また素子の全面に導体層を形成しておい
て、後にエッチングなどにより周囲を掘り下げて表面電
極を形成しても良い。
As a method for forming the surface electrode as described above, the printing method is the simplest, but is not limited to this forming method, and for example, a CVD method, a sputtering method, or the like may be used. It is also possible to form a conductor layer on the entire surface of, and then to dig into the periphery by etching or the like to form the surface electrode.

【0015】なお、上記表面電極の面積を規定する数値
を円形の直径に換算すると、約50μm以上500μm
以下の直径を有する表面電極となるが、表面電極は円形
である必要はないため、本発明においては面積で規定し
た。また、本発明で規定している表面電極の面積とは、
上面から見た時の投影面積であり、突出による高さ成分
は考慮されていない。
When the numerical value that defines the area of the surface electrode is converted into a circular diameter, it is approximately 50 μm or more and 500 μm or more.
Although the surface electrode has the following diameter, the surface electrode does not need to be circular, and is defined by the area in the present invention. Further, the area of the surface electrode defined in the present invention,
It is the projected area when viewed from the top surface, and the height component due to the protrusion is not taken into consideration.

【0016】次に、本発明では、上記要件である表面電
極の突出量について、それぞれの表面電極の突出量を1
μm以上20μm以下とすることを規定している。これ
は、上記した要件だけでも実用上充分な積層セラミック
ス圧電体素子となるが、表面電極の素子面上からの突出
量が上記範囲内の素子としたならば、更に各相間の共振
周波数の差(ΔF)が小さく、しかも機械的品質係数
(Qm)が高い素子となると共に、導通が確実に行わ
れ、信頼性がより高い素子となることが試験により判明
したためである。
Next, in the present invention, regarding the amount of protrusion of the surface electrode which is the above requirement, the amount of protrusion of each surface electrode is set to 1
It is specified that the thickness is not less than μm and not more than 20 μm. This is a laminated ceramics piezoelectric element that is practically sufficient even with the above requirements alone, but if the amount of protrusion of the surface electrode from the element surface is within the above range, the difference in resonance frequency between each phase This is because tests have revealed that the element has a small (ΔF) and a high mechanical quality factor (Qm), and the element is surely conducted and has higher reliability.

【0017】ここで、上記した突出量を有する表面電極
の形成方法も、特に限定する方法はないが、形成する表
面電極の突出量(厚み)から考えると、印刷法が最も適
している。また、後記する図5に示した積層セラミック
ス圧電体素子11、即ち素子の内部に存在する電極12
間を、素子の内部に形成した層間配線13により接続し
た素子においては、該素子11を表面ラップ加工する
と、層間配線13(通常Ag−Pd、又はPtにより形
成されている)よりも圧電体素地(通常PZT系セラミ
ックスにより形成されている)の方が良く削られ、結果
として層間配線13が素子面上から突出するので、この
ラップ加工条件を制御することにより、上記した突出量
を有する表面電極14を形成することも可能である。
There is no particular limitation on the method of forming the surface electrode having the above-mentioned protrusion amount, but the printing method is most suitable in view of the protrusion amount (thickness) of the surface electrode to be formed. Further, the laminated ceramics piezoelectric element 11 shown in FIG. 5 described later, that is, the electrode 12 existing inside the element
In the element in which the spaces are connected by the inter-layer wiring 13 formed inside the element, when the surface lapping of the element 11 is performed, the piezoelectric material base is formed more than the inter-layer wiring 13 (usually formed of Ag-Pd or Pt). Since the (generally made of PZT-based ceramics) is better shaved and, as a result, the inter-layer wiring 13 projects from the element surface, the surface electrode having the above-mentioned projection amount is controlled by controlling the lapping conditions. It is also possible to form 14.

【0018】次に、本発明では、素子に形成する表面電
極の位置関係について、表面電極を素子の面内において
バランス良く配置することを規定している。これは、例
えフレキシブル基板を用いて表面電極厚み、又はその突
出量の影響を排除することができたとしても、表面電極
自体は振動しないことから共振に対するノイズとなり、
このような表面電極が素子の1ヵ所に集中して形成され
ていると、その表面電極が集中した素子部分と、他の素
子部分との間で当然共振周波数に差が生じ、延いては機
械的品質係数(Qm)も低下するためである。
Next, in the present invention, regarding the positional relationship of the surface electrodes formed on the element, it is specified that the surface electrodes are arranged in a well-balanced manner within the surface of the element. This is a noise for resonance because the surface electrode itself does not vibrate even if the influence of the surface electrode thickness or the amount of protrusion thereof can be eliminated by using a flexible substrate.
If such surface electrodes are formed concentratedly in one place of the element, a difference in resonance frequency naturally occurs between the element part where the surface electrode is concentrated and another element part, and as a result, the mechanical frequency is increased. This is because the quality factor (Qm) also decreases.

【0019】なお、ここで言う“表面電極を素子の面内
においてバランス良く配置する”とは、例えば8個の表
面電極を同一円周上において等間隔で配置する場合のみ
ならず、2個づづ接近させた表面電極を、同一円周上に
おいて4ヵ所に等間隔で配置する場合等も含まれる。
The term "distribute the surface electrodes in a well-balanced manner in the plane of the device" as used herein means not only the case where eight surface electrodes are arranged at equal intervals on the same circumference, but also two surface electrodes are arranged at a time. The case where the approaching surface electrodes are arranged at equal intervals at four places on the same circumference is also included.

【0020】次に、本発明では、図5に示したように素
子11の内部電極12間を、素子の内部に形成した層間
配線13により接続することについて規定している。こ
れは、層間配線13を素子の内部に形成することによ
り、素子の外周壁面に余計な突起を賦与するような層間
配線(例えば図7に示した層間配線103)を無くすこ
とができ、素子の共振に対するノイズを除去できるた
め、更に振動子の共振周波数差が小さくなり、また共振
曲線がシャープになってより機械的品質係数(Qm)が
高くなるためである。
Next, the present invention defines that the internal electrodes 12 of the element 11 are connected by the interlayer wiring 13 formed inside the element as shown in FIG. This is because by forming the interlayer wiring 13 inside the element, it is possible to eliminate the interlayer wiring (for example, the interlayer wiring 103 shown in FIG. 7) that gives an extra protrusion to the outer peripheral wall surface of the element. This is because noise due to resonance can be removed, the resonance frequency difference between the vibrators is further reduced, and the resonance curve is sharpened to increase the mechanical quality factor (Qm).

【0021】このような素子内部の層間配線13は、所
謂バイアホール、又はスルーホールと呼ばれるもので、
低温焼成タイプのセラミックス基板の製造技術を用いる
ことにより形成することができる。一般的なバイアホー
ルの作り方は、積層前の圧電体のグリーンシートに穴を
明け、その穴に導体ペーストを充填しておき、その上に
内部の電極パターンを印刷し、その後積層・焼成するも
のである。このようにすれば、内部電極とバイアホール
電極とが一体となって焼成され、素子の層間を接続する
配線を形成することができる。むろん、素子の内部に層
間配線を作ることができれば、上記の方法以外でも良
い。
The inter-layer wiring 13 inside the element is a so-called via hole or through hole.
It can be formed by using a low temperature firing type ceramics substrate manufacturing technique. The general method of making via holes is to make a hole in the green sheet of the piezoelectric body before lamination, fill the hole with a conductor paste, print the internal electrode pattern on it, and then laminate and fire. Is. By doing so, the internal electrodes and the via-hole electrodes are integrally fired, and the wiring connecting the layers of the element can be formed. Of course, a method other than the above may be used as long as an interlayer wiring can be formed inside the element.

【0022】更に、本発明では、図6に示したように上
記本発明にかかる素子Aに給電する方法として、配線基
板Bを表面電極を有する素子Aの面に圧接することを規
定している。これは、配線基板Bには導電体層が形成さ
れており、例えば図6に示したようにランジュバン型の
超音波モータに上記本発明にかかる素子Aを用いた場
合、ボルトCとステータD1,D2 とによる締め付け力に
より配線基板Bの導電体層に素子Aの面上から突出した
表面電極が食い込み、導通が確実に行われると共に、表
面電極と導電体層が塑性変形を生じ、接触の均一化が図
れるためである。
Further, in the present invention, as shown in FIG. 6, as a method for supplying power to the element A according to the present invention, it is prescribed that the wiring board B is pressed against the surface of the element A having the surface electrode. . This is because a conductive layer is formed on the wiring board B. For example, when the element A according to the present invention is used in a Langevin type ultrasonic motor as shown in FIG. 6, a bolt C and a stator D 1 are used. , biting surface electrodes projecting from the surface of the element a to the conductive layer of the wiring board B by the fastening force by the D 2, together with the continuity is ensured, the surface electrode and the conductor layer occurs plastic deformation, contact This is because it is possible to make uniform.

【0023】ここで、上記配線基板Bとしては、高分子
材料などの弾性又は塑性、若しくはその両方の性能に富
んだ絶縁体材料で作られた基板の表面に、銅やハンダな
どの導体を導電体層として形成した、所謂フレキシブル
基板が好ましい。これは、このような性質を有する配線
基板Bは、上記ボルトCとステータD1,D2 とによる締
め付け力により容易に変形し、素子Aの面上から突出し
た表面電極の影響をより軽減し、素子Aに均一に接触す
るためである。
Here, as the wiring board B, a conductor such as copper or solder is electrically conductive on the surface of a board made of an insulating material such as a polymer material having high elasticity and / or plasticity. So-called flexible substrates formed as body layers are preferred. This is because the wiring board B having such a property is easily deformed by the tightening force of the bolt C and the stators D 1 and D 2 to further reduce the influence of the surface electrode protruding from the surface of the element A. This is because the element A is uniformly contacted.

【0024】なお、上記配線基板B上の導電体層は、積
層セラミックス圧電体素子Aの各表面電極に別個に給
電,導通をはかるために、ほぼ全面に導体からなる配線
が施されている。
The conductor layer on the wiring board B has wirings made of a conductor on almost the entire surface thereof in order to separately supply power and conduct electricity to each surface electrode of the laminated ceramics piezoelectric element A.

【0025】[0025]

【作用】従来の単板の圧電素子板を複数枚重ねて使用す
るタイプのランジュバン型の超音波モータにおいては、
例えば図8に示したように5枚のセラミックス圧電素子
板a 1〜a 5の間に、電極として6枚の金属板b 1〜b
6を挟んで振動子を構成し、該振動子に金属板b 1〜b
6を介して駆動信号を入力しており、これらの6枚の金
属板b 1〜b 6が各セラミックス圧電素子板a 1〜a 5
の上下面の凹凸を吸収し、ボルトcとステータd1 ,d
2 とによる締め込み力が各セラミックス圧電素子板a 1
〜a 5の板面に均一に働き、各相の共振周波数の差(Δ
F)が小さく、しかも機械的品質係数(Qm)が高い超
音波モータと成っていたものと考えられる。むろん、こ
れらのセラミックス圧電素子板の間に挟む多数の金属板
1〜b 6の振動吸収作用によって、モータとしての効
率は良くなかった。
In the Langevin type ultrasonic motor of the type in which a plurality of conventional single-plate piezoelectric element plates are used,
For example, between the ceramic piezoelectric element plate a 1 ~a 5 in the five shown in FIG. 8, six metal plates b 1 ~b as electrode
A vibrator is formed by sandwiching 6 and metal plates b 1 to b are attached to the vibrator.
A drive signal is input via 6 , and these six metal plates b 1 to b 6 are used as ceramics piezoelectric element plates a 1 to a 5 respectively.
Absorbs irregularities on the upper and lower surfaces of the bolt c and the stators d 1 , d
The tightening force due to 2 and each ceramic piezoelectric element plate a 1
~ A 5 works evenly on the plate surface, and the difference in resonance frequency of each phase (Δ
It is considered that the ultrasonic motor had a small F) and a high mechanical quality factor (Qm). Needless to say, the efficiency as a motor was not good due to the vibration absorbing action of the large number of metal plates b 1 to b 6 sandwiched between these ceramics piezoelectric element plates.

【0026】しかし、積層セラミックス圧電体素子の場
合においては、その素子の内部に既に電極が形成されて
いるため、例えば前述の図6に示したように電極板とし
ては該素子Aの表面電極と導通をとるための一枚の電極
板Bで済み、理論上は効率が向上するはずであるが、該
素子をボルトとステータとによって締め込んだ場合、従
来の単板の圧電素子板においては吸収されていた素子の
上下面に存在する凹凸の影響が顕著に現れてしまい、ボ
ルトとステータとによる締め込み力が素子の板面内にお
いて不均一となり、却ってモータとしての効率低下や各
相の共振周波数差の増大を招くと考えられる。
However, in the case of the laminated ceramics piezoelectric element, since the electrode is already formed inside the element, the surface plate of the element A is used as the electrode plate as shown in FIG. 6, for example. Although only one electrode plate B is required for conduction, theoretically the efficiency should be improved. However, when the element is tightened by the bolt and the stator, the absorption is absorbed in the conventional single-plate piezoelectric element plate. The concavities and convexities existing on the upper and lower surfaces of the element, which were already present, become noticeable, and the tightening force between the bolt and the stator becomes uneven within the plate surface of the element, which in turn reduces the efficiency of the motor and the resonance of each phase. It is considered to cause an increase in frequency difference.

【0027】そこで、本発明においては、積層セラミッ
クス圧電体素子の上下面の平滑性、及び表面電極の面
積、或いはその突出量等について詳細に規定することに
より、積層セラミックス圧電体素子をランジュバン型の
超音波モータ又はアクチュエータに使用した場合に、ボ
ルトとステータとによる締め込み力が該素子の板面に均
一に働くようにし、積層セラミックス圧電体素子本来の
特性を備えた、実用上充分な性能を有する超音波モータ
又はアクチュエータを提供することが出来た。
Therefore, in the present invention, the laminated ceramics piezoelectric element is of the Langevin type by defining in detail the smoothness of the upper and lower surfaces of the laminated ceramics piezoelectric element, the area of the surface electrode, the protruding amount thereof, and the like. When used in an ultrasonic motor or actuator, the tightening force of the bolt and the stator acts uniformly on the plate surface of the element, and the multilayer ceramic piezoelectric element has the original characteristics and practically sufficient performance. It was possible to provide an ultrasonic motor or actuator having the same.

【0028】[0028]

【試験例】以下、上記した本発明にかかる積層セラミッ
クス圧電体素子の効果を裏付ける試験例について記載す
る。
[Test Example] A test example for demonstrating the effect of the above-described laminated ceramic piezoelectric element according to the present invention will be described below.

【0029】−試験1− PZT系の圧電体シートを用い、印刷法により内部電極
2を形成し、図1に示したような構造の積層セラミック
ス圧電体素子1を作った。この素子1は、1層あたりの
厚みが約100μmであり、全15層が積層され、直径
10mm、内径5mmの素子と成っている。層間配線3
は、その製造途中において各圧電体シートの側面に1層
おきに絶縁体を塗布したのち導体ペーストを用いて接続
し、その後焼成することにより形成されている。素子の
上下面は、焼成後にラップを施すことによりその上下面
の各々の面内における凹凸の差(以下、“平面度”)が
1〜20μmの平滑な平面に形成され、この平滑な素子
の上面に、側面の層間配線3と接続する表面電極4がス
パッタ法にて厚さ1μmで形成されている。この表面電
極4の数は、A相とB相についてそれぞれ+、−の4カ
所、及びそれぞれのグランド4ヵ所の合計8個で、その
形成位置は、図1に示したように素子の上面の前部及び
後部にそれぞれ4個づつ集中して形成されている。上記
した積層セラミックス圧電体素子数個を、分極した後に
ランジュバン型の超音波モータに図6に示したように組
み込み、その機械的品質係数(Qm)を測定したところ
500〜700であった。またA相とB相との共振周波
数の差(ΔF)は70〜100Hzであった。
-Test 1- Using a PZT type piezoelectric sheet, an internal electrode 2 was formed by a printing method to prepare a laminated ceramics piezoelectric element 1 having a structure as shown in FIG. This element 1 has a thickness of about 100 μm per layer, and a total of 15 layers are laminated to form an element having a diameter of 10 mm and an inner diameter of 5 mm. Interlayer wiring 3
Is formed by applying an insulator every other layer on the side surface of each piezoelectric sheet during the manufacturing thereof, connecting them using a conductor paste, and then firing. The upper and lower surfaces of the element are formed into a smooth flat surface having a difference in irregularities (hereinafter referred to as “flatness”) of 1 to 20 μm in each of the upper and lower surfaces by lapping after firing. A surface electrode 4 connected to the interlayer wiring 3 on the side surface is formed on the upper surface by sputtering to have a thickness of 1 μm. The number of the surface electrodes 4 is eight in total, that is, four positions of + and − for each of the A phase and the B phase, and four positions of each ground, and the formation position thereof is on the upper surface of the element as shown in FIG. Four pieces are formed in each of the front part and the rear part. After the above-mentioned several laminated ceramics piezoelectric elements were polarized, they were incorporated into a Langevin type ultrasonic motor as shown in FIG. 6, and the mechanical quality factor (Qm) was measured and found to be 500 to 700. Further, the difference (ΔF) in resonance frequency between the A phase and the B phase was 70 to 100 Hz.

【0030】−試験2− 上記した試験1の焼成後における素子の上下面のラップ
を行なわず、平面度が24〜40μmある積層セラミッ
クス圧電体素子数個について、他は試験1と同様の構
造、及び条件でランジュバン型の超音波モータに該素子
を組み込んだ際の機械的品質係数(Qm)、及びA相と
B相との共振周波数の差(ΔF)を測定したところ、Q
m値は200〜450、ΔF値は110〜230Hzで
あった。なお、良否の判定は、モータ性能からみてQm
値は500以上、ΔF値は110Hz以下であるため、
試験2の結果は好ましいものではない。
-Test 2- The same structure as in Test 1 was applied to several laminated ceramic piezoelectric elements having flatness of 24 to 40 μm without lapping the upper and lower surfaces of the element after firing in Test 1 described above. When the mechanical quality factor (Qm) when the element was incorporated in the Langevin type ultrasonic motor and the difference (ΔF) in the resonance frequency between the A phase and the B phase were measured under the following conditions,
The m value was 200 to 450 and the ΔF value was 110 to 230 Hz. It should be noted that the quality is judged by Qm in view of the motor performance.
Since the value is 500 or more and the ΔF value is 110 Hz or less,
The results of test 2 are not favorable.

【0031】−試験3− 試験1と同様に作製した素子(平面度15μm)につい
て、印刷法により個々の表面電極4の面積が図2の横軸
に示す値になるように表面電極を形成し、他は試験1と
同様の構造、及び条件でランジュバン型の超音波モータ
に組み込んだ際の機械的品質係数(Qm)、及びA相と
B相との共振周波数の差(ΔF)を各々測定した。図2
に、測定したQm、ΔFと表面電極の面積との関係を示
す。
-Test 3-For an element (flatness 15 μm) manufactured in the same manner as in Test 1, the surface electrodes were formed by a printing method so that the area of each surface electrode 4 was a value shown on the horizontal axis of FIG. Other than that, the mechanical quality factor (Qm) and the resonance frequency difference (ΔF) between the A-phase and the B-phase were measured when assembled in a Langevin type ultrasonic motor under the same structure and conditions as in Test 1. did. Figure 2
Shows the relationship between the measured Qm and ΔF and the surface electrode area.

【0032】−試験4− 試験1と同様に作製した素子(平面度15μm)につい
て、印刷法により個々の表面電極4の面積が 0.02mm2
あって、かつ個々の表面電極4の突出量が図3の横軸に
示す値になるように表面電極を形成し、他は試験1と同
様の構造、及び条件でランジュバン型の超音波モータに
組み込んだ際の機械的品質係数(Qm)、及びA相とB
相との共振周波数の差(ΔF)を各々測定した。図3
に、測定したQm、ΔFと表面電極の突出量との関係を
示す。
-Test 4-For an element (flatness 15 μm) manufactured in the same manner as in Test 1, the area of each surface electrode 4 was 0.02 mm 2 by the printing method, and the amount of protrusion of each surface electrode 4 was A surface electrode was formed so as to have a value shown on the horizontal axis of FIG. 3, and the mechanical quality factor (Qm) when the surface electrode was incorporated into a Langevin type ultrasonic motor under the same structure and conditions as in Test 1 and other conditions, and Phase A and B
The difference (ΔF) in resonance frequency from the phase was measured. FIG.
Shows the relationship between the measured Qm and ΔF and the protrusion amount of the surface electrode.

【0033】−試験5− 試験1と同様に作製した素子(平面度15μm)につい
て、表面電極4(面積0.02mm2、突出量5〜10μm)の
形成位置を、図4に示すように素子の上面に等間隔で配
置した以外は、上記試験1と同様の構造、及び条件でラ
ンジュバン型の超音波モータに該素子を組み込んだ際の
機械的品質係数(Qm)、及びA相とB相との共振周波
数の差(ΔF)を測定したところ、Qm値は830であ
り、ΔF値は57Hzであった。この結果は、表面電極
の形成位置が、Qm値やΔF値の向上に効果をもたらす
ことを示している。
-Test 5-For the element (flatness 15 μm) manufactured in the same manner as in Test 1, the formation position of the surface electrode 4 (area 0.02 mm 2 , protrusion amount 5 to 10 μm) was measured as shown in FIG. A mechanical quality factor (Qm) when the element was incorporated in a Langevin type ultrasonic motor under the same structure and conditions as in Test 1 except that the elements were arranged on the upper surface at equal intervals, and A phase and B phase. When the difference in resonance frequency (ΔF) was measured, the Qm value was 830 and the ΔF value was 57 Hz. This result indicates that the formation position of the surface electrode has an effect on improving the Qm value and the ΔF value.

【0034】−試験6− 試験1で使用した圧電体シートと同様の材料により成形
した圧電体シートにパンチングマシンを用いて直径15
0μmの穴(バイアホール)を明け、該穴にAg−Pd
の導電ペーストを充填した後、内部電極のパターンを印
刷し、その後図5に示すようにシートを積層して焼成
し、内部電極12及び層間配線13を有する素子を作製
した。次に、上記素子の上下面を表1に示す平面度とな
るようにラップした後に、印刷法にて表1に示す面積及
び突出量の表面電極14をあらためて形成したAタイプ
の素子と、またラップによって素子の面上より突出した
バイア電極をそのまま表1に示す面積及び突出量の表面
電極14として用いたBタイプの素子とを製作し、これ
ら各々の積層セラミックス圧電体素子11を、分極した
後にランジュバン型の超音波モータに組み込み、その機
械的品質係数(Qm)、及びA相とB相との共振周波数
の差(ΔF)を各々測定した。その測定結果を、表1に
示す。
-Test 6- A piezoelectric sheet formed of the same material as the piezoelectric sheet used in Test 1 was used to punch the piezoelectric sheet with a diameter of 15
Open a 0 μm hole (via hole) and put Ag-Pd in the hole.
After being filled with the conductive paste, the pattern of the internal electrodes was printed, and then the sheets were laminated and baked as shown in FIG. 5 to fabricate an element having the internal electrodes 12 and the interlayer wiring 13. Next, after wrapping the upper and lower surfaces of the above element so as to have the flatness shown in Table 1, an A type element in which the surface electrode 14 having the area and the protruding amount shown in Table 1 was newly formed by a printing method, A B-type element in which the via electrode protruding from the surface of the element by lapping was used as it was as the surface electrode 14 having the area and the protruding amount shown in Table 1 was manufactured, and each of the laminated ceramic piezoelectric element 11 was polarized. After that, it was incorporated into a Langevin type ultrasonic motor, and its mechanical quality factor (Qm) and the resonance frequency difference (ΔF) between the A phase and the B phase were measured. The measurement results are shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】表1より、素子平面度は20μm以下、表
面電極の面積は0.2mm2以下、そして表面電極の突出量は
20μm以下の素子であれば、いずれも振動子として良
好な性能を示すことが判明する。
From Table 1, any element having a flatness of the device of 20 μm or less, an area of the surface electrode of 0.2 mm 2 or less, and a protruding amount of the surface electrode of 20 μm or less should show good performance as a vibrator. Turns out.

【0037】上記した各試験例により、本発明にかかる
積層セラミックス圧電体素子は、ランジュバン型の超音
波モータの振動子に組み込んだ際に、その各相の共振周
波数の差(ΔF)が小さく、しかも機械的品質係数(Q
m)が高い素子と成ることが判明する。さらに、本発明
にかかる積層セラミックス圧電体素子は、円環型の超音
波モーター用の積層セラミックス圧電体素子として充分
適用できるものであることが判明する。
According to each of the above-mentioned test examples, when the laminated ceramics piezoelectric element according to the present invention is incorporated in a vibrator of a Langevin type ultrasonic motor, the difference (ΔF) in resonance frequency between the respective phases is small, Moreover, the mechanical quality factor (Q
It turns out that m) is a high element. Further, it is found that the laminated ceramics piezoelectric element according to the present invention can be sufficiently applied as a laminated ceramics piezoelectric element for an annular ultrasonic motor.

【0038】[0038]

【発明の効果】以上、説明した本発明にかかる積層セラ
ミックス圧電体素子によれば、積層セラミックス圧電体
素子本来の特性を有した、実用上充分な性能を有する超
音波モータ又はアクチュエータを提供することが可能と
なる。
As described above, according to the laminated ceramics piezoelectric element according to the present invention described above, it is possible to provide an ultrasonic motor or actuator having the characteristics peculiar to the laminated ceramics piezoelectric element and having practically sufficient performance. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる積層セラミックス圧電体素子の
概念的な構造図、及び外観図である。
FIG. 1 is a conceptual structural view and an external view of a laminated ceramics piezoelectric element according to the present invention.

【図2】試験3における、Qm、ΔFと表面電極の面積
との関係を示した図である。
FIG. 2 is a diagram showing the relationship between Qm, ΔF and the surface electrode area in Test 3.

【図3】試験4における、Qm、ΔFと表面電極の突出
量との関係を示した図である。
FIG. 3 is a diagram showing a relationship between Qm and ΔF and a protrusion amount of a surface electrode in Test 4.

【図4】本発明にかかる積層セラミックス圧電体素子の
概念的な構造図、及び外観図である。
FIG. 4 is a conceptual structural view and external view of a laminated ceramics piezoelectric element according to the present invention.

【図5】本発明にかかる積層セラミックス圧電体素子の
概念的な構造図、及び外観図である。
5A and 5B are a conceptual structural view and an external view of a laminated ceramics piezoelectric element according to the present invention.

【図6】本発明にかかる積層セラミックス圧電体素子を
組み込んだ超音波モータの概念的な断面図である。
FIG. 6 is a conceptual cross-sectional view of an ultrasonic motor incorporating a laminated ceramics piezoelectric element according to the present invention.

【図7】積層セラミックス圧電体素子の概念的な構造
図、及び外観図である。
FIG. 7 is a conceptual structural view and an external view of a laminated ceramics piezoelectric element.

【図8】従来の複数のセラミックス圧電素子板を組み込
んだ超音波モータの概念的な断面図である。
FIG. 8 is a conceptual sectional view of an ultrasonic motor incorporating a plurality of conventional ceramics piezoelectric element plates.

【符号の説明】[Explanation of symbols]

1,11 積層セラミックス圧電体素子 2,12 内部電極 3,13 層間配線 4,14 表面電極 B 配線基板 1,11 Multilayer Ceramics Piezoelectric Element 2,12 Internal Electrode 3,13 Interlayer Wiring 4,14 Surface Electrode B Wiring Board

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸山 裕 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 小島 信行 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yutaka Maruyama 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Nobuyuki Kojima 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Within the corporation

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 素子の表面電極を除く部分の上下面が、
その面内の凹凸の差が20μm以下の平面に形成されて
いることを特徴とする、積層セラミックス圧電体素子。
1. The upper and lower surfaces of a part of the device excluding the surface electrodes are:
A laminated ceramics piezoelectric element, characterized in that the difference in the in-plane unevenness is formed on a flat surface of 20 μm or less.
【請求項2】 上記表面電極の各々の面積が、0.002mm2
以上 0.2mm2 以下であり、かつその表面電極の各々が、
素子面上より突出して形成されていることを特徴とす
る、請求項1記載の積層セラミックス圧電体素子。
2. The area of each surface electrode is 0.002 mm 2
And 0.2 mm 2 or less, and each of the surface electrodes is
2. The laminated ceramics piezoelectric element according to claim 1, wherein the laminated ceramics piezoelectric element is formed so as to project from the element surface.
【請求項3】 上記表面電極の各々の突出量が、1μm
以上20μm以下であることを特徴とする、請求項2記
載の積層セラミックス圧電体素子。
3. The protrusion amount of each of the surface electrodes is 1 μm.
3. The laminated ceramic piezoelectric element according to claim 2, wherein the thickness is 20 μm or less.
【請求項4】 上記表面電極が、素子の面内においてバ
ランス良く配置されていることを特徴とする、請求項
1、2又は3記載の積層セラミックス圧電体素子。
4. The multilayer ceramic piezoelectric element according to claim 1, 2 or 3, wherein the surface electrodes are arranged in a well-balanced manner in the plane of the element.
【請求項5】 上記素子の内部に存在する電極間が、素
子の内部に形成された層間配線により接続されているこ
とを特徴とする、請求項1、2、3又は4記載の積層セ
ラミックス圧電体素子。
5. The laminated ceramics piezoelectric element according to claim 1, wherein the electrodes existing inside the element are connected by an interlayer wiring formed inside the element. Body element.
【請求項6】 上記表面電極を有する素子の面に、配線
基板を圧接し、該配線基板を介して素子に給電すること
を特徴とする、請求項1、2、3、4又は5記載の積層
セラミックス圧電体素子。
6. The wiring board is pressed against the surface of the element having the surface electrode, and power is supplied to the element through the wiring board, according to claim 1, 2, 3, 4 or 5. Multilayer ceramic piezoelectric element.
【請求項7】 上記配線基板が、フレキシブル基板であ
ることを特徴とする、請求項6記載の積層セラミックス
圧電体素子。
7. The laminated ceramics piezoelectric element according to claim 6, wherein the wiring board is a flexible board.
【請求項8】 上記素子が、超音波モータに使用される
ことを特徴とする、請求項1、2、3、4、5、6又は
7記載の積層セラミックス圧電体素子。
8. The laminated ceramic piezoelectric element according to claim 1, wherein the element is used in an ultrasonic motor.
JP03431095A 1995-01-31 1995-01-31 Multilayer ceramic piezoelectric element Expired - Lifetime JP3432321B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP03431095A JP3432321B2 (en) 1995-01-31 1995-01-31 Multilayer ceramic piezoelectric element
US08/592,859 US5770916A (en) 1995-01-31 1996-01-24 Laminated piezoelectric element and vibration wave actuator
EP96300503A EP0725450B1 (en) 1995-01-31 1996-01-25 Laminated piezoelectric element and vibration wave actuator
DE69607666T DE69607666T2 (en) 1995-01-31 1996-01-25 Laminated piezoelectric element and vibration wave drive
KR1019960002054A KR100239285B1 (en) 1995-01-31 1996-01-30 Laminated piezoelectric element and vibration wave actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03431095A JP3432321B2 (en) 1995-01-31 1995-01-31 Multilayer ceramic piezoelectric element

Publications (2)

Publication Number Publication Date
JPH08213664A true JPH08213664A (en) 1996-08-20
JP3432321B2 JP3432321B2 (en) 2003-08-04

Family

ID=12410597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03431095A Expired - Lifetime JP3432321B2 (en) 1995-01-31 1995-01-31 Multilayer ceramic piezoelectric element

Country Status (5)

Country Link
US (1) US5770916A (en)
EP (1) EP0725450B1 (en)
JP (1) JP3432321B2 (en)
KR (1) KR100239285B1 (en)
DE (1) DE69607666T2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291932B1 (en) 1998-02-17 2001-09-18 Canon Kabushiki Kaisha Stacked piezoelectric element and producing method therefor
JP2002300791A (en) * 2001-03-30 2002-10-11 Canon Inc Laminated current-mechanical energy-conversion element
JP2002353530A (en) * 2001-05-22 2002-12-06 Canon Inc Laminated electromechanical energy conversion element and manufacturing method therefor
JP2003046156A (en) * 2001-07-31 2003-02-14 Canon Inc Laminated electro-mechanical energy transducer and oscillatory wave drive device
JP2005168281A (en) * 2003-11-13 2005-06-23 Canon Inc Laminated piezoelectric element and vibration wave driver
US7531948B2 (en) 2006-05-15 2009-05-12 Canon Kabushiki Kaisha Stacked piezoelectric element, manufacturing method thereof and vibration wave driving apparatus
WO2016174709A1 (en) * 2015-04-27 2016-11-03 オリンパス株式会社 Ultrasonic transducer production method and ultrasonic transducer
US11081638B2 (en) 2017-07-13 2021-08-03 Canon Kabushiki Kaisha Piezoelectric element, vibrator, vibration wave motor, optical apparatus, and electronic apparatus

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661764B1 (en) * 1993-12-27 1999-03-10 Canon Kabushiki Kaisha Vibration wave actuator
JP4026885B2 (en) 1997-05-16 2007-12-26 キヤノン株式会社 Piezoelectric element and vibration type driving device
US6628046B2 (en) 1997-05-27 2003-09-30 Canon Kabushiki Kaisha Vibration type actuator
US6404104B1 (en) 1997-11-27 2002-06-11 Canon Kabushiki Kaisha Vibration type actuator and vibration type driving apparatus
US6643906B2 (en) 1998-12-09 2003-11-11 Canon Kabushiki Kaisha Friction member, and vibration wave device and apparatus using friction member
DE19909482A1 (en) * 1999-03-04 2000-09-07 Bosch Gmbh Robert Piezoelectric actuator
JP4328412B2 (en) 1999-05-14 2009-09-09 キヤノン株式会社 Vibration type actuator and vibration type drive device
US6690101B2 (en) 2000-03-23 2004-02-10 Elliptec Resonant Actuator Ag Vibratory motors and methods of making and using same
JP2001352768A (en) 2000-06-05 2001-12-21 Canon Inc Multilayer electromechanical energy conversion element and oscillation wave driver
US6930436B2 (en) * 2001-01-22 2005-08-16 Canon Kabushiki Kaisha Vibration element and vibration wave driving apparatus
JP4726167B2 (en) * 2001-03-12 2011-07-20 キヤノン株式会社 Vibration wave drive
US6933657B2 (en) 2001-03-30 2005-08-23 Canon Kabushiki Kaisha Stacked electro-mechanical energy conversion element and method of manufacturing the same
JP4731723B2 (en) * 2001-05-24 2011-07-27 キヤノン株式会社 Method for manufacturing vibration wave drive device
JP2003009555A (en) * 2001-06-25 2003-01-10 Canon Inc Laminated electrical energy-mechanical energy transducer and vibration wave drive device
DE10141820A1 (en) * 2001-08-27 2003-03-20 Elliptec Resonant Actuator Ag Piezomotor with copper electrodes
DE10146703A1 (en) 2001-09-21 2003-04-10 Elliptec Resonant Actuator Ag Piezomotor with guide
DE10146704A1 (en) * 2001-09-21 2003-04-10 Elliptec Resonant Actuator Ag Piezomotors with piezo elements, manufactured using the ceramic capacitor process
JP4027090B2 (en) * 2001-12-27 2007-12-26 キヤノン株式会社 Vibration body and vibration wave drive device
CA2472104C (en) 2002-02-06 2008-12-30 Elliptec Resonant Actuator Aktiengesellschaft Piezoelectric motor control
US7368853B2 (en) 2002-04-22 2008-05-06 Elliptec Resonant Actuator Aktiengesellschaft Piezoelectric motors and methods for the production and operation thereof
JP2004297951A (en) * 2003-03-27 2004-10-21 Olympus Corp Ultrasonic vibrator and ultrasonic motor
JP2006004980A (en) 2004-06-15 2006-01-05 Canon Inc Laminated electrical-mechanical energy converting element and vibration wave driver
JP4756916B2 (en) * 2005-05-31 2011-08-24 キヤノン株式会社 Vibration wave motor
JP5074674B2 (en) * 2005-07-04 2012-11-14 キヤノン株式会社 Multilayer piezoelectric element and vibration wave motor
JP5786224B2 (en) * 2011-03-10 2015-09-30 キヤノン株式会社 Piezoelectric element, piezoelectric actuator having piezoelectric element, and vibration wave motor
CN107134944A (en) * 2017-05-09 2017-09-05 中国工程物理研究院材料研究所 A kind of novel piezo-electric ceramic driver and the ultrasound electric machine being made up of it

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0094078B1 (en) * 1982-05-11 1988-11-02 Nec Corporation Multilayer electrostrictive element which withstands repeated application of pulses
JPS5943356A (en) * 1982-09-06 1984-03-10 Kureha Chem Ind Co Ltd Ultrasonic probe
JPS61139112A (en) * 1984-12-10 1986-06-26 Murata Mfg Co Ltd Layer-built piezoelectric element capable of frequency adjustment
WO1986006228A1 (en) * 1985-04-11 1986-10-23 Toyo Communication Equipment Co., Ltd. Piezo-electric resonator for generating overtones
JP2567046B2 (en) * 1987-09-25 1996-12-25 日立金属株式会社 Stacked displacement element
JP2935504B2 (en) * 1989-07-05 1999-08-16 キヤノン株式会社 motor
JPH03117384A (en) * 1989-09-28 1991-05-20 Canon Inc Friction material for ultrasonic motor
US5356500A (en) * 1992-03-20 1994-10-18 Rutgers, The State University Of New Jersey Piezoelectric laminate films and processes for their manufacture
EP0584775B1 (en) * 1992-08-25 1997-12-17 Canon Kabushiki Kaisha Production method of laminated piezoelectric device and polarization method thereof and vibration wave driven motor
US5271133A (en) * 1992-09-21 1993-12-21 Caterpillar Inc. Method for making a piezoelectric stack
JP3241129B2 (en) * 1992-11-20 2001-12-25 太平洋セメント株式会社 Laminated piezoelectric element for vibration wave motor and method of manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291932B1 (en) 1998-02-17 2001-09-18 Canon Kabushiki Kaisha Stacked piezoelectric element and producing method therefor
US6668437B1 (en) 1998-02-17 2003-12-30 Canon Kabushiki Kaisha Method for producing a stacked piezoelectric element
US6951048B2 (en) 1998-02-17 2005-10-04 Canon Kabushiki Kaisha Method for producing a stacked piezoelectric element
JP2002300791A (en) * 2001-03-30 2002-10-11 Canon Inc Laminated current-mechanical energy-conversion element
JP2002353530A (en) * 2001-05-22 2002-12-06 Canon Inc Laminated electromechanical energy conversion element and manufacturing method therefor
JP2003046156A (en) * 2001-07-31 2003-02-14 Canon Inc Laminated electro-mechanical energy transducer and oscillatory wave drive device
JP2005168281A (en) * 2003-11-13 2005-06-23 Canon Inc Laminated piezoelectric element and vibration wave driver
US7531948B2 (en) 2006-05-15 2009-05-12 Canon Kabushiki Kaisha Stacked piezoelectric element, manufacturing method thereof and vibration wave driving apparatus
US8371005B2 (en) 2006-05-15 2013-02-12 Canon Kabushiki Kaisha Stacked piezoelectric element, manufacturing method thereof and vibration wave driving apparatus
WO2016174709A1 (en) * 2015-04-27 2016-11-03 オリンパス株式会社 Ultrasonic transducer production method and ultrasonic transducer
JP6091712B1 (en) * 2015-04-27 2017-03-08 オリンパス株式会社 Ultrasonic vibrator manufacturing method and ultrasonic vibrator
US11081638B2 (en) 2017-07-13 2021-08-03 Canon Kabushiki Kaisha Piezoelectric element, vibrator, vibration wave motor, optical apparatus, and electronic apparatus

Also Published As

Publication number Publication date
KR100239285B1 (en) 2000-01-15
EP0725450B1 (en) 2000-04-12
DE69607666T2 (en) 2000-08-31
JP3432321B2 (en) 2003-08-04
EP0725450A1 (en) 1996-08-07
US5770916A (en) 1998-06-23
DE69607666D1 (en) 2000-05-18

Similar Documents

Publication Publication Date Title
JP3432321B2 (en) Multilayer ceramic piezoelectric element
US4701659A (en) Piezoelectric ultrasonic transducer with flexible electrodes adhered using an adhesive having anisotropic electrical conductivity
US20030085635A1 (en) Multidimensional ultrasonic transducer arrays
JPS61144565A (en) High-polymer piezo-electric type ultrasonic probe
US20050099097A1 (en) Method for making multi-layer ceramic acoustic transducer
JP4026885B2 (en) Piezoelectric element and vibration type driving device
JP3852309B2 (en) Multilayer piezoelectric element, manufacturing method thereof, and piezoelectric actuator
JP2001102647A (en) Laminated piezoelectric actuator
JPH07131895A (en) Two-dimensional array type ultrasonic probe and its production
JP2001210886A (en) Stacked type piezoelectric actuator
JP2001029346A (en) Ultrasonic wave probe and manufacture therefor
JP4303997B2 (en) Piezoelectric actuator and ink jet recording head having the same
US20040183406A1 (en) Piezoelectrical bending converter
JP6913500B2 (en) Laminated piezoelectric element and manufacturing method of laminated piezoelectric element
JPS62104182A (en) Manufacture of stacked piezoelectric material
JP2010199271A (en) Multilayer piezoelectric element, manufacturing method thereof, and vibrator
JPH0683516B2 (en) Ultrasonic probe and method of manufacturing the same
JP2009194226A (en) Multilayer piezoelectric device and manufacturing method for the same
JP2010199272A (en) Laminated piezoelectric element, method of manufacturing the same, and vibrating body
JP3872349B2 (en) Manufacturing method of multilayer piezoelectric element
JP4818853B2 (en) Ultrasonic motor element
JP2855709B2 (en) Manufacturing method of laminated piezoelectric ceramic element
JP2827299B2 (en) Manufacturing method of laminated piezoelectric ceramic element
JP2014030290A (en) Vibrator and vibration wave actuator
JPH10336792A (en) Ultrasonic vibrator transducer and method for the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term