JPH08213021A - Composite electrode containing organic disulfide compound, manufacture thereof, and lithium secondary battery - Google Patents

Composite electrode containing organic disulfide compound, manufacture thereof, and lithium secondary battery

Info

Publication number
JPH08213021A
JPH08213021A JP7020216A JP2021695A JPH08213021A JP H08213021 A JPH08213021 A JP H08213021A JP 7020216 A JP7020216 A JP 7020216A JP 2021695 A JP2021695 A JP 2021695A JP H08213021 A JPH08213021 A JP H08213021A
Authority
JP
Japan
Prior art keywords
sulfur
bond
disulfide compound
organic disulfide
polyaniline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7020216A
Other languages
Japanese (ja)
Other versions
JP3070820B2 (en
Inventor
Tadashi Tonomura
正 外邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7020216A priority Critical patent/JP3070820B2/en
Priority to US08/589,247 priority patent/US5665492A/en
Publication of JPH08213021A publication Critical patent/JPH08213021A/en
Application granted granted Critical
Publication of JP3070820B2 publication Critical patent/JP3070820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a composite electrode in which drop in electrode capacity is small even after charging discharging cycles are repeated by integrally supporting a composition containing a specific organic disulfide compound and polyaniline in a copper foil. CONSTITUTION: A composition (example: N-methyl-2-pyrrolidone solution) containing an organic disulfide compound (example: 2,5-dimercapto-1,3,4- thiadiazyl) which generates a S-metal ion (containing a proton) bond by cleavage of S-S bond by electrolytic reduction and regenerates the original S-S bond from the S-metal ion bond by electrolytic oxidation and polyaniline, preferably containing 0.01-10 pts.wt. polyaniline based on 1 pts.wt. organic disulfide compound is applied, for example, to a copper foil, dried, and vacuum-heated for integrally supporting. Or, a composition containing the organic disulfide compound, polyaniline, and metallic copper is integrally supported in a conductive substrate (example: titanium foil).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電池、エレクトロクロ
ミック表示素子、センサー、メモリー等の電気化学素子
に用いられる有機ジスルフィド化合物を含む複合電極、
その製造方法、および複合電極を正極に用いたリチウム
二次電池に関する。
The present invention relates to a composite electrode containing an organic disulfide compound used in electrochemical devices such as batteries, electrochromic display devices, sensors and memories.
The manufacturing method and a lithium secondary battery using a composite electrode as a positive electrode.

【0002】[0002]

【従来の技術】1971年に導電性のポリアセチレンが
発見されて以来、導電性高分子を電極材料に用いると、
軽量で高エネルギー密度の電池や、大面積のエレクトロ
クロミック素子、微小電極を用いた生物化学センサー等
の電気化学素子が期待できることから、導電性高分子電
極が盛んに検討されている。ポリアセチレンは、不安定
で電極としては実用性に乏しいことから、他のπ電子共
役系導電性高分子が検討され、ポリアニリン、ポリピロ
ール、ポリアセン、ポリチオフェンといった比較的安定
な高分子が開発され、これらを正極に用いたリチウム二
次電池が開発されるに及んでいる。これらの電池のエネ
ルギー密度は40〜80Wh/kgと言われている。最
近では、さらに高エネルギー密度が期待できる有機材料
として、米国特許第4,833,048号に有機ジスルフィド化
合物が提案されている。この化合物は、最も簡単には
+S−R−S−M+ と表される(Rは脂肪族ある
いは芳香族の有機基、Sは硫黄、M+はプロトンあるい
は金属カチオン)。この化合物は電解酸化によりS−S
結合を介して互いに結合し、 M+S−R−S−S−R−S−S−R−S−M+ のような形でポリマー化する。こうして生成したポリマ
ーは、電解還元により元のモノマーに戻る。カチオン
(M+)を供給、捕捉する金属Mと有機ジスルフィド化
合物を組み合わせた金属ーイオウ二次電池が前述の米国
特許に提案されている。この電池は、150Wh/kg
以上と、通常の二次電池に匹敵あるいはそれ以上のエネ
ルギー密度が期待できる。
2. Description of the Related Art Since conductive polyacetylene was discovered in 1971, when conductive polymers were used as electrode materials,
Electroconductive polymer electrodes have been actively studied because they can be expected to be lightweight and high energy density batteries, large-area electrochromic devices, and electrochemical devices such as biochemical sensors using microelectrodes. Since polyacetylene is unstable and poor in practicality as an electrode, other π-electron conjugated conductive polymers have been studied, and relatively stable polymers such as polyaniline, polypyrrole, polyacene, and polythiophene have been developed. A lithium secondary battery used for the positive electrode is being developed. The energy density of these batteries is said to be 40-80 Wh / kg. Recently, an organic disulfide compound has been proposed in US Pat. No. 4,833,048 as an organic material which can be expected to have a higher energy density. This compound is the easiest
M + - over S-R-S chromatography -M + and represented by (R is an aliphatic or aromatic organic group, S is sulfur, M + is a proton or a metal cation). This compound is S-S by electrolytic oxidation.
Through binding bind to each other, M + - to polymerize at over S-R-S-S- R-S-S-R-S chromatography -M + form such as. The polymer thus produced returns to the original monomer by electrolytic reduction. A metal-sulfur secondary battery in which a metal M for supplying and capturing a cation (M + ) and an organic disulfide compound is combined is proposed in the above-mentioned US patent. This battery is 150 Wh / kg
From the above, an energy density comparable to or higher than that of an ordinary secondary battery can be expected.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな有機ジスルフィド化合物は、酸化還元(充放電)を
繰り返すと、電極容量が徐々に減少するという問題があ
る。有機ジスルフィド化合物を酸化(充電)すると、電
気絶縁性でかつイオン伝導性に乏しいポリジスルフィド
化合物が生成する。ポリジスルフィド化合物は、電解質
に対する溶解性が乏しい。一方、このポリジスルフィド
化合物が還元(放電)によりモノマー化した際に生成す
る有機ジスルフィドモノマーは、電解質に対する溶解性
が高い。従って、酸化還元を繰り返すと、モノマー化し
たジスルフィドが一部電解質に溶解し、溶解したモノマ
ーは、電極中にもともと位置していた場所と異なる場所
でポリマー化する。そして、カーボン等の導電剤から離
れてポリマー化して析出したポリジスルフィド化合物
は、電極内の電子・イオン伝導のネットワークから孤立
し、電極反応に関与しなくなる。酸化還元を繰り返す
と、孤立するポリジスルフィド化合物が増加して、電池
の容量が徐々に低下する。また、溶解性の高い有機ジス
ルフィドモノマーは、動きやすく、正極からセパレータ
あるいは電解質内、さらには負極側に散逸する。このた
め、有機ジスルフィド化合物を含む電極を正極に用いた
電池は、充放電効率が下がったり、充放電サイクル寿命
が短いという欠点を有していた。
However, such an organic disulfide compound has a problem that the electrode capacity gradually decreases when oxidation-reduction (charge / discharge) is repeated. When an organic disulfide compound is oxidized (charged), a polydisulfide compound having electrical insulation and poor ion conductivity is produced. Polydisulfide compounds have poor solubility in electrolytes. On the other hand, the organic disulfide monomer produced when this polydisulfide compound is converted into a monomer by reduction (discharge) has high solubility in an electrolyte. Therefore, when oxidation-reduction is repeated, the monomerized disulfide is partially dissolved in the electrolyte, and the dissolved monomer is polymerized at a place different from the place originally located in the electrode. Then, the polydisulfide compound which is polymerized and deposited away from the conductive agent such as carbon is isolated from the electron / ion conduction network in the electrode and is not involved in the electrode reaction. When the redox is repeated, the amount of isolated polydisulfide compound increases and the capacity of the battery gradually decreases. In addition, the highly soluble organic disulfide monomer is easy to move and dissipates from the positive electrode into the separator or the electrolyte, and further to the negative electrode side. Therefore, a battery using an electrode containing an organic disulfide compound as a positive electrode has drawbacks of low charge / discharge efficiency and short charge / discharge cycle life.

【0004】本発明は、このような問題を解決し、有機
ジスルフィド化合物の高エネルギー密度という特徴を損
なわず、かつ充放電効率が高く保持され、良好な充放電
サイクル特性が得られる複合電極を提供することを目的
とするものである。本発明は、またその複合電極を用い
たリチウム二次電池を提供することを目的とする。
The present invention solves such problems and provides a composite electrode which does not impair the high energy density of the organic disulfide compound, maintains high charge / discharge efficiency, and obtains good charge / discharge cycle characteristics. The purpose is to do. Another object of the present invention is to provide a lithium secondary battery using the composite electrode.

【0005】[0005]

【課題を解決するための手段】本発明の複合電極は、電
解還元により硫黄ー硫黄結合が開裂して硫黄ー金属イオ
ン(プロトンを含む)結合を生成し、電解酸化により硫
黄ー金属イオン結合が元の硫黄ー硫黄結合を再生する有
機ジスルフィド化合物とポリアニリンを含有する組成物
を金属銅箔に担持一体化したものである。また、本発明
の複合電極は、有機ジスルフィド化合物とポリアニリン
と金属銅を含有する組成物を導電性基板に担持一体化し
たものである。
In the composite electrode of the present invention, the sulfur-sulfur bond is cleaved by electrolytic reduction to generate a sulfur-metal ion (including proton) bond, and the electrolytic oxidation causes the sulfur-metal ion bond to be changed. This is a composition in which an organic disulfide compound that regenerates the original sulfur-sulfur bond and a composition containing polyaniline are supported and integrated on a metallic copper foil. Further, the composite electrode of the present invention is one in which a composition containing an organic disulfide compound, polyaniline and metallic copper is supported and integrated on a conductive substrate.

【0006】本発明の複合電極の製造方法は、有機ジス
ルフィド化合物をN−アルキルー2ーピロリドンに溶解
する第1工程、得られた溶液にポリアニリン粉末を添加
溶解する第2工程、第2工程で得られた溶液を金属銅箔
上に塗布し、真空中あるいは不活性ガス雰囲気中におい
て加熱する第3工程を有する。さらに、本発明の複合電
極の製造方法は、有機ジスルフィド化合物をN−アルキ
ルー2ーピロリドンに溶解する第1工程、得られた溶液
に金属銅粉末を添加混合する第2工程、金属銅粉末が混
合された溶液にポリアニリン粉末を添加混合する第3工
程、ポリアニリン粉末が添加混合された前記溶液を導電
性基板上に塗布し、真空中あるいは不活性ガス雰囲気中
において加熱する第4工程を有する。本発明のリチウム
二次電池は、上記の有機ジスルフィド化合物を含有する
複合電極からなる正極、非水電解質、および負極を具備
する。ここで、Nーアルキルー2ーピロリドンは、式R
ーNC46O(Rは水素原子またはメチル基、エチル
基、nーブチル基などのアルキル基を表す。)で表され
る。
The method for producing a composite electrode of the present invention is obtained by the first step of dissolving an organic disulfide compound in N-alkyl-2-pyrrolidone, the second step of adding and dissolving polyaniline powder to the obtained solution, and the second step. The third step of applying the obtained solution on a metal copper foil and heating in a vacuum or in an inert gas atmosphere is included. Further, in the method for producing a composite electrode of the present invention, the first step of dissolving the organic disulfide compound in N-alkyl-2-pyrrolidone, the second step of adding and mixing the metal copper powder to the obtained solution, and the metal copper powder are mixed. There is a third step of adding and mixing the polyaniline powder to the solution, and a fourth step of applying the solution in which the polyaniline powder is added and mixed on a conductive substrate and heating in a vacuum or in an inert gas atmosphere. The lithium secondary battery of the present invention comprises a positive electrode, a non-aqueous electrolyte, and a negative electrode which are composed of a composite electrode containing the above organic disulfide compound. Here, the N-alkyl-2-pyrrolidone has the formula R
-NC 4 H 6 O (R represents a hydrogen atom or an alkyl group such as a methyl group, an ethyl group, and an n-butyl group).

【0007】[0007]

【作用】複合電極の構成成分の一つである銅は、充放電
反応によりポリアニリンおよび有機ジスルフィド化合物
と複合体を形成し、有機ジスルフィド化合物およびその
ポリアニリンとの複合体が電解質に溶解し、正極から散
逸するのを防止する作用がある。このため、優れた充放
電サイクル寿命を得ることができる。さらに、本発明の
複合電極は、ポリアニリンと有機ジスルフィド化合物の
みの複合電極に較べ、より平坦な電圧を与える。このよ
うな作用について本発明者は次のように考えている。複
合電極を正極、金属リチウムを負極として、リチウム塩
を溶解した非プロトン性の有機溶媒よりなる電解質中
で、正極を定電流で充電すると、金属リチウムに対し
3.2〜3.4V付近に溶解析出電圧を有する金属銅は
銅カチオンとなって溶解する。この溶解反応とともに、
有機ジスルフィド化合物のS原子とポリアニリンのN原
子との間のN−S結合により複合体を形成している有機
ジスルフィド化合物の酸化が起こり、有機ジスルフィド
化合物は重合してポリジスルフィドとなる。次に、この
電池を放電すると、ポリアニリンのN位でN−S結合で
複合体を形成しているポリジスルフィドは、ジスルフィ
ドモノマーアニオンとなり、このアニオンは、充電で生
成した銅カチオンと対イオンあるいは銅錯体を形成し、
ジスルフィドモノマーが電解質中に拡散し正極中から散
逸するのを防ぐ。さらに、ポリアニリンのN原子と結合
している有機ジスルフィド化合物のS原子以外のS原子
は、銅カチオンと対イオンあるいは銅錯体を形成し、ポ
リアニリンと有機ジスルフィド化合物と銅とが分子的に
つながり正極内で高次構造を形成し、複合体の電解質中
への溶解・拡散も防ぐ。この対イオンあるいは銅錯体の
形成は、銅カチオン自体の電解質中への拡散も防止し、
自己放電の原因となる銅カチオンが負極に至り金属リチ
ウムと反応するのを防止する。さらに、この対イオンあ
るいは銅錯体は、電池反応の反応種となるため、ポリア
ニリンと有機ジスルフィド化合物のみの複合電極に較べ
より平坦な電圧を与える。
[Function] Copper, which is one of the components of the composite electrode, forms a complex with the polyaniline and the organic disulfide compound by the charge / discharge reaction, and the organic disulfide compound and the complex with the polyaniline are dissolved in the electrolyte, It has the function of preventing dissipation. Therefore, an excellent charge / discharge cycle life can be obtained. Further, the composite electrode of the present invention gives a flatter voltage as compared with the composite electrode containing only polyaniline and an organic disulfide compound. The present inventor considers such an action as follows. When the composite electrode is used as a positive electrode and metallic lithium as a negative electrode, and the positive electrode is charged with a constant current in an electrolyte made of an aprotic organic solvent in which a lithium salt is dissolved, the positive electrode is dissolved at around 3.2 to 3.4 V with respect to metallic lithium. Copper metal having a deposition voltage dissolves as copper cations. With this dissolution reaction,
The N—S bond between the S atom of the organic disulfide compound and the N atom of polyaniline causes oxidation of the organic disulfide compound forming the complex, and the organic disulfide compound is polymerized to form polydisulfide. Next, when this battery is discharged, the polydisulfide forming a complex by N—S bond at the N-position of polyaniline becomes a disulfide monomer anion, and this anion and a copper cation produced by charging and a counter ion or a copper ion. Forming a complex,
Prevents the disulfide monomer from diffusing into the electrolyte and dissipating from the positive electrode. Furthermore, S atoms other than the S atom of the organic disulfide compound bonded to the N atom of polyaniline form a counterion or a copper complex with the copper cation, and the polyaniline, the organic disulfide compound and copper are molecularly connected to each other in the positive electrode. To form a higher-order structure and prevent the complex from dissolving and diffusing into the electrolyte. The formation of this counterion or copper complex also prevents the diffusion of the copper cation itself into the electrolyte,
It prevents the copper cation, which causes self-discharge, from reaching the negative electrode and reacting with metallic lithium. Further, since the counter ion or the copper complex serves as a reaction species of the battery reaction, it gives a flatter voltage as compared with the composite electrode containing only polyaniline and the organic disulfide compound.

【0008】また、本発明の複合電極の製造方法による
と、溶液の粘度を高くするポリアニリンの添加を有機ジ
スルフィド化合物を溶解した後、あるいはさらに金属銅
粉末を添加した後に行うので、有機ジスルフィド化合物
およびポリアニリンが均一にかつ高濃度にNーアルキル
ー2ーピロリドンに溶解した溶液、あるいは、有機ジス
ルフィド化合物およびポリアニリンが均一にかつ高濃度
にNーアルキルー2ーピロリドンに溶解し、かつ金属銅
粉末が均一に分散した液を得ることができる。こうして
調製した溶液を金属銅箔または導電性基板に塗布するの
で、高密度でしかも均一なピンホールのない複合電極膜
を得ることができる。さらに、ジスルフィド化合物およ
びポリアニリンの複合体と金属銅箔または金属銅粉末と
は、対イオンあるいは銅錯体を介して化学的に強固に接
着するため、安定した充放電特性を得ることができる。
Further, according to the method for producing a composite electrode of the present invention, the addition of polyaniline for increasing the viscosity of the solution is carried out after the organic disulfide compound is dissolved or after the metal copper powder is further added. A solution in which polyaniline is uniformly and highly dissolved in N-alkyl-2-pyrrolidone, or a solution in which an organic disulfide compound and polyaniline are uniformly and highly dissolved in N-alkyl-2-pyrrolidone and metal copper powder is uniformly dispersed Obtainable. Since the solution prepared in this way is applied to the metal copper foil or the conductive substrate, a high density and uniform pinhole-free composite electrode film can be obtained. Furthermore, since the complex of the disulfide compound and polyaniline and the metal copper foil or the metal copper powder are chemically and strongly bonded to each other via the counter ion or the copper complex, stable charge / discharge characteristics can be obtained.

【0009】[0009]

【実施例】本発明で用いるジスルフィド系化合物として
は、米国特許第4,833,048号に述べられてる一般式(R
(S)yn(式中Rは脂肪族基または芳香族基、Sは硫
黄、yは1以上の整数、nは2以上の整数である。)で
表される化合物を用いることができる。HSCH2CH2
SHで表されるジチオグリコール、C22S(SH)2
で表される2,5ージメルカプト−1,3,4ーチアジ
アジール、C3333で表されるsートリアジンー
2,4,6ートリチオール、C6643で表される7
ーメチルー2,6,8ートリメルカプトプリン、あるい
はC4642で表される4,5−ジアミノー2、6ー
ジメルカプトピリミジン等が用いられる。いずれも市販
品をそのまま用いることができる。また、これらの有機
ジスルフィド化合物を、沃素、フェリシアン化カリウ
ム、過酸化水素等の酸化剤を用いて化学重合法により、
あるいは電解酸化法により重合した有機ジスルフィド化
合物のダイマー、テトラマーを含む重合物を用いること
ができる。
Examples As the disulfide compound used in the present invention, the general formula (R shown in US Pat. No. 4,833,048) can be used.
A compound represented by (S) y ) n (wherein R is an aliphatic group or an aromatic group, S is sulfur, y is an integer of 1 or more, and n is an integer of 2 or more) can be used. . HSCH 2 CH 2
Dithioglycol represented by SH, C 2 N 2 S (SH) 2
2,5-dimercapto-1,3,4-thiadiazyl represented by, s-triazine-2,4,6-trithiol represented by C 3 H 3 N 3 S 3 , and 7 represented by C 6 H 6 N 4 S 3.
-Methyl-2,6,8 over tri-mercaptopurine, or C 4 H 6 N 4 S 4,5- diamino 2,6 over dimercaptopyrimidine like represented by 2 is used. In each case, a commercially available product can be used as it is. Further, these organic disulfide compounds are chemically polymerized using an oxidizing agent such as iodine, potassium ferricyanide, or hydrogen peroxide,
Alternatively, a polymer containing a dimer or tetramer of an organic disulfide compound polymerized by the electrolytic oxidation method can be used.

【0010】本発明に用いるポリアニリンとしては、ア
ニリンあるいはその誘導体を化学重合法あるいは電解重
合法により重合して得られるものが用いられる。特に、
脱ドープ状態の還元性ポリアニリンは、有機ジスルフィ
ドモノマーを有効に捕捉するので好ましい。ポリアニリ
ンの還元度(RDI)は、ポリアニリンをNーメチルー
2ーピロリドンに微量溶解した溶液の電子吸収スペクト
ルで、340nm付近の短波長側に現れるパラ置換ベン
ゼン構造に起因する吸収ピークの強度(I340)と、6
40nm付近の長波長側に現れるキノンジイミン構造に
起因する吸収ピークの強度(I640)との比により、R
DI=I640/I340で表される。RDIが0.5以下の
ポリアニリンが好適に用いられる。ポリアニリンの脱ド
ープの程度は、伝導度により表される。伝導度が10ー5
S/cm以下のポリアニリンが好適に用いられる。
As the polyaniline used in the present invention, those obtained by polymerizing aniline or a derivative thereof by a chemical polymerization method or an electrolytic polymerization method are used. In particular,
Dedoped polyaniline is preferable because it effectively traps the organic disulfide monomer. The degree of reduction (RDI) of polyaniline is the electron absorption spectrum of a solution of polyaniline dissolved in N-methyl-2-pyrrolidone in a trace amount, and the intensity (I 340 ) of the absorption peak due to the para-substituted benzene structure appearing on the short wavelength side around 340 nm. , 6
By the ratio with the intensity (I 640 ) of the absorption peak due to the quinonediimine structure appearing on the long wavelength side near 40 nm, R
It is represented by DI = I 640 / I 340 . Polyaniline having an RDI of 0.5 or less is preferably used. The degree of dedoping of polyaniline is represented by conductivity. Conductivity is 10-5
Polyaniline of S / cm or less is preferably used.

【0011】本発明の製造方法に用いるNーアルキルー
2ーピロリドンとしては、市販の試薬をそのまま、ある
いはゼオライト吸着剤により水分を20ppm以下に低
減したものを用いることができる。ピロリドン、N−メ
チルー2ーピロリドン、N−エチルー2ーピロリドン、
Nーブチルー2ーピロリドン等を用いることができる。
本発明に用いる金属銅箔あるいは金属銅は、純銅、銅以
外の金属を含有する銅合金の何れを用いてもよい。箔の
場合は、厚さは0.1μmから100μmが好ましい。
粉末状あるいは繊維状の金属銅あるいは銅合金の場合
は、粒径、繊維径、繊維長が100オングストロームか
ら10μmのものが好ましい。また、銅箔をチタン、ア
ルミニウム、ステンレス鋼等の金属箔と積層したクラッ
ド材や、銅メッキしたチタン、アルミニウム、ステンレ
ス鋼等の金属箔を用いてもよい。銅箔、クラッド材は、
平坦あるいは凹凸形状の表面、規則的あるいは不規則な
複数の貫通孔を有するものも用いることができる。さら
に、アクリル樹脂等の合成樹脂の粒子の表面を銅あるい
は銅合金でコーティングした材料を用いてもよい。有機
ジスルフィド化合物とポリアニリンの割合は、有機ジス
ルフィド化合物1重量部に対し、ポリアニリンが0.0
1〜10重量部が好ましい。金属銅の割合は、有機ジス
ルフィド化合物とポリアニリンとの合計量1重量部に対
し0.01〜10重量部が好ましい。
As the N-alkyl-2-pyrrolidone used in the production method of the present invention, commercially available reagents can be used as they are, or those whose water content is reduced to 20 ppm or less by a zeolite adsorbent can be used. Pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone,
N-butyl-2-pyrrolidone or the like can be used.
The metallic copper foil or metallic copper used in the present invention may be pure copper or a copper alloy containing a metal other than copper. In the case of foil, the thickness is preferably 0.1 μm to 100 μm.
In the case of powdery or fibrous metallic copper or copper alloy, those having a particle diameter, a fiber diameter and a fiber length of 100 angstrom to 10 μm are preferable. Further, a clad material in which a copper foil is laminated with a metal foil such as titanium, aluminum or stainless steel, or a metal foil such as copper-plated titanium, aluminum or stainless steel may be used. Copper foil and clad material are
It is also possible to use a flat or uneven surface having a plurality of regular or irregular through holes. Further, a material in which the surface of particles of synthetic resin such as acrylic resin is coated with copper or copper alloy may be used. The ratio of the organic disulfide compound and the polyaniline is 0.06 parts by weight of polyaniline to 1 part by weight of the organic disulfide compound.
1 to 10 parts by weight is preferable. The proportion of metallic copper is preferably 0.01 to 10 parts by weight based on 1 part by weight of the total amount of the organic disulfide compound and polyaniline.

【0012】本発明の製造方法で用いる導電性基板に
は、カーボンブラックとフッ素樹脂からなる多孔性のカ
ーボンフィルム、チタン、アルミニウム、ステンレス鋼
等の金属箔、ポリアニリンやポリピロール等の導電性高
分子膜フィルム、あるいは導電性高分子膜フィルムを塗
着あるいは被覆した金属箔やカーボンフィルムを用いる
ことができる。有機ジスルフィドが還元されて塩を形成
する際の金属カチオンM+には、前述の米国特許に述べ
られているアルカリ金属カチオン、アルカリ土類金属カ
チオンに加えて、銅カチオンを用いることができる。本
発明の複合電極には、導電性をさらに高める目的で導電
剤を添加してもよい。このような導電剤には、黒鉛粉
末、黒鉛繊維、アセチレンブラック粉末等の炭素粉末あ
るいは繊維、ポリアニリン以外のポリピロールやポリチ
オフェン等の導電性高分子がある。特に、本発明の製造
法で用いるNーアルキルー2ーピロリドンに可溶の次式
(1)で示されるポリピロールは、複合電極の製膜性を
高めかつ良好な導電性が得られるので好ましい。
The conductive substrate used in the manufacturing method of the present invention includes a porous carbon film made of carbon black and fluororesin, a metal foil such as titanium, aluminum or stainless steel, a conductive polymer film such as polyaniline or polypyrrole. A film, or a metal foil or carbon film coated or covered with a conductive polymer film can be used. As the metal cation M + when the organic disulfide is reduced to form a salt, a copper cation can be used in addition to the alkali metal cation and the alkaline earth metal cation described in the above-mentioned US Patent. A conductive agent may be added to the composite electrode of the present invention for the purpose of further increasing the conductivity. Such conductive agents include graphite powder, graphite fibers, carbon powder or fibers such as acetylene black powder, and conductive polymers such as polypyrrole and polythiophene other than polyaniline. In particular, the polypyrrole represented by the following formula (1), which is soluble in N-alkyl-2-pyrrolidone and is used in the production method of the present invention, is preferable because it can enhance the film-forming property of the composite electrode and obtain good conductivity.

【0013】[0013]

【化1】 Embedded image

【0014】(式中Rはアルキル基、nは重合度を示す
数であり、例えば、R=C49、C25で、C49:C
25=1:2であり、n=200〜1,000であ
る。)
(In the formula, R is an alkyl group, and n is a number indicating the degree of polymerization. For example, R = C 4 H 9 and C 2 H 5 and C 4 H 9 : C
2 H 5 = 1: 2, is n = 200 to 1,000. )

【0015】本発明の複合電極には、金属カチオンM+
を含有する電解質を添加してもよい。このような電解質
としては、有機ジスルフィドモノマーの拡散移動がしに
くい固体状あるいは半固体状の高分子電解質が好まし
い。ポリエチレンオキサイドにLiClO4、LiCF3
SO3、LiN(CF3SO22等のリチウム塩を溶解し
たポリマー固体電解質、プロピレンカーボネート、エチ
レンカーボネート等の非水溶媒中にLiClO4、Li
CF3SO3、LiBF4、LiPF6、LiN(CF3
22等のリチウム塩を溶解した電解液をポリアクリロ
ニトリル、ポリフッ化ビニリデン、ポリアクリル酸のよ
うな高分子でゲル化した半固体状の高分子電解質が有効
に用いられる。Nーアルキルー2ーピロリドンの前記リ
チウム塩を1M程度溶解した液体電解質を添加してもよ
い。さらに、本発明の複合電極には、製膜性を高めかつ
高い膜強度を得る目的で、ポリビニルピロリドン、ポリ
ビニルアルコール、ポリビニルピリジン等の有機高分子
バインダーを添加してもよい。
The composite electrode of the present invention comprises a metal cation M +
You may add the electrolyte containing. As such an electrolyte, a solid or semi-solid polymer electrolyte in which the organic disulfide monomer is less likely to diffuse and move is preferable. LiClO 4 , LiCF 3 on polyethylene oxide
LiClO 4 , Li in a polymer solid electrolyte in which a lithium salt such as SO 3 or LiN (CF 3 SO 2 ) 2 is dissolved, or in a non-aqueous solvent such as propylene carbonate or ethylene carbonate.
CF 3 SO 3 , LiBF 4 , LiPF 6 , LiN (CF 3 S
A semi-solid polymer electrolyte obtained by gelling an electrolytic solution in which a lithium salt such as O 2 ) 2 is dissolved with a polymer such as polyacrylonitrile, polyvinylidene fluoride, or polyacrylic acid is effectively used. A liquid electrolyte in which the lithium salt of N-alkyl-2-pyrrolidone is dissolved in about 1 M may be added. Furthermore, an organic polymer binder such as polyvinylpyrrolidone, polyvinyl alcohol, or polyvinyl pyridine may be added to the composite electrode of the present invention for the purpose of enhancing film forming properties and obtaining high film strength.

【0016】[実施例1]2,5ージメルカプト−1,
3,4ーチアジアジール(以下、DMcTと呼ぶ)粉末
2.0gをN−メチルー2ーピロリドン(以下、NMP
と呼ぶ)7.0gに溶解した。次いで、日東電工製のポ
リアニリン(商品名アニリード)をアルカリ溶液中で脱
ドープし、ヒドラジンで還元して得た伝導度が10ー8
/cm、RDI値が0.26の脱ドープ還元ポリアニリ
ン粉末1.0gを前記の溶液に加えて溶解し、青緑色の
粘ちょうなDMcT−ポリアニリン(以下、PAnと呼
ぶ)ーNMP溶液を得た。この溶液を、ギャップが15
0μmのアプリケータを用いて厚さ10μmの金属銅箔
上に塗布した後、アルゴンガス気流中において80℃で
15分間加熱し、さらに、80℃で60分間真空加熱
し、厚さ35μmの複合電極を得た。得られた複合電極
を2×2cm角に切断した。これを複合電極Aとする。
[Example 1] 2,5-dimercapto-1,
N-methyl-2-pyrrolidone (hereinafter NMP) was added to 2.0 g of 3,4-thiadiazyl (hereinafter referred to as DMcT) powder.
It was dissolved in 7.0 g. Then, Nitto Denko polyaniline (trade name Anirido) dedoped in an alkaline solution, the conductivity obtained by reduction with hydrazine is 10 @ 8 S
/ Cm, 1.0g of dedoped reduced polyaniline powder having an RDI value of 0.26 was added to the above solution and dissolved to obtain a blue-green viscous DMcT-polyaniline (hereinafter referred to as PAn) -NMP solution. . This solution should have a gap of 15
After coating on a metal copper foil having a thickness of 10 μm with an applicator having a thickness of 0 μm, it is heated in an argon gas stream at 80 ° C. for 15 minutes, and further vacuum heated at 80 ° C. for 60 minutes to form a composite electrode having a thickness of 35 μm Got The obtained composite electrode was cut into a 2 × 2 cm square. This is referred to as composite electrode A.

【0017】[比較例1]金属銅箔に代えて、厚さ10
μmのチタン箔を用いた以外は実施例1と同様にして厚
さ35μmの複合電極A’を得た。
[Comparative Example 1] Instead of the metal copper foil, a thickness of 10 was obtained.
A composite electrode A ′ having a thickness of 35 μm was obtained in the same manner as in Example 1 except that a titanium foil having a thickness of μm was used.

【0018】[実施例2]DMcT粉末2.0gをNM
P7.0gに溶解した。次いで、日東電工製のポリアニ
リン(商品名アニリード)をアルカリ溶液中で脱ドープ
しヒドラジンで還元して得た伝導度が10ー8S/cm、
RDI値が0.30の脱ドープ還元ポリアニリン粉末
1.0gを前記溶液に加えて溶解し、さらに、NMPを
9.7g添加して青緑色のDMcT−PAnーNMP溶
液を得た。さらに、前記の式(1)で示す可溶性ポリピ
ロール0.5gをNMP5.0gに溶解した溶液を加
え、粘ちょうなDMcT−PAn−PPy−NMP溶液
を得た。この溶液に、アセチレンブラック粉末を1.0
g添加して均一に混合し黒色のインクを得た。この黒色
のインクを、ギャップが250μmのアプリケータを用
いて厚さ30μmの金属銅箔上に塗布した後、アルゴン
ガス気流中において80℃で15分間加熱し、さらに、
80℃で60分間真空加熱し、厚さ55μの複合電極を
得た。得られた複合電極を2×2cm角に切断した。こ
れを複合電極Bとする。
Example 2 2.0 g of DMcT powder was added to NM
It was dissolved in 7.0 g of P. Then, Nitto Denko polyaniline (trade name Anirido) the conductivity obtained is reduced with dedoped with hydrazine in an alkaline solution is 10 @ 8 S / cm,
1.0 g of dedoped reduced polyaniline powder having an RDI value of 0.30 was added to and dissolved in the above solution, and 9.7 g of NMP was further added to obtain a blue-green DMcT-PAn-NMP solution. Further, a solution prepared by dissolving 0.5 g of the soluble polypyrrole represented by the above formula (1) in 5.0 g of NMP was added to obtain a viscous DMcT-PAn-PPy-NMP solution. 1.0% of acetylene black powder was added to this solution.
g was added and uniformly mixed to obtain a black ink. This black ink was applied onto a metal copper foil having a thickness of 30 μm with an applicator having a gap of 250 μm, and then heated at 80 ° C. for 15 minutes in an argon gas stream, and further,
It was vacuum-heated at 80 ° C. for 60 minutes to obtain a composite electrode having a thickness of 55 μ. The obtained composite electrode was cut into a 2 × 2 cm square. This is referred to as composite electrode B.

【0019】[比較例2]金属銅箔に代えて、厚さ30
μmのチタン箔を用いた以外は実施例2と同様にして厚
さ55μmの複合電極B’を得た。
[Comparative Example 2] Instead of the metallic copper foil, a thickness of 30
A composite electrode B ′ having a thickness of 55 μm was obtained in the same manner as in Example 2 except that a titanium foil having a thickness of μm was used.

【0020】[実施例3]DMcT粉末2.0gをNM
P7.0gに溶解した。次いで、日東電工製のポリアニ
リン(商品名アニリード)をアルカリ溶液中で脱ドープ
しヒドラジンで還元して得た伝導度が10ー8S/cm、
RDI値が0.25の脱ドープ還元ポリアニリン粉末
1.0gを前記溶液に溶解し、さらに、NMPを9.7
g添加して青緑色のDMcT−PAnーNMP溶液を得
た。さらに、平均分子量が25,000のポリビニルピ
ロリドン0.5gをNMP5.0gに溶解した溶液を加
え、粘ちょうなDMcT−PAn−PVP−NMP溶液
を得た。この溶液に、アセチレンブラック粉末を1.0
g添加して均一に混合し黒色のインクを得た。この黒色
のインクを、ギャップが250μmのアプリケータを用
いて厚さ30μmの金属銅箔上に塗布した後、アルゴン
ガス気流中において80℃で15分間加熱し、さらに、
80℃で60分間真空加熱し、厚さ55μmの複合電極
を得た。得られた複合電極を2×2cm角に切断した。
これを複合電極Cとする。
[Example 3] 2.0 g of DMcT powder was added to NM
It was dissolved in 7.0 g of P. Then, Nitto Denko polyaniline (trade name Anirido) the conductivity obtained is reduced with dedoped with hydrazine in an alkaline solution is 10 @ 8 S / cm,
1.0 g of dedoped reduced polyaniline powder having an RDI value of 0.25 was dissolved in the above solution, and NMP was added to 9.7.
g to obtain a blue-green DMcT-PAn-NMP solution. Further, a solution of 0.5 g of polyvinylpyrrolidone having an average molecular weight of 25,000 dissolved in 5.0 g of NMP was added to obtain a viscous DMcT-PAn-PVP-NMP solution. 1.0% of acetylene black powder was added to this solution.
g was added and uniformly mixed to obtain a black ink. This black ink was applied onto a metal copper foil having a thickness of 30 μm with an applicator having a gap of 250 μm, and then heated at 80 ° C. for 15 minutes in an argon gas stream, and further,
It was vacuum-heated at 80 ° C. for 60 minutes to obtain a composite electrode having a thickness of 55 μm. The obtained composite electrode was cut into a 2 × 2 cm square.
This is referred to as a composite electrode C.

【0021】[比較例3]金属銅箔に代えて、厚さ30
μのチタン箔を用いた以外は実施例3と同様にして厚さ
55μmの複合電極C’を得た。
[Comparative Example 3] Instead of the metallic copper foil, a thickness of 30
A composite electrode C ′ having a thickness of 55 μm was obtained in the same manner as in Example 3 except that the titanium foil of μ was used.

【0022】[実施例4]sートリアジンー2,4,6
ートリチオール(以下、TTAと呼ぶ)粉末1.5gを
NMP7.0gに溶解した。次いで、日東電工製のポリ
アニリン(商品名アニリード)をアルカリ溶液中で脱ド
ープしヒドラジンで還元して得た伝導度が10ー8S/c
m、RDI値が0.18の脱ドープ還元ポリアニリン粉
末1.0gを前記溶液に溶解し、さらに、NMPを9.
7g添加して青緑色のTTA−PAnーNMP溶液を得
た。さらに、式(1)で示す可溶性ポリピロール0.5
gをNMP5.0gに溶解した溶液を加え、粘ちょうな
TTA−PAn−PPy−NMP溶液を得た。この溶液
に、アセチレンブラック粉末を1.0g添加して均一に
混合し黒色のインクを得た。この黒色のインクを、ギャ
ップが250μmのアプリケータを用いて厚さ30μm
の金属銅箔上に塗布した後、アルゴンガス気流中におい
て80℃で15分間加熱し、さらに、80℃で60分間
真空加熱し、厚さ58μの複合電極を得た。得られた複
合電極を2×2cm角に切断して複合電極Dを得た。
[Example 4] s-triazine-2,4,6
-1.5 g of trithiol (hereinafter referred to as TTA) powder was dissolved in 7.0 g of NMP. Then, Nitto Denko polyaniline (trade name Anirido) the conductivity obtained is reduced with dedoped with hydrazine in an alkaline solution is 10 @ 8 S / c
m, 1.0 g of dedoped reduced polyaniline powder having an RDI value of 0.18 was dissolved in the above solution, and NMP was added to 9.
7 g was added to obtain a blue-green TTA-PAn-NMP solution. Furthermore, 0.5 of the soluble polypyrrole represented by the formula (1) is used.
The solution which melt | dissolved g in 5.0 g of NMP was added, and the viscous TTA-PAn-PPy-NMP solution was obtained. 1.0 g of acetylene black powder was added to this solution and uniformly mixed to obtain a black ink. This black ink is applied with an applicator with a gap of 250 μm to a thickness of 30 μm.
After being coated on the metal copper foil of No. 1, heated at 80 ° C. for 15 minutes in an argon gas stream, and further vacuum-heated at 80 ° C. for 60 minutes, a composite electrode having a thickness of 58 μ was obtained. The obtained composite electrode was cut into a 2 × 2 cm square to obtain a composite electrode D.

【0023】[比較例4]金属銅箔に代えて、厚さ30
μのチタン箔を用いた以外は実施例3と同様にして厚さ
58μmの複合電極D’を得た。
[Comparative Example 4] Instead of the metal copper foil, a thickness of 30 was used.
A composite electrode D ′ having a thickness of 58 μm was obtained in the same manner as in Example 3 except that μ titanium foil was used.

【0024】[実施例5]DMcT2.0gをNMP
7.0gに溶解した。この溶液に、平均粒径が1μmの
金属銅粉末0.5gを添加し、少し赤味を帯びたインク
を得た。次いで、日東電工製のポリアニリン(商品名ア
ニリード)をアルカリ溶液中で脱ドープしヒドラジンで
還元して得た伝導度が10ー8S/cm、RDI値が0.
28の脱ドープ還元ポリアニリン粉末1.0gを添加し
て溶解した。このインクを、厚さ10μmのチタン箔上
に150μmギャップのアプリケータを用いて塗布し、
アルゴンガス気流中において80℃で15分加熱したの
ち、1cmHgの減圧下において80℃で60分間加熱
処理し、厚さ35μmの複合電極を得た。得られた電極
を2×2cm角に切断して複合電極Eを得た。
[Example 5] 2.0 g of DMcT was added to NMP
It was dissolved in 7.0 g. 0.5 g of metallic copper powder having an average particle size of 1 μm was added to this solution to obtain a slightly reddish ink. Then, Nitto Denko polyaniline (trade name Anirido) the conductivity obtained is reduced with dedoped with hydrazine in an alkaline solution is 10 @ 8 S / cm, RDI value 0.
1.0 g of 28 dedoped reduced polyaniline powder was added and dissolved. This ink was applied onto a titanium foil having a thickness of 10 μm using an applicator with a gap of 150 μm,
After heating at 80 ° C. for 15 minutes in an argon gas stream, heat treatment was performed at 80 ° C. for 60 minutes under a reduced pressure of 1 cmHg to obtain a composite electrode having a thickness of 35 μm. The obtained electrode was cut into a 2 × 2 cm square to obtain a composite electrode E.

【0025】[比較例5]DMcT−PAn−NMP溶
液に金属銅粉末を添加しないインクを用いた以外は実施
例5と同様にして厚さ35μmの複合電極E’を得た。
[Comparative Example 5] A composite electrode E'having a thickness of 35 µm was obtained in the same manner as in Example 5 except that an ink containing no metallic copper powder was used in the DMcT-PAn-NMP solution.

【0026】[実施例6]DMcT粉末2.0gをNM
P7.0gに溶解した。さらに、NMPを9.7g添加
して青緑色のDMcT−NMP溶液を得た。この溶液
に、アセチレンブラック粉末を0.5gおよび平均粒径
が1μmの金属銅粉末を添加して均一に混合した。次い
で、日東電工製のポリアニリン(商品名アニリード)を
アルカリ溶液中で脱ドープしヒドラジンで還元して得た
伝導度が10ー8S/cm、RDI値が0.25の脱ドー
プ還元ポリアニリン粉末1.0gを溶解し、さらに平均
分子量が25,000のポリビニルピロリドン0.5g
をNMP2.5gに溶解した溶液を加え、黒色のインク
を得た。この黒色のインクを、ギャップが250μmの
アプリケータを用いて厚さ30μmのチタン箔上に塗布
した後、アルゴンガス気流中において80℃で15分間
加熱し、さらに、80℃で60分間真空加熱し、厚さ5
0μmの複合電極を得た。得られた複合電極を2×2c
m角に切断して複合電極Fを得た。
Example 6 2.0 g of DMcT powder was added to NM
It was dissolved in 7.0 g of P. Furthermore, 9.7 g of NMP was added to obtain a blue-green DMcT-NMP solution. To this solution, 0.5 g of acetylene black powder and metallic copper powder having an average particle size of 1 μm were added and uniformly mixed. Then, Nitto Denko polyaniline (trade name Anirido) the conductivity obtained is reduced with dedoped with hydrazine in an alkaline solution is 10 @ 8 S / cm, de-doped reduced polyaniline powder 1 of RDI value of 0.25 Dissolve 0.0 g, and 0.5 g of polyvinylpyrrolidone having an average molecular weight of 25,000.
Was added to 2.5 g of NMP to obtain a black ink. This black ink was applied on a titanium foil having a thickness of 30 μm with an applicator having a gap of 250 μm, and then heated at 80 ° C. for 15 minutes in an argon gas stream, and further heated at 80 ° C. for 60 minutes under vacuum. , Thickness 5
A composite electrode of 0 μm was obtained. 2 x 2c of the obtained composite electrode
A composite electrode F was obtained by cutting into m squares.

【0027】[比較例6]DMcT−PAn−PVP−
NMP溶液に金属銅粉末を添加しないインクを用いた以
外は実施例6と同様にして厚さ50μmの複合電極F’
を得た。
[Comparative Example 6] DMcT-PAn-PVP-
A composite electrode F ′ having a thickness of 50 μm was obtained in the same manner as in Example 6 except that an ink containing no metallic copper powder was used in the NMP solution.
I got

【0028】電極性能評価 実施例1、2、3、4、5、6、比較例1、2、3、
4、5、6で得た電極A、B、C、D、E、F、A’、
B’、C’、D’、E’、F’を正極、厚み0.3mm
の金属リチウムを負極、厚み0.6mmのゲル電解質を
セパレータ層として、偏平形電池A、B、C、D、E、
F、A’、B’、C’、D’、E’、F’を構成した。
なお、ゲル電解質は、LiBF4を1M溶解したプロピ
レンカーボネート/エチレンカーボネート(1:1容積
比)溶液20.7gをポリアクリロニトリル3.0gで
ゲル化したものである。これらの電池を20℃におい
て、0.2mAの一定電流で、4.65〜2.0Vの範
囲で繰り返し充放電し、各充放電サイクルにおける放電
容量(Q、単位:mAh)を測定し、充放電サイクル特
性を評価した。結果を表1に示す。また、電池A、
A’、電池B、B’、電池E、E’について充放電第5
サイクル目の放電電圧を図1、図2、図3にそれぞれ示
す。
Evaluation of Electrode Performance Examples 1, 2, 3, 4, 5, 6, Comparative Examples 1, 2, 3,
Electrodes A, B, C, D, E, F, A ′ obtained in 4, 5, 6
B ', C', D ', E', F'is the positive electrode, thickness 0.3 mm
Of the lithium metal as a negative electrode and a gel electrolyte having a thickness of 0.6 mm as a separator layer, the flat batteries A, B, C, D, E,
F, A ', B', C ', D', E ', F'was constructed.
The gel electrolyte is a gel of 20.7 g of a propylene carbonate / ethylene carbonate (1: 1 volume ratio) solution in which 1 M LiBF 4 was dissolved and which was gelled with 3.0 g of polyacrylonitrile. These batteries were repeatedly charged and discharged at a constant current of 0.2 mA at 20 ° C. in the range of 4.65 to 2.0 V, and the discharge capacity (Q, unit: mAh) in each charge / discharge cycle was measured. The discharge cycle characteristics were evaluated. The results are shown in Table 1. In addition, the battery A,
Charge / discharge No. 5 for A ', batteries B, B', batteries E, E '
The discharge voltage at the cycle is shown in FIGS. 1, 2 and 3, respectively.

【0029】[0029]

【表1】 [Table 1]

【0030】以上の結果から明らかなように、本発明に
従う実施例1、2、3、4、5、6の複合電極A、B、
C、D、E、Fを用いた電池は、それぞれ対応する比較
例の複合電極A’B’C’D’E’F’を用いた電池に
較べ、充放電サイクル中の放電容量の低下が小さい。ま
た、実施例の複合電極を用いた電池は、放電電圧につい
ては、比較例の複合電極を用いた電池に較べ、3.5〜
2.5Vの間で比較的平坦な電圧を与える。
As is clear from the above results, the composite electrodes A, B of Examples 1, 2, 3, 4, 5, 6 according to the present invention,
The batteries using C, D, E, and F have lower discharge capacities during charge / discharge cycles than the batteries using the corresponding composite electrodes A'B'C'D'E'F 'of comparative examples. small. Further, the discharge voltage of the battery using the composite electrode of the example is 3.5 to 10 times that of the battery using the composite electrode of the comparative example.
It provides a relatively flat voltage between 2.5V.

【0031】[0031]

【発明の効果】以上のように本発明によれば、酸化還元
を繰り返しても容量低下の少ない複合電極を得ることが
できる。この複合電極を正極に用いると、充放電中にお
いて正極活物質の正極内からの散逸が軽減され、充放電
中の放電容量の低下の少ない高エネルギー密度二次電池
を得ることができる。また、平坦な放電電圧を得ること
ができる。実施例では電極組成物を用いた電池のみを示
したが、電池の他に、本発明の複合電極を対極に用いる
ことにより、発色・退色速度の速いエレクトロクロミッ
ク素子、応答速度の早いグルコースセンサー等の生物化
学センサーを得ることができるし、また、書き込み・読
み出し速度の速い電気化学アナログメモリーを構成する
こともできる。
As described above, according to the present invention, it is possible to obtain a composite electrode having a small capacity reduction even if oxidation-reduction is repeated. When this composite electrode is used for the positive electrode, it is possible to obtain a high energy density secondary battery in which the dissipation of the positive electrode active material from the positive electrode during charging / discharging is reduced and the decrease in discharge capacity during charging / discharging is small. Moreover, a flat discharge voltage can be obtained. Although only the battery using the electrode composition was shown in the examples, by using the composite electrode of the present invention as a counter electrode in addition to the battery, an electrochromic device having a fast coloring / fading speed, a glucose sensor having a fast response speed, etc. Can be obtained, and an electrochemical analog memory with high writing / reading speed can be constructed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の複合電極A、および比較例
1の複合電極A’をそれぞれ正極に用いたリチウム二次
電池の放電電圧を示す図である。
FIG. 1 is a diagram showing a discharge voltage of a lithium secondary battery using a composite electrode A of Example 1 of the present invention and a composite electrode A ′ of Comparative Example 1 as positive electrodes.

【図2】実施例2の複合電極B、および比較例2の複合
電極B’をそれぞれ正極に用いたリチウム二次電池の放
電電圧を示す図である。
FIG. 2 is a diagram showing a discharge voltage of a lithium secondary battery using a composite electrode B of Example 2 and a composite electrode B ′ of Comparative Example 2 as positive electrodes.

【図3】実施例5の複合電極E、および比較例5の複合
電極E’をそれぞれ正極に用いたリチウム二次電池の放
電電圧を示す図である。
FIG. 3 is a diagram showing a discharge voltage of a lithium secondary battery using a composite electrode E of Example 5 and a composite electrode E ′ of Comparative Example 5 as positive electrodes.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電解還元により硫黄ー硫黄結合が開裂し
て硫黄ー金属イオン(プロトンを含む)結合を生成し、
電解酸化により硫黄ー金属イオン結合が元の硫黄ー硫黄
結合を再生する有機ジスルフィド化合物とポリアニリン
を含有する組成物を金属銅箔に担持一体化したことを特
徴とする有機ジスルフィド化合物を含有する複合電極。
1. A sulfur-sulfur bond is cleaved by electrolytic reduction to form a sulfur-metal ion (including proton) bond,
A composite electrode containing an organic disulfide compound characterized in that a composition containing polyaniline and an organic disulfide compound whose sulfur-metal ionic bond regenerates the original sulfur-sulfur bond by electrolytic oxidation are integrated on a metal copper foil. .
【請求項2】 電解還元により硫黄ー硫黄結合が開裂し
て硫黄ー金属イオン(プロトンを含む)結合を生成し、
電解酸化により硫黄ー金属イオン結合が元の硫黄ー硫黄
結合を再生する有機ジスルフィド化合物とポリアニリン
と金属銅を含有する組成物を導電性基板に担持一体化し
たことを特徴とする有機ジスルフィド化合物を含有する
複合電極。
2. The electrolytic reduction reduces the sulfur-sulfur bond to form a sulfur-metal ion (including proton) bond,
Contains an organic disulfide compound characterized in that a sulfur-metal ionic bond regenerates the original sulfur-sulfur bond by electrolytic oxidation and a composition containing polyaniline and metallic copper is supported and integrated on a conductive substrate. A composite electrode.
【請求項3】 電解還元により硫黄ー硫黄結合が開裂し
て硫黄ー金属イオン(プロトンを含む)結合を生成し、
電解酸化により硫黄ー金属イオン結合が元の硫黄ー硫黄
結合を再生する有機ジスルフィド化合物をN−アルキル
ー2ーピロリドンに溶解する第1工程、得られた溶液に
ポリアニリン粉末を添加溶解する第2工程、第2工程で
得られた溶液を金属銅箔上に塗布し、真空中あるいは不
活性ガス雰囲気中において加熱する第3工程を有するこ
とを特徴とする有機ジスルフィド化合物を含有する複合
電極の製造方法。
3. The sulfur-sulfur bond is cleaved by electrolytic reduction to form a sulfur-metal ion (including proton) bond,
The first step of dissolving an organic disulfide compound whose sulfur-metal ion bond regenerates the original sulfur-sulfur bond by electrolytic oxidation in N-alkyl-2-pyrrolidone, the second step of adding and dissolving polyaniline powder in the resulting solution, A method for producing a composite electrode containing an organic disulfide compound, which comprises a third step of applying the solution obtained in the two steps onto a metal copper foil and heating it in a vacuum or in an inert gas atmosphere.
【請求項4】 電解還元により硫黄ー硫黄結合が開裂し
て硫黄ー金属イオン(プロトンを含む)結合を生成し、
電解酸化により硫黄ー金属イオン結合が元の硫黄ー硫黄
結合を再生する有機ジスルフィド化合物をN−アルキル
ー2ーピロリドンに溶解する第1工程、得られた溶液に
金属銅粉末を添加混合する第2工程、金属銅粉末が混合
された溶液にポリアニリン粉末を添加混合する第3工
程、ポリアニリン粉末を添加混合された前記溶液を導電
性基板上に塗布し、真空中あるいは不活性ガス雰囲気中
において加熱する第4工程を有することを特徴とする有
機ジスルフィド化合物を含有する複合電極の製造方法。
4. The sulfur-sulfur bond is cleaved by electrolytic reduction to form a sulfur-metal ion (including proton) bond,
A first step of dissolving an organic disulfide compound whose sulfur-metal ionic bond regenerates the original sulfur-sulfur bond by electrolytic oxidation in N-alkyl-2-pyrrolidone, a second step of adding and mixing metallic copper powder to the resulting solution, Third step of adding and mixing the polyaniline powder to the solution in which the metal copper powder is mixed, coating the solution in which the polyaniline powder is added and mixed on a conductive substrate, and heating in a vacuum or in an inert gas atmosphere A method for producing a composite electrode containing an organic disulfide compound, which comprises steps.
【請求項5】 請求項1または2記載の有機ジスルフィ
ド化合物を含有する複合電極からなる正極、非水電解
質、および負極を具備するリチウム二次電池。
5. A lithium secondary battery comprising a positive electrode comprising a composite electrode containing the organic disulfide compound according to claim 1 or 2, a non-aqueous electrolyte, and a negative electrode.
JP7020216A 1995-02-08 1995-02-08 Composite electrode containing organic disulfide compound, method for producing the same, and lithium secondary battery Expired - Fee Related JP3070820B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7020216A JP3070820B2 (en) 1995-02-08 1995-02-08 Composite electrode containing organic disulfide compound, method for producing the same, and lithium secondary battery
US08/589,247 US5665492A (en) 1995-02-08 1996-01-23 Composite Electrode including organic disulfide compound, method of producing the same, and lithium secondary battery utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7020216A JP3070820B2 (en) 1995-02-08 1995-02-08 Composite electrode containing organic disulfide compound, method for producing the same, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH08213021A true JPH08213021A (en) 1996-08-20
JP3070820B2 JP3070820B2 (en) 2000-07-31

Family

ID=12020976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7020216A Expired - Fee Related JP3070820B2 (en) 1995-02-08 1995-02-08 Composite electrode containing organic disulfide compound, method for producing the same, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3070820B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266884A (en) * 2000-03-17 2001-09-28 Noboru Koyama Redox active reversible electrode and lithium secondary battery using it
WO2015131977A1 (en) * 2014-03-03 2015-09-11 Hochschule Aalen Technik Und Wirtschaft Film composite material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917974A (en) 1989-04-14 1990-04-17 The United States Of America As Represented By The Department Of Energy Lithium/organosulfur redox cell having protective solid electrolyte barrier formed on anode and method of making same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266884A (en) * 2000-03-17 2001-09-28 Noboru Koyama Redox active reversible electrode and lithium secondary battery using it
WO2015131977A1 (en) * 2014-03-03 2015-09-11 Hochschule Aalen Technik Und Wirtschaft Film composite material

Also Published As

Publication number Publication date
JP3070820B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
JP3333130B2 (en) Composite electrode, method for producing the same, and lithium secondary battery
JP3292441B2 (en) Electrode containing organic disulfide compound and method for producing the same
US5665492A (en) Composite Electrode including organic disulfide compound, method of producing the same, and lithium secondary battery utilizing the same
KR100371663B1 (en) Positive electrode, method of producing the same and lithium battery using the same
US5571292A (en) Method of producing a composite electrode
JP2000021390A (en) Lithium polymer secondary battery provided with positive electrode containing metal composite positive electrode material
JPH08138742A (en) Gel electrolyte and lithium secondary battery
JPH08298137A (en) Secondary battery and electrode used in this secondary battery
JP2002319400A (en) Electrode, manufacturing method therefor, and lithium battery using the same
JP2000311684A (en) Lithium secondary battery and manufacture of its positive electrode
JP3070820B2 (en) Composite electrode containing organic disulfide compound, method for producing the same, and lithium secondary battery
JP4214691B2 (en) Electrode material, method for producing the electrode material, battery electrode using the electrode material, and battery using the electrode
JP2000340225A (en) Composite electrode composition and lithium battery using it
JP3346661B2 (en) Polymer electrode, method for producing the same, and lithium secondary battery
JP2002164084A (en) Lithium battery and its manufacturing method
JP3539594B2 (en) Method for charging and discharging a secondary battery having a positive electrode containing an organic disulfide compound
JP3115202B2 (en) Composite electrode containing organic disulfide compound, method for producing the same, and lithium secondary battery
JPH08203530A (en) Combined electrode, manufacture thereof and lithium secondary battery
JPH0982329A (en) Composite electrode containing organic disulfide compound, manufacture thereof, and lithium secondary battery
JP3471097B2 (en) Polymer electrode, method for producing polymer electrode, and lithium secondary battery
JPH07134987A (en) Positive electrode member for secondary battery and secondary battery using the member
JP2001266885A (en) Composite electrode composition, its manufacturing method and lithium battery
JP3444463B2 (en) Electrode containing organic disulfide compound and method for producing the same
JPH10241661A (en) Electrode containing organic disulfide compound and manufacture thereof
KR100302191B1 (en) Metal-Polymer Composite Electrode Material and Its Use

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees