JPH08213233A - Anisotropic thin film and manufacture thereof - Google Patents

Anisotropic thin film and manufacture thereof

Info

Publication number
JPH08213233A
JPH08213233A JP9989595A JP9989595A JPH08213233A JP H08213233 A JPH08213233 A JP H08213233A JP 9989595 A JP9989595 A JP 9989595A JP 9989595 A JP9989595 A JP 9989595A JP H08213233 A JPH08213233 A JP H08213233A
Authority
JP
Japan
Prior art keywords
thin film
particles
magnetic field
anisotropic
anisotropic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9989595A
Other languages
Japanese (ja)
Other versions
JP3576263B2 (en
Inventor
Koji Ujiie
孝二 氏家
Tomohiro Inoue
智博 井上
Shinichiro Nakajima
伸一郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP09989595A priority Critical patent/JP3576263B2/en
Publication of JPH08213233A publication Critical patent/JPH08213233A/en
Application granted granted Critical
Publication of JP3576263B2 publication Critical patent/JP3576263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/007Thin magnetic films, e.g. of one-domain structure ultrathin or granular films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
    • H01F41/26Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids using electric currents, e.g. electroplating

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE: To provide an anisotropic thin film by a method wherein particles of diamagnetic anisotropy are oriented in a magnetic field and formed into a thin film. CONSTITUTION: Particles of diamagnetic anisotropy are oriented in a certain order in an anisotropic thin film. The thin film is formed in such a manner that particles of diamagnetic anisotropy are formed into a thin film through a solvent evaporation method, a micell electrolytic method, a photoelectric- chemical micell thin film forming method, an electrodeposition method, or a photopolimerizing monomer dispersion method under conditions such as Δx.H2>1.5kT (H : magnetic flux density [G], k: Boltzmann constant, 1.381×10<-16> [erg.K<-1> ], T: absolute temperature [K]).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機能性薄膜及びその製
膜技術に関し、詳しくは、電子写真感光体、太陽電池な
どに有用な異方導電性膜(異方導電性膜、異方光導電性
膜など)や光メモリー、カラーフィルターなどに有用な
光学的異方性膜、及びこれらの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a functional thin film and a film forming technology thereof, and more specifically, it is useful for anisotropic electroconductive films (anisotropic electroconductive film, anisotropic photoconductive film) useful for electrophotographic photoreceptors, solar cells and the like. The present invention relates to an optically anisotropic film useful for a conductive film), an optical memory, a color filter, etc., and a manufacturing method thereof.

【0002】[0002]

【従来の技術】機能性薄膜には多くの種類のものが知ら
れているが、その中で、特開昭62−281310号、
特開平5−253466号などに開示されている磁気異
方性薄膜は磁気異方性や加工特性を利用し、磁気記録材
料、電磁波吸収体、電流変換素子などの広範な分野に使
用されている。
2. Description of the Related Art Many types of functional thin films are known. Among them, JP-A-62-281310,
The magnetic anisotropic thin film disclosed in JP-A-5-253466 utilizes magnetic anisotropy and processing characteristics and is used in a wide range of fields such as magnetic recording materials, electromagnetic wave absorbers, and current conversion elements. .

【0003】しかし、これら文献に記載された技術は常
磁性を有する磁気異方性薄膜の製造法の紹介であり、そ
こに記述された内容は、反磁性の異方性秩序配向(高次
構造制御)により薄膜化させた異方性(光学的、電気
的、光導電性、熱的、機械的など)を有する薄膜とは本
質的に異なるものである。もっともPhysica B
164(1990)222−228、North−H
olland(YAMAGISHI等)においては、反
磁性の異方性を利用してポリマー繊維を磁場中で配向さ
せることが開示されている。この技術内容は方法論的に
は本発明と同じであるが、ここには薄膜化の手段につい
ては何等触れられていない。
However, the technique described in these documents is an introduction of a method for producing a magnetic anisotropic thin film having paramagnetism, and the contents described therein are diamagnetic anisotropic ordered orientation (higher order structure). It is essentially different from a thin film having anisotropy (optically, electrically, photoconductively, thermally, mechanically, etc.) thinned by control. Most Physica B
164 (1990) 222-228, North-H.
olland (YAMAGISHI, etc.) discloses that polymer fibers are oriented in a magnetic field by utilizing diamagnetic anisotropy. This technical content is methodologically the same as that of the present invention, but nothing about thinning means is mentioned here.

【0004】[0004]

【課題が解決しようとする課題】本発明の目的は、反磁
性の異方性を有する粒子を磁場中で配向させて薄膜化す
ることにより異方性のある薄膜を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thin film having anisotropy by orienting particles having diamagnetic anisotropy in a magnetic field to form a thin film.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために、いろいろな角度から研究・検討を重
ねてきた結果、本発明を完成するに至った。すなわち、
本発明によれば (1)第一に、反磁性の異方性を有する粒子が一定の秩
序をもって配向してなることを特徴とする異方性薄膜、
及び (2)第二に、磁場中に存在する前記(1)の粒子を Δx・H2>1.5kT H:磁束密度[G] k:Boltzmann定数 1.381×10-16[erg・K-1] T:絶対温度[K] の条件下で薄膜化することを特徴とする異方性薄膜の製
造方法、が提供される。
The present inventors have completed the present invention as a result of conducting research and study from various angles in order to achieve the above object. That is,
According to the present invention: (1) First, an anisotropic thin film characterized in that particles having diamagnetic anisotropy are oriented in a certain order.
And (2) Secondly, the particles of the above (1) present in the magnetic field are Δx · H 2 > 1.5 kTH: magnetic flux density [G] k: Boltzmann constant 1.381 × 10 −16 [erg · K] -1 ] T: A method for producing an anisotropic thin film, which comprises thinning the film under the condition of an absolute temperature [K].

【0006】以下に本発明をさらに詳細に説明する。先
にあげたYAMAGISHI等によれば、反磁性の異方
性Δxを有する粒子(分子、高分子、微結晶、凝集体な
どで、微粒子を含む)が磁束密度Hの磁場中に置かれた
場合、Δxが10-27[erg・G-2]程度の通常のπ
電子系有機分子では、300K(室温)において、約1
000[T](107G)の超強磁場下まで、その配向
の度合を表すオーダーパラメータ〈m〉は、 〈m〉=Δx・H2/15kT で表わされる。
Hereinafter, the present invention will be described in more detail. According to the above-mentioned YAMAGISHI, etc., when particles having diamagnetic anisotropy Δx (molecules, polymers, microcrystals, aggregates, etc., including fine particles) are placed in a magnetic field of magnetic flux density H , Δx is a normal π of about 10 -27 [erg · G -2 ]
At 300K (room temperature), it is about 1 for electronic organic molecules.
000 [T] to super high magnetic field of a (10 7 G), the order parameter <m> which represents the degree of orientation is represented by <m> = Δx · H 2 / 15kT.

【0007】ところが、一般に形成できる磁場は、定常
磁場で約20[T]まで、ハイブリッド等の特殊な構成
によっても約40[T]までであり、パルス磁場の場合
には、非破壊で約100[T]まで、破壊型で約100
0[T]までという報告がある。従って、粒子が配向し
たと認める基準として、〈m〉>0.1を設定すると、 Δx>10-28[erg・G-2] が導かれる。これは最低の条件であり、通常は、H=1
0[T]程度、〈m〉≒1が最も実用的であり、この場
合は Δx>10-23[erg・G-2] といった条件が導き出されてくる。これは、1個の粒子
中に、10-27[erg・G-2]程度の反磁性の異方性
を有する分子が、104個以上、一定の秩序をもって含
まれていることを意味する。本発明の異方性薄膜は反磁
性の異方性を有する粒子が一定の秩序をもって配向され
たものから形成されているが、このものは望ましくは、
異方性固体薄膜である。
However, the magnetic field that can be generally formed is up to about 20 [T] in a stationary magnetic field and up to about 40 [T] even with a special configuration such as a hybrid. In the case of a pulsed magnetic field, about 100 [N] is nondestructive. Up to [T], about 100 in destructive type
There is a report of up to 0 [T]. Therefore, if <m >> 0.1 is set as a standard for recognizing that the particles are oriented, Δx> 10 −28 [erg · G −2 ] is derived. This is the minimum requirement, usually H = 1
About 0 [T], <m> ≈1 is the most practical, and in this case, a condition such as Δx> 10 −23 [erg · G −2 ] is derived. This means that one particle contains 10 4 or more molecules having a diamagnetic anisotropy of about 10 −27 [erg · G −2 ] with a certain order. . The anisotropic thin film of the present invention is formed of particles having diamagnetic anisotropy oriented with a certain order.
It is an anisotropic solid thin film.

【0008】一方、薄膜化の条件としては、〈m〉>
0.1の条件下では、 Δx・H2>1.5kT であるが、最も有用な〈m〉≒1.0を実現する為に
は、 Δx・H2>15kT が必要となる。例えば、前述のH=10[T]、Δx=
10-23[erg・G-2]の場合、左辺は10-13、右辺
は6.2×10-13となり、Δxをもう一桁大きくする
(粒子中の分子数を多くする、即ち、もう少し大きな微
結晶を使う)必要がある。
On the other hand, the conditions for thinning are <m >>
Under the condition of 0.1, Δx · H 2 > 1.5 kT, but Δx · H 2 > 15 kT is necessary to realize the most useful <m> ≈1.0. For example, the above-mentioned H = 10 [T], Δx =
In the case of 10 −23 [erg · G −2 ], the left side is 10 −13 , the right side is 6.2 × 10 −13 , and Δx is increased by another digit (the number of molecules in the particle is increased, that is, a little more). Need to use large crystallites).

【0009】薄膜化の方法については、磁場中で使用可
能な手段であれば何でも良いが、磁場が限られた空間に
のみ形成されることを考慮すれば、気相法は装置が大が
かりになり具合が悪く、液相法が適している。簡単に
は、磁場中で溶媒を蒸発させて薄膜を作製する溶媒蒸発
法がある。薄膜を作製する方法としては、電解重合法や
LB法等があるが、これらの方法は、複数の分子からな
る粒子(例えば微結晶)には不向きである。
Any thin film forming method can be used as long as it can be used in a magnetic field. However, considering that the magnetic field is formed only in a limited space, the vapor phase method requires a large-scale apparatus. The liquid phase method is suitable because it is unwell. Briefly, there is a solvent evaporation method in which a solvent is evaporated in a magnetic field to form a thin film. As a method for forming a thin film, there are an electrolytic polymerization method, an LB method and the like, but these methods are not suitable for particles (for example, microcrystals) composed of a plurality of molecules.

【0010】この様な粒子(例えば顔料粒子)を薄膜化
する方法としては、ミセル電解法(EMD法)、光電気
化学的ミセル薄膜形成法(PMD法)、電着法が挙げら
れる。その他、反磁性の異方性を有する粒子を光重合性
モノマーに分散させて、モノマーを光重合させる方法も
効果的である。ここで、EMD法とは、特殊なミセル分
散液中に顔料結晶等の粒子を分散させ、このミセルを電
気化学的に分解することにより、ミセル分散液中に担持
された粒子を電極上にデポジションさせる方法である。
また、PMD法とは上記の反応を光のアシストで行う方
法であり、光によるパターニングが可能になる。
As a method for making such particles (eg, pigment particles) into a thin film, there are a micelle electrolysis method (EMD method), a photoelectrochemical micelle thin film forming method (PMD method), and an electrodeposition method. In addition, a method in which particles having diamagnetic anisotropy are dispersed in a photopolymerizable monomer and the monomer is photopolymerized is also effective. Here, the EMD method is a method in which particles such as pigment crystals are dispersed in a special micelle dispersion and the micelles are electrochemically decomposed to remove the particles carried in the micelle dispersion onto the electrode. It is a method of positioning.
Further, the PMD method is a method in which the above reaction is performed with the assistance of light, and patterning by light becomes possible.

【0011】粒子としては、本発明の異方性薄膜の応用
を考えると、フタロシアニンやペリレン系等の顔料結晶
等の使用が望ましいが、これに限定されず、前記の条件
を満足する微結晶、凝集体、高分子などが選択される。
Considering the application of the anisotropic thin film of the present invention, it is preferable to use pigment crystals such as phthalocyanine and perylene pigments, but the present invention is not limited to these, and microcrystals satisfying the above conditions, Aggregates, polymers, etc. are selected.

【0012】[0012]

【実施例】次に実施例をあげて本発明をさらに具体的に
説明する。
EXAMPLES Next, the present invention will be described more specifically with reference to examples.

【0013】実施例1 T.Saji等の方法(J,Amer,Chem.,1
13(1991)450−456)を用いてX型フタロ
シアニン顔料のミセル分散溶液を調製した。このフタロ
シアニン顔料分散ミセル溶液を、超電導磁石により発生
させた15[T]の磁場中にて電解した。その際、陽極
には酸化スズ透明電極、陰極にはPt板を用いた。その
結果、透明電極上にはX型フタロシアニン薄膜が得られ
た。なお、磁場は電極に垂直に印加した。比較として、
磁場を存在させない(H=0[T])こと以外は同様に
して、X型フタロシアニンのミセル電解薄膜を作製し
た。
Example 1 T. Saji et al. (J, Amer, Chem., 1
13 (1991) 450-456) was used to prepare a micelle dispersion solution of an X-type phthalocyanine pigment. The phthalocyanine pigment-dispersed micelle solution was electrolyzed in a magnetic field of 15 [T] generated by a superconducting magnet. At that time, a tin oxide transparent electrode was used for the anode, and a Pt plate was used for the cathode. As a result, an X-type phthalocyanine thin film was obtained on the transparent electrode. The magnetic field was applied perpendicularly to the electrodes. For comparison,
A micelle electrolytic thin film of X-type phthalocyanine was prepared in the same manner except that no magnetic field was present (H = 0 [T]).

【0014】この様にして、得られた薄膜の吸収スペク
トルから、775nmの吸光度を測定すると、 A(H=15[T])/A(H=0[T]) = 0.
5 となった。これは、ミセル中に分散したX型フタロシア
ニン微結晶が、磁場の印加により、反磁性の異方性に起
因する力を受け、平均的に、フタロシアニン環平面を磁
場に並行する方向に秩序配列して薄膜化した為と考えら
れる。(反磁性磁化率は、フタロシアニン分子の場合、
フタロシアニン平面に垂直の方向に大きく、平面に平行
な方向との差Δx(分子)=0.9×10-27[erg
・G-2]である。)
When the absorbance at 775 nm was measured from the absorption spectrum of the thin film thus obtained, A (H = 15 [T]) / A (H = 0 [T]) = 0.
It became 5. This is because X-type phthalocyanine microcrystals dispersed in micelles receive a force due to the anisotropy of diamagnetism when a magnetic field is applied, and the phthalocyanine ring plane is, on average, orderedly arranged in a direction parallel to the magnetic field. It is thought that this is due to thinning. (The diamagnetic susceptibility of a phthalocyanine molecule is
Phthalocyanine is large in the direction perpendicular to the plane and the difference from the direction parallel to the plane Δx (molecule) = 0.9 × 10 -27 [erg
・ G -2 ]. )

【0015】SEM TEMによる観察の結果、この場
合、フタロシアニン粒子は、長軸が1000[Å]程
度、短軸が100[Å]程度の微結晶から成っている。
フタロシアニン微結晶の密度を近似的に1.0と仮定す
ると、この中には少なくとも106個のフタロシアニン
分子が含まれている。従って、この微結晶のΔxは10
-21[erg・G-2]程度となり、H=15[T]=
1.5×105[G]を用いて、Δx・H2〜2×10
-11>15kTとなる。この薄膜は、ミセル電解法によ
り得られ、H=0場合とH≠0の場合の吸光度の違いか
ら、明らかに磁場が存在する場合、微粒子は、フロシア
ニン環平面を磁場に平行な方向、即ち、反磁性の異方性
に起因する力により、粒子が安定化する方向に秩序配列
することがわかる。
As a result of observation by SEM TEM, in this case, the phthalocyanine particles are composed of fine crystals having a long axis of about 1000 [Å] and a short axis of about 100 [Å].
Assuming that the density of the phthalocyanine crystallites is approximately 1.0, it contains at least 10 6 phthalocyanine molecules. Therefore, Δx of this crystallite is 10
-21 [erg · G -2 ] and H = 15 [T] =
Using 1.5 × 10 5 [G], Δx · H 2 to 2 × 10
-11 > 15kT. This thin film was obtained by the micellar electrolysis method. Due to the difference in absorbance between H = 0 and H ≠ 0, when a magnetic field was apparently present, the fine particles were observed in the direction parallel to the magnetic field of the furocyanine ring plane, that is, It can be seen that the particles are ordered in a stabilizing direction by the force due to the anisotropy of diamagnetism.

【0016】さらに、この磁場中で得られた薄膜の電気
電導度を測定し、H=0の場合と比べてみたところ σ(H=15[T])/σ(H=0[T]) ≧ 10 と10倍以上の異方性を示した。
Further, the electric conductivity of the thin film obtained in this magnetic field was measured and compared with the case of H = 0. Σ (H = 15 [T]) / σ (H = 0 [T]) The anisotropy was ≧ 10 and was 10 times or more.

【0017】実施例2 1,3,5−トリフェニルベンゼン50[mg]を10
[ml]のアセトンに溶解させ、直径40[mm]のシ
ャーレに入れ、H=8[T]の磁場中で溶媒を蒸発させ
た。なお、磁場は、液面に平行に(重力方向に垂直に)
印加した。磁場の無い場合、シャーレの底に幅0.5〜
1.5[mm]、長さ3〜5[mm]の柱状結晶が一様
に析出した。一方、H=8[T]の場合、幅0.2[m
m]程度、長さ1〜2[mm]の針状(拡大すると柱状
に見える)結晶が、その長軸を磁場に垂直に向けて秩序
配列して析出した。H=8[T]の場合、更にこの針状
結晶が長軸を重力方向に向けやはり磁場に垂直に、即ち
シャーレの壁面に沿って析出した。
Example 2 10 mg of 1,3,5-triphenylbenzene (50 mg) was used.
It was dissolved in [ml] of acetone, placed in a petri dish having a diameter of 40 [mm], and the solvent was evaporated in a magnetic field of H = 8 [T]. The magnetic field is parallel to the liquid surface (perpendicular to the direction of gravity).
Applied. If there is no magnetic field, the width of 0.5 ~
Columnar crystals of 1.5 [mm] and a length of 3 to 5 [mm] were uniformly deposited. On the other hand, when H = 8 [T], the width is 0.2 [m
m] and a length of 1 to 2 [mm], needle-like crystals (which look like columns when enlarged) were deposited in an ordered arrangement with their long axes perpendicular to the magnetic field. In the case of H = 8 [T], the needle-shaped crystals were further precipitated with the long axis oriented in the direction of gravity and also perpendicular to the magnetic field, that is, along the wall surface of the petri dish.

【0018】1,3,5−トリフェニルベンゼンのΔx
molは6×10-5[cm3/mol]程度と予想され、分
子1個当りのΔxは10-28[erg・G-2]である。
磁場がH=8[T]の場合の単結晶粒子の大きさを0.
1mm×0.1mm×1mm(10-5cm3)程度とす
ると、この中には1018個以上の1,3,5−トリフェ
ニルベンゼン分子が一定の秩序(結晶構造)をもって含
まれている。従って、この微粒子の反磁性の異方性Δx
は1010[erg・G-2]程度と考えられる。H=8
[T](8×104[G])なので、Δx・H2の値は
0.64となり、15kTをはるかに越えている。従っ
て、この場合溶媒蒸発に伴って生成した微結晶は、反磁
性の異方性に起因する力を受け、一定の秩序(結晶長軸
を磁場に垂直に向ける)をもって配向したものと考えら
れる。
Δx of 1,3,5-triphenylbenzene
The mol is expected to be about 6 × 10 −5 [cm 3 / mol], and Δx per molecule is 10 −28 [erg · G −2 ].
When the magnetic field is H = 8 [T], the size of the single crystal particle is 0.
If the size is about 1 mm × 0.1 mm × 1 mm (10 −5 cm 3 ), then 10 18 or more 1,3,5-triphenylbenzene molecules are contained in a certain order (crystal structure). . Therefore, the diamagnetic anisotropy Δx of these fine particles
Is considered to be about 10 10 [erg · G −2 ]. H = 8
Since it is [T] (8 × 10 4 [G]), the value of Δx · H 2 is 0.64, far exceeding 15 kT. Therefore, in this case, it is considered that the microcrystals generated by the evaporation of the solvent receive a force caused by the anisotropy of diamagnetism and are oriented with a certain order (the crystal long axis is perpendicular to the magnetic field).

【0019】実施例3 Y.Harima等の方法(Thin Solid F
ilms,224(1993)101−104)に従
い、ITO上のTiO2薄膜のうえに、PMD法により
銅フタロシアニン薄膜をパターン状に形成した。磁場は
TiO2電極面に垂直に印加し、その強さはH=10
[T]であった。得られた銅フタロシアニンの薄膜パタ
ーンの一部を濃度計を用いて測定したところ、 O・D(H=10[T])/O・D(H=0[T]) = 0.1 なる結果が得られた。これは、反磁性の異方性により、
磁場印加時に銅フタロシアニン微結晶が一定の秩序をも
って配向した結果と考えられる。
Example 3 Y. Harima et al.'S method (Thin Solid F
lms, 224 (1993) 101-104), a copper phthalocyanine thin film was formed in a pattern on the TiO 2 thin film on ITO by the PMD method. The magnetic field is applied perpendicularly to the TiO 2 electrode surface and its strength is H = 10.
It was [T]. When a part of the obtained copper phthalocyanine thin film pattern was measured using a densitometer, OD (H = 10 [T]) / OD (H = 0 [T]) = 0.1 was gotten. This is due to the anisotropy of diamagnetic
It is considered that the copper phthalocyanine microcrystals were oriented with a certain order when a magnetic field was applied.

【0020】実施例4 β型フタロシアニン0.5[g]、水溶性ポリエステル
アルキド0.2[g]、水100[ml]をロールミル
で分散した後、ITO平行平板電極を陽極とし、白金電
極を陰極として電着を行なった。印加電圧は40
[V]、約1[μm]厚の電着膜を得た。その際、磁場
の印加は電極に対し垂直に行なった。
Example 4 After β-type phthalocyanine 0.5 [g], water-soluble polyester alkyd 0.2 [g] and water 100 [ml] were dispersed by a roll mill, an ITO parallel plate electrode was used as an anode and a platinum electrode was used. Electrodeposition was performed as the cathode. Applied voltage is 40
An electrodeposited film of [V] and a thickness of about 1 [μm] was obtained. At that time, the magnetic field was applied perpendicularly to the electrodes.

【数1】 となって、磁気異方性に基づく力により、異方性が発現
された。
[Equation 1] Then, the anisotropy was developed by the force based on the magnetic anisotropy.

【0021】実施例5 光重合性メタクリル酸メチルモノマー液(MMA)10
[g]に、非線形光学材料として知られている2−メチ
ル−4−ニトロアニリン(MNA、粒径4[μm]以
下)1[g]を分散させ、H=15[T]の磁場中に1
時間放置した後、光重合した。構成は、2枚の石英ガラ
ス板間(ギャップ1[mm])に上記分散液をはさみ、
紫外線を照射する。得られたポリマー薄膜のSHG(第
二高調波)は次のように測定された。 I(H=15[T])/I(H=0[T]) > 102 (I:SHG強度 ω=1064[nm] 2ω=532[nm]) これは、反磁性の異方性に基づくトルクにより、磁場中
でMNA微結晶が一定の配向を持って配列した状態(単
結晶に近づいた状態)で固体化した為と考えられる。同
様な実施例は、ガラスキャピラリーを用いても可能であ
った。即ち、内径0.5[mm]のガラスキャピラリー
に毛細管現象を利用して、上記分散液を充填する。これ
を磁場中に約1時間放置後、紫外アルゴンレーザーを用
いて、磁場中光重合した。このようにして得られた試料
に、Nd−YAGレーザーの1064[nm]のパルス
光を照射し、532[nm]のSH光を観測した結果、 I(H=15[T])/I(H=0[T]) ≧ 10 であった。
Example 5 Photopolymerizable Methyl Methacrylate Monomer Liquid (MMA) 10
2-methyl-4-nitroaniline (MNA, particle size 4 [μm] or less) 1 [g], which is known as a non-linear optical material, is dispersed in [g], and is dispersed in a magnetic field of H = 15 [T]. 1
After standing for a time, photopolymerization was performed. The structure is such that the above dispersion liquid is sandwiched between two quartz glass plates (gap 1 [mm]),
Irradiate with ultraviolet rays. The SHG (second harmonic) of the obtained polymer thin film was measured as follows. I (H = 15 [T]) / I (H = 0 [T])> 10 2 (I : SHG intensity ω = 1064 [nm] 2ω = 532 [nm]) This is a difference in diamagnetism. It is considered that the torque based on the directionality solidified the MNA microcrystals in a state where they were aligned with a certain orientation in the magnetic field (a state close to a single crystal). A similar example was possible using a glass capillary. That is, a glass capillary having an inner diameter of 0.5 [mm] is filled with the above dispersion liquid by utilizing the capillary phenomenon. This was left in a magnetic field for about 1 hour, and then photopolymerized in a magnetic field using an ultraviolet argon laser. The sample obtained in this manner was irradiated with 1064 [nm] pulsed light of an Nd-YAG laser, and SH light of 532 [nm] was observed. As a result, I (H = 15 [T]) / I (H = 0 [T]) ≧ 10.

【0022】[0022]

【発明の効果】本発明によれば、従来H=103[T]
の磁場が使えることを想定して、〈m〉=0.1以上の
オーダーパラメータを持もつ異方性(電気的、光学的、
熱的など)有機薄膜が得られる。また本発明によれば、
粒子が強磁性や常磁性を示す場合は意味をなさないが、
π電子系を有する有機分子や長鎖アルキル基を有する有
機分子の利用に特に好適である。
According to the present invention, the conventional H = 10 3 [T]
Assuming that the magnetic field can be used, the anisotropy (electrical, optical,
An organic thin film (such as thermal) is obtained. According to the invention,
It does not make sense if the particles exhibit ferromagnetism or paramagnetism,
It is particularly suitable for utilizing an organic molecule having a π-electron system or an organic molecule having a long-chain alkyl group.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 反磁性の異方性を有する粒子が一定の秩
序をもって配向されてなることを特徴とする異方性薄
膜。
1. An anisotropic thin film, characterized in that particles having diamagnetic anisotropy are oriented with a certain order.
【請求項2】 前記粒子1個当りの反磁性の異方性Δx
が Δx>10-28[erg・G-2] であることを特徴とする請求項1記載の異方性薄膜。
2. A diamagnetic anisotropy Δx per particle.
Is Δx> 10 −28 [erg · G −2 ], The anisotropic thin film according to claim 1.
【請求項3】 磁場中に存在する請求項1記載の粒子を Δx・H2>1.5kT H:磁束密度[G] k:Boltzmann定数 1.381×10-16[erg・K-1] T:絶対温度[K] の条件下で薄膜化することを特徴とする異方性薄膜の製
造方法。
3. The particles according to claim 1 existing in a magnetic field, wherein Δx · H 2 > 1.5 kT H: magnetic flux density [G] k: Boltzmann constant 1.381 × 10 −16 [erg · K −1 ] T: A method for producing an anisotropic thin film, which comprises thinning the film under the condition of an absolute temperature [K].
【請求項4】 前記薄膜化する手段として溶媒蒸発法を
用いることを特徴とする請求項3記載の異方性薄膜の製
造方法。
4. The method for producing an anisotropic thin film according to claim 3, wherein a solvent evaporation method is used as the thinning means.
【請求項5】 前記薄膜化する手段としてミセル電解法
を用いることを特徴とする請求項3記載の異方性薄膜の
製造方法。
5. The method for producing an anisotropic thin film according to claim 3, wherein a micelle electrolysis method is used as the thinning means.
【請求項6】 前記薄膜化する手段として光電気化学的
ミセル薄膜形成法を用いることを特徴とする請求項3記
載の異方性薄膜の製造方法。
6. The method for producing an anisotropic thin film according to claim 3, wherein a photoelectrochemical micelle thin film forming method is used as the thinning means.
【請求項7】 前記薄膜化する手段として電着法を用い
ることを特徴とする請求項3記載の異方性薄膜の製造方
法。
7. The method for producing an anisotropic thin film according to claim 3, wherein an electrodeposition method is used as the thinning means.
【請求項8】 前記薄膜化する手段として光重合性モノ
マーに粒子を分散させて行なうことを特徴とする請求項
3記載の異方性薄膜の製造方法。
8. The method for producing an anisotropic thin film according to claim 3, wherein particles are dispersed in a photopolymerizable monomer to form the thin film.
JP09989595A 1994-12-08 1995-03-30 Method for producing anisotropic thin film Expired - Fee Related JP3576263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09989595A JP3576263B2 (en) 1994-12-08 1995-03-30 Method for producing anisotropic thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33117194 1994-12-08
JP6-331171 1994-12-08
JP09989595A JP3576263B2 (en) 1994-12-08 1995-03-30 Method for producing anisotropic thin film

Publications (2)

Publication Number Publication Date
JPH08213233A true JPH08213233A (en) 1996-08-20
JP3576263B2 JP3576263B2 (en) 2004-10-13

Family

ID=26440991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09989595A Expired - Fee Related JP3576263B2 (en) 1994-12-08 1995-03-30 Method for producing anisotropic thin film

Country Status (1)

Country Link
JP (1) JP3576263B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041627A3 (en) * 1999-03-30 2005-12-07 Polymatech Co., Ltd. Heat conductive molded body and manufacturing method thereof and semiconductor device
CZ305355B6 (en) * 2014-06-20 2015-08-12 České Vysoké Učení Technické V Praze, Fakulta Elektrotechnická Device for electrodeposition of ferromagnetic layer in magnetic field

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041627A3 (en) * 1999-03-30 2005-12-07 Polymatech Co., Ltd. Heat conductive molded body and manufacturing method thereof and semiconductor device
CZ305355B6 (en) * 2014-06-20 2015-08-12 České Vysoké Učení Technické V Praze, Fakulta Elektrotechnická Device for electrodeposition of ferromagnetic layer in magnetic field

Also Published As

Publication number Publication date
JP3576263B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
Gourrier et al. Characterization of unusually large “pseudo-single crystal” of β-nickel hydroxide
Suarez et al. Evidence for nucleation-growth, redistribution, and dissolution mechanisms during the course of redox cycling experiments on the C60/NBu4C60 solid-state redox system: voltammetric, SEM, and in situ AFM studies
JP2004002621A (en) Carbon nanotube-containing paste, carbon nanotube-dispersed composite, and method for producing carbon nanotube-dispersed composite
WO1995025984A1 (en) Biopolymer-based nonlinear optical materials
Feng et al. A Large‐Area Patterned Hydrogen‐Bonded Organic Framework Electrochromic Film and Device
Danzig et al. Preparation and electrical conductivity of copper tetra-2, 3-pyridinoporphyrazine and copper tetra-2, 3-pyrazinoporphyrazine
Goldberg et al. Resistive effects in thin electrochemical cells. Digital simulations of electrochemistry in electron spin resonance cells
JPH08213233A (en) Anisotropic thin film and manufacture thereof
JPH0762594A (en) Thin film, its production and functional element using the thin film
Spătaru et al. Anodic Deposition of RuO x∙ nH2O at conductive diamond films and conductive diamond powder for electrochemical capacitors
WO1988007538A1 (en) Ferrocene derivatives and process for preparing thin organic film
Li et al. A template/electrochemical deposition method for fabricating silver nanorod arrays based on porous anodic alumina
Galletto et al. Second harmonic generation response by gold nanoparticles at the polarized water/2-octanone interface: from dispersed to aggregated particles
Bouriche et al. Electrochemical, optical and morphological properties of poly (N-vinylcarbazole/TiO2) and (N-vinylcarbazole/aniline)/TiO2 copolymer prepared by electrochemical polymerization
Qiao et al. Illumination-Induced Changes in Methylammonium Lead Bromine Perovskites. An In Situ 2H NMR Study
JP3577388B2 (en) Nonlinear optical element and method of manufacturing the same
Shrestha et al. Electrochemical deposition of praseodymium oxide on tin-doped indium oxide as a thin sensing film
EP0615152B1 (en) Method of preparing materials having good non-linear optical properties
Robertson et al. An ellipsometric study of polyaniline film deposition and conversion
Hsiung et al. Polar ordering of quasiliquid crystals—An optical second harmonic generation study
JP6161117B2 (en) Conductive film using polycarbazole nanostructure
DE4211087A1 (en) Organic photoconductor with liquid crystalline properties
WO1995004306A1 (en) Organic charge transfer compounds with liquid crystal properties
Rajesh et al. Morphological investigation of polyvinyl-4-methoxy cinnamate photopolymer thin and ultrathin films under linear photopolymerization
JP3363994B2 (en) Thin film manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040706

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090716

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090716

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees