JPH08213404A - Manufacture of hydrogenated amorphous semiconductor - Google Patents

Manufacture of hydrogenated amorphous semiconductor

Info

Publication number
JPH08213404A
JPH08213404A JP7019425A JP1942595A JPH08213404A JP H08213404 A JPH08213404 A JP H08213404A JP 7019425 A JP7019425 A JP 7019425A JP 1942595 A JP1942595 A JP 1942595A JP H08213404 A JPH08213404 A JP H08213404A
Authority
JP
Japan
Prior art keywords
hydrogen
heat
semiconductor
forming
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7019425A
Other languages
Japanese (ja)
Other versions
JP3016701B2 (en
Inventor
Masao Isomura
雅夫 磯村
Yoshihiro Hishikawa
善博 菱川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7019425A priority Critical patent/JP3016701B2/en
Publication of JPH08213404A publication Critical patent/JPH08213404A/en
Application granted granted Critical
Publication of JP3016701B2 publication Critical patent/JP3016701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Thin Film Transistor (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: To prevent the characteristic change due to light emission and heat and to obtain stable characteristics by forming a thin film of hydrogenated amorphous semiconductor, then forming a hole which is not hydrogenated on the inner surface of the film, and heat treating it. CONSTITUTION: An amorphous silicon layer 2 is formed by silane gas on a substrate 1 at about 180 deg.C of a substrate temperature by a plasma CVD method. Then, high energy particles 3 such as Ar ions are implanted to the layer 2 by the accelerating voltage of 1 to 5MeV by an ion gun to form a hole 4 having many unbonded hands 5 of the size of 10 to 100Å. Further, it is heat treated at about 150 deg.C for about one hour to fix hydrogen diffused in the layer 2 to the hands 5 in the hole 4. Thus, the quantity of the hydrogen which is easily diffused in the semiconductor can be reduced, thereby decreasing the change of the characteristics due to light emission or heat.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素化非晶質半導体の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogenated amorphous semiconductor.

【0002】[0002]

【従来の技術】水素化非晶質シリコン及び水素化非晶質
シリコンゲルマニウムなどの水素化非晶質半導体は、低
コストで大きな面積の半導体薄膜を形成することができ
るので、大型の電子デバイスなどへの応用が期待されて
いる。しかしながら、このような水素化非晶質半導体お
いては、光照射や熱などによって特性が変化し、光劣化
や熱劣化を生じ易いという問題がある。最近の研究結果
によれば、これらの特性の変化は、半導体中において水
素が拡散することに原因があると言われている。このた
め、光照射や熱による特性変化を抑制するため、半導体
中の水素量を減らし安定性を高める試みがなされている
(Japanese Journal of Applied Physics,Vol.30, No.2
B (1991) L239)。
2. Description of the Related Art Hydrogenated amorphous semiconductors such as hydrogenated amorphous silicon and hydrogenated amorphous silicon germanium are capable of forming a semiconductor thin film having a large area at a low cost. Is expected to be applied. However, in such a hydrogenated amorphous semiconductor, there is a problem that the characteristics change due to light irradiation, heat, etc., and photodegradation or heat degradation is likely to occur. According to recent research results, it is said that the change in these characteristics is caused by diffusion of hydrogen in the semiconductor. For this reason, attempts have been made to reduce the amount of hydrogen in semiconductors and increase their stability in order to suppress characteristic changes due to light irradiation and heat (Japanese Journal of Applied Physics, Vol.30, No.2.
B (1991) L239).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、半導体
中の水素量を減らすためには、薄膜形成温度を高めた
り、あるいは薄膜形成後に高温の熱処理を施すことが必
要となり、このような高温の処理を伴うことにより、テ
バイスに対し熱による悪影響が生じるという問題があっ
た。
However, in order to reduce the amount of hydrogen in the semiconductor, it is necessary to raise the temperature of forming the thin film or perform high temperature heat treatment after forming the thin film. As a result, there is a problem that the tevice is adversely affected by heat.

【0004】本発明の目的は、このような従来の問題点
を解消し、光照射や熱による特性変化の少ない、安定し
た特性を示す水素化非晶質半導体の製造方法を提供する
ことにある。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a method for producing a hydrogenated amorphous semiconductor showing stable characteristics with little change in characteristics due to light irradiation or heat. .

【0005】[0005]

【課題を解決するための手段】本発明の水素化非晶質半
導体の製造方法は、水素化非晶質半導体の薄膜を形成す
る工程と、形成後の薄膜に内面が水素化されていない空
孔を形成する工程と、空孔形成後の薄膜を熱処理する工
程とを備えている。
A method of manufacturing a hydrogenated amorphous semiconductor according to the present invention comprises a step of forming a thin film of a hydrogenated amorphous semiconductor and a void after the formation of the thin film whose inner surface is not hydrogenated. The method includes a step of forming holes and a step of heat-treating the thin film after forming the holes.

【0006】本発明において、薄膜に形成する空孔は、
10Å〜100Åの大きさの空孔であることが好まし
い。通常、この空孔の大きさは空孔の直径に相当する
が、空孔が溝状に形成される場合は、溝の幅に相当する
ものとなる。空孔の大きさが上記の範囲内でない場合
は、半導体内を移動する水素をトラップする効果が不十
分な場合がある。
In the present invention, the holes formed in the thin film are
It is preferable that the holes have a size of 10Å to 100Å. Usually, the size of this hole corresponds to the diameter of the hole, but when the hole is formed in a groove shape, it corresponds to the width of the groove. If the size of the holes is not within the above range, the effect of trapping hydrogen moving in the semiconductor may be insufficient.

【0007】本発明おいて、薄膜に形成される、内面が
水素化されていない空孔とは、空孔の内面に未結合手を
有する空孔を意味している。このような空孔は、例えば
不活性ガスのイオンをイオンガンなどで打ち込むことに
より形成することができる。また炭素イオンを打ち込む
ことにより、薄膜に空孔を形成してもよい。炭素イオン
を打ち込むことにより、空孔の内面が炭素化され、空孔
の内面に炭素の未結合手が生じる。炭素はシリコンに比
べ、水素と強く結合するため、水素をより強く捉えるこ
とができる。
In the present invention, the pores formed in the thin film whose inner surface is not hydrogenated mean pores having dangling bonds on the inner surface of the pores. Such holes can be formed, for example, by implanting ions of an inert gas with an ion gun or the like. Voids may be formed in the thin film by implanting carbon ions. By implanting carbon ions, the inner surface of the vacancy is carbonized, and a dangling bond of carbon is generated on the inner surface of the vacancy. Compared to silicon, carbon is more strongly bound to hydrogen, so hydrogen can be more strongly captured.

【0008】本発明における空孔形成後の薄膜の熱処理
は、薄膜に形成した空孔に、拡散し易い水素を固定する
ために行う。熱処理の温度としては、100〜400℃
が好ましい。熱処理温度が低すぎると、空孔に水素をト
ラップする効果が不十分な場合がある。また、熱処理温
度が高すぎると、デバイス化した際に熱による悪影響を
生じる場合がある。
The heat treatment of the thin film after the formation of the pores in the present invention is carried out in order to fix hydrogen which easily diffuses into the pores formed in the thin film. The temperature of heat treatment is 100 to 400 ° C.
Is preferred. If the heat treatment temperature is too low, the effect of trapping hydrogen in the holes may be insufficient. Further, if the heat treatment temperature is too high, heat may have an adverse effect when a device is formed.

【0009】本発明の製造方法は、CVD法などにより
形成する水素化非晶質半導体一般に適用されるものであ
り、例えば水素化非晶質シリコン、SiC及びSiGe
などの水素化非晶質シリコンを基本とした化合物半導体
などに適用することができる。
The manufacturing method of the present invention is generally applied to hydrogenated amorphous semiconductors formed by the CVD method, for example, hydrogenated amorphous silicon, SiC and SiGe.
Can be applied to compound semiconductors based on hydrogenated amorphous silicon.

【0010】[0010]

【作用】水素化非晶質半導体においては、電子デバイス
として安定した電気的特性を得るため、水素を含有する
ことによりランダムネットワーク中の未結合手を水素で
終端している。しかしながら、半導体中のこのような水
素の一部は、光照射や熱処理により、半導体中を比較的
容易に拡散し、その際に半導体の微視的構造を変化さ
せ、光劣化や熱劣化等を生じさせる。本発明の製造方法
では、薄膜形成後、内面が水素化されていない空孔を薄
膜内に形成することにより、この空孔中に拡散し易い水
素をトラップし、上記の微視的構造変化の発生を抑制さ
せている。
In the hydrogenated amorphous semiconductor, in order to obtain stable electric characteristics as an electronic device, hydrogen is contained to terminate dangling bonds in the random network with hydrogen. However, a part of such hydrogen in the semiconductor diffuses relatively easily in the semiconductor by light irradiation or heat treatment, and at that time, the microscopic structure of the semiconductor is changed, and photodegradation or thermal deterioration is caused. Give rise to. In the manufacturing method of the present invention, after the thin film is formed, by forming pores whose inner surface is not hydrogenated in the thin film, hydrogen which is easily diffused in the pores is trapped, and the above microscopic structural change The occurrence is suppressed.

【0011】本発明において薄膜に形成する空孔は、内
面が水素化されていない空孔であり、未結合手を有する
ため、拡散してきた水素を空孔の内面の未結合手と結合
させて、空孔内に水素を固定することができる。空孔内
の未結合手に結合した水素はエネルギー的に安定であ
り、それ以降水素は拡散しなくなる。従って、このよう
な空孔中に水素を固定することにより、半導体中におけ
る拡散し易い水素の量を減少させることができる。従っ
て、本発明の製造方法に従えば、拡散し易い水素量を減
少させ、安定した特性を示す水素化非晶質半導体を製造
することができる。
In the present invention, the vacancies formed in the thin film are vacancies whose inner surface is not hydrogenated and have dangling bonds, so that the diffused hydrogen is bonded to dangling bonds on the inner surface of the vacancies. , Hydrogen can be fixed in the pores. Hydrogen bonded to dangling bonds in the holes is energetically stable, and hydrogen will not diffuse thereafter. Therefore, by fixing hydrogen in such holes, the amount of hydrogen that easily diffuses in the semiconductor can be reduced. Therefore, according to the manufacturing method of the present invention, the hydrogenated amorphous semiconductor showing stable characteristics can be manufactured by reducing the amount of easily diffused hydrogen.

【0012】[0012]

【実施例】図1(a)に示すように、基板1の上にシラ
ンガスを用いプラズマCVD法により基板温度180℃
で非晶質シリコン層2を形成する。
EXAMPLE As shown in FIG. 1 (a), a substrate temperature of 180 ° C. was obtained by plasma CVD using silane gas on the substrate 1.
Then, the amorphous silicon layer 2 is formed.

【0013】次に、図1(b)に示すように、例えばA
rイオンなどの高エネルギー粒子3を、イオンガンなど
を用いて、1M〜5MeVの加速電圧で非晶質シリコン
層2に打ち込み、10Å〜100Åの大きさの空孔4を
形成する。空孔4内は、高エネルギー粒子3によってシ
リコンネットワークが切断されるので、多くの未結合手
5が存在する。
Next, as shown in FIG. 1B, for example, A
High-energy particles 3 such as r ions are implanted into the amorphous silicon layer 2 with an accelerating voltage of 1 M to 5 MeV using an ion gun or the like to form holes 4 having a size of 10Å to 100Å. Since the silicon network is cut by the high-energy particles 3 in the holes 4, many dangling bonds 5 are present.

【0014】次に、図1(c)に示すように、150℃
で1時間熱処理を行うことにより、非晶質シリコン層2
中を拡散する水素が、空孔4内に達し、空孔4の内面の
未結合手と結合し、空孔4内に水素が固定される。これ
により、非晶質シリコン層2中に拡散し易い水素が存在
しなくなり、水素拡散に伴う特性の不安定が生じなくな
る。
Next, as shown in FIG. 1C, 150 ° C.
Amorphous silicon layer 2 is formed by performing heat treatment for 1 hour.
The hydrogen that diffuses inside reaches the inside of the holes 4, is bonded to the dangling bonds on the inner surface of the holes 4, and the hydrogen is fixed inside the holes 4. As a result, hydrogen that easily diffuses does not exist in the amorphous silicon layer 2, and the instability of characteristics due to hydrogen diffusion does not occur.

【0015】次に、本発明の製造方法に従い製造した水
素化非晶質半導体の光導電率を測定することにより、そ
の特性安定性を評価した。プラズマCVD法によりシラ
ンガスを用いて非晶質シリコン膜(膜厚3000Å)を
形成し、膜形成後そのまま評価したものを比較例Aと
し、膜形成後Arイオンを、3MeVの加速電圧でイオ
ンガンにより打ち込み空孔を形成した後、150℃で1
時間熱処理したものを実施例Bとした。また非晶質シリ
コン膜形成後、炭素イオンを3MeVの加速電圧でイオ
ンガンにより打ち込み空孔を形成した後、150℃で1
時間熱処理したものを実施例Cとした。光照射条件は、
AM−1.5、100W/cm2 とした。
Next, the stability of characteristics was evaluated by measuring the photoconductivity of the hydrogenated amorphous semiconductor produced according to the production method of the present invention. Amorphous silicon film (thickness 3000 Å) was formed by using silane gas by plasma CVD method, and the evaluation after the film formation was made as Comparative Example A. After film formation, Ar ions were implanted with an accelerating voltage of 3 MeV by an ion gun. After forming pores, 1 at 150 ℃
Example B was heat-treated for a period of time. After forming the amorphous silicon film, carbon ions are implanted by an ion gun at an accelerating voltage of 3 MeV to form holes, and then at 150 ° C. for 1 hour.
Example C was heat-treated for a period of time. The light irradiation conditions are
AM-1.5 and 100 W / cm 2 .

【0016】図2は、以上のようにして形成した非晶質
シリコン薄膜の光導電率の光照射時間に伴う変化を示す
図である。図2から明らかなように、比較例Aの太陽電
池では、約100時間の照射後、光導電率が約1桁減少
しているのに対し、本発明に従う実施例B及び実施例C
では、それぞれ30%及び20%の低下にとどまってい
る。
FIG. 2 is a diagram showing changes in photoconductivity of the amorphous silicon thin film formed as described above with light irradiation time. As is clear from FIG. 2, in the solar cell of Comparative Example A, the photoconductivity was decreased by about one digit after irradiation for about 100 hours, while Example B and Example C according to the present invention were used.
Then, it decreased to 30% and 20% respectively.

【0017】次に、本発明の製造方法に従い製造した水
素化非晶質半導体層を光活性層として用いたpin型非
晶質太陽電池を作製し、その特性を評価した。ガラス基
板の上にITOからなる透明導電膜を形成し、この上に
p層(膜厚100Å)、i層(膜厚3000Å)及びn
層(膜厚300Å)をプラズマCVD法により順次形成
した。ドーパントガスとしては、B2 6 ガス及びPH
3 ガスを用いた。次に金属電極を形成して太陽電池構造
を完成させた後、変換効率の光照射時間に対する変化を
測定した。光照射条件は、AM−1.5、100W/c
2 とした。
Next, a pin type amorphous solar cell using the hydrogenated amorphous semiconductor layer manufactured according to the manufacturing method of the present invention as a photoactive layer was manufactured, and its characteristics were evaluated. A transparent conductive film made of ITO is formed on a glass substrate, and a p layer (film thickness 100Å), an i layer (film thickness 3000Å) and n are formed on the transparent conductive film.
Layers (thickness 300Å) were sequentially formed by the plasma CVD method. B 2 H 6 gas and PH are used as the dopant gas.
Three gases were used. Next, after the metal electrode was formed to complete the solar cell structure, the change in conversion efficiency with respect to the light irradiation time was measured. Light irradiation conditions are AM-1.5, 100 W / c
It was set to m 2 .

【0018】非晶質シリコン半導体のi層を形成する際
に本発明の製造方法を適用した。すなわち、実施例B
は、i層を形成を形成した後、Arイオンを3MeVの
加速電圧でイオンガンにより打ち込み空孔を形成させた
後、150℃で1時間熱処理を行ったものである。ま
た、実施例Cは、炭素イオンを3MeVの加速電圧でイ
オンガンにより打ち込み空孔を形成させた後、150℃
で1時間熱処理を施したものである。また比較例Aは、
従来法によりi層を形成した例であり、i層形成後にイ
オンの打ち込み及び熱処理を行わずに、引続きn層を形
成させた。なお、i層の形成条件以外は、全て同じにし
た。
The manufacturing method of the present invention was applied when forming the i layer of the amorphous silicon semiconductor. That is, Example B
After forming the i layer, Ar ions were implanted by an ion gun with an acceleration voltage of 3 MeV to form holes, and then heat treatment was performed at 150 ° C. for 1 hour. In Example C, carbon ions were implanted with an ion gun at an accelerating voltage of 3 MeV to form holes, and then the temperature was changed to 150 ° C.
It was heat-treated for 1 hour. Comparative Example A also
This is an example of forming the i-layer by the conventional method, and the n-layer was subsequently formed without performing ion implantation and heat treatment after forming the i-layer. All were the same except for the formation conditions of the i layer.

【0019】図3は、以上のようにして得られた各太陽
電池の変換効率の光照射時間に伴う変化を示した図であ
る。図3に示されるように、本発明に従う実施例B及び
実施例Cの太陽電池は、比較例Aの太陽電池に比べ、光
照射時間に伴う変換効率の低下が著しく小さくなってい
ることがわかる。
FIG. 3 is a diagram showing a change in conversion efficiency of each solar cell obtained as described above with light irradiation time. As shown in FIG. 3, it can be seen that the solar cells of Examples B and C according to the present invention have a significantly smaller decrease in conversion efficiency with light irradiation time than the solar cells of Comparative Example A. .

【0020】[0020]

【発明の効果】本発明の製造方法に従えば、薄膜形成後
に形成される空孔内に、半導体内を移動する水素をトラ
ップし、半導体内における拡散し易い水素の量を減少さ
せることができる。従って、光照射や熱によって生じる
特性の変化を低減させることができ、光劣化及び熱劣化
を抑制することができる。
According to the manufacturing method of the present invention, the amount of hydrogen that easily diffuses in the semiconductor can be reduced by trapping hydrogen that moves in the semiconductor in the holes formed after the thin film is formed. . Therefore, changes in characteristics caused by light irradiation or heat can be reduced, and light deterioration and heat deterioration can be suppressed.

【0021】本発明は、上記の太陽電池などのデバイス
に限定されることなく、薄膜TFTや光センサ等の他の
非晶質半導体デバイスの製造にも適用することができる
ものである。
The present invention is not limited to devices such as the above-mentioned solar cells, but can be applied to the manufacture of other amorphous semiconductor devices such as thin film TFTs and optical sensors.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法に従う一実施例を示す断面
図。
FIG. 1 is a sectional view showing an embodiment according to a manufacturing method of the present invention.

【図2】本発明の製造方法に従う実施例において製造さ
れた水素化非晶質シリコン膜の光導電率の光照射時間に
伴う変化を示す図。
FIG. 2 is a diagram showing a change in photoconductivity of a hydrogenated amorphous silicon film manufactured in an example according to a manufacturing method of the present invention with light irradiation time.

【図3】本発明の製造方法に従い製造された半導体膜を
光活性層として用いた太陽電池の変換効率の光照射時間
に伴う変化を示す図。
FIG. 3 is a diagram showing a change in conversion efficiency of a solar cell using a semiconductor film manufactured according to the manufacturing method of the present invention as a photoactive layer with light irradiation time.

【符号の説明】[Explanation of symbols]

1…基板 2…水素化非晶質シリコン層 3…高エネルギー粒子 4…空孔 5…未結合手 1 ... Substrate 2 ... Hydrogenated amorphous silicon layer 3 ... High-energy particles 4 ... Voids 5 ... Dangling bonds

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/324 Z 29/786 21/336 31/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 21/324 Z 29/786 21/336 31/04

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素化非晶質半導体の薄膜を形成する工
程と、 形成後の前記薄膜に内面が水素化されていない空孔を形
成する工程と、 前記空孔形成後の薄膜を熱処理する工程とを備える水素
化非晶質半導体の製造方法。
1. A step of forming a thin film of a hydrogenated amorphous semiconductor, a step of forming holes whose inner surface is not hydrogenated in the formed thin film, and a heat treatment of the thin film after forming the holes. A method of manufacturing a hydrogenated amorphous semiconductor, comprising:
JP7019425A 1995-02-07 1995-02-07 Method for producing hydrogenated amorphous silicon Expired - Fee Related JP3016701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7019425A JP3016701B2 (en) 1995-02-07 1995-02-07 Method for producing hydrogenated amorphous silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7019425A JP3016701B2 (en) 1995-02-07 1995-02-07 Method for producing hydrogenated amorphous silicon

Publications (2)

Publication Number Publication Date
JPH08213404A true JPH08213404A (en) 1996-08-20
JP3016701B2 JP3016701B2 (en) 2000-03-06

Family

ID=11998925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7019425A Expired - Fee Related JP3016701B2 (en) 1995-02-07 1995-02-07 Method for producing hydrogenated amorphous silicon

Country Status (1)

Country Link
JP (1) JP3016701B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054473A1 (en) * 2000-12-28 2002-07-11 Tadahiro Ohmi Semiconductor device and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054473A1 (en) * 2000-12-28 2002-07-11 Tadahiro Ohmi Semiconductor device and its manufacturing method
AU2002217545B2 (en) * 2000-12-28 2005-03-17 Tadahiro Ohmi Semiconductor device and its manufacturing method
US6975018B2 (en) 2000-12-28 2005-12-13 Tadahiro Ohmi Semiconductor device

Also Published As

Publication number Publication date
JP3016701B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
US5700333A (en) Thin-film photoelectric conversion device and a method of manufacturing the same
US7736960B2 (en) Process for producing a photoelectric conversion device
US4196438A (en) Article and device having an amorphous silicon containing a halogen and method of fabrication
US20060213550A1 (en) Thin-film photoelectric conversion device and a method of manufacturing the same
TWI580058B (en) Solar cell
KR19990072884A (en) Method for producing a polycrystalline silicon structure
JPH04233772A (en) Manufacture of chacopyrite solar battery
US20160190375A1 (en) Hetero-junction solar cell and manufacturing method thereof
US20100126580A1 (en) CdTe deposition process for solar cells
US10461212B2 (en) Method for processing silicon material
US6777714B2 (en) Crystalline silicon semiconductor device and method for fabricating same
JP3394646B2 (en) Thin film solar cell and method of manufacturing thin film solar cell
JPH0697070A (en) Manufacture of polycrystalline silicon film
JPH08213404A (en) Manufacture of hydrogenated amorphous semiconductor
JPH0345555B2 (en)
US5242504A (en) Photovoltaic device and manufacturing method therefor
JP3983492B2 (en) Method for producing crystalline silicon film
JP4159592B2 (en) Solar cell
JP2003218030A (en) Crystalline silicon semiconductor device and its manufacturing method
CN115623833A (en) Method for manufacturing a laminated photovoltaic cell
JP3423102B2 (en) Photovoltaic element
JP2003092419A (en) Silicon crystal thin film semiconductor device and its manufacturing method
JP3434256B2 (en) Crystalline silicon film and method for manufacturing the same
JPH07142754A (en) Manufacture of polycrystal silicon element
JPH04291967A (en) Manufacture of photovoltaic device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees