JPH08212582A - Optical pickup device - Google Patents

Optical pickup device

Info

Publication number
JPH08212582A
JPH08212582A JP7281484A JP28148495A JPH08212582A JP H08212582 A JPH08212582 A JP H08212582A JP 7281484 A JP7281484 A JP 7281484A JP 28148495 A JP28148495 A JP 28148495A JP H08212582 A JPH08212582 A JP H08212582A
Authority
JP
Japan
Prior art keywords
optical
pickup device
difference
optical path
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7281484A
Other languages
Japanese (ja)
Inventor
Tomoaki Yamada
智明 山田
Hirokazu Ishii
裕和 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7281484A priority Critical patent/JPH08212582A/en
Publication of JPH08212582A publication Critical patent/JPH08212582A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain an optical pickup device with an excellent CMRR by reducing or eliminating the optical path difference of light beam. CONSTITUTION: This device has a split optical system 6 splitting a light beam from a medium 5 in two and two photodetectors 11, 12 receiving the light beams split into two beams by the optical system 6 respectively and applying photoelectric transduction to the beams and reproduces a signal recorded on the medium 5 by taking an output difference between the photo detectors 11, 12. The split optical system 6 acts like a polarization beam splitter that splits an incident light beam into a light reflected in a split face and a light transmitted through the split face, and correction optical systems 9, 10 are provided to one or both the light beams split in two in order to reduce or eliminate a difference between the optical path length of each of both the split beams reaching the photo detectors 11 and 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は媒体に記録された信
号を光ビームを照射し、その透過又は反射光を2つの光
ビームに分け、それぞれを光電変換した後両信号の差動
をとって信号を再生する光学式ピックアップ装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention irradiates a signal recorded on a medium with a light beam, divides the transmitted or reflected light into two light beams, photoelectrically converts each of them, and then takes a differential between the two signals. The present invention relates to an optical pickup device that reproduces a signal.

【0002】[0002]

【従来の技術】媒体に記録された信号を再生する方法と
して、光ビームを照射し、その透過又は反射光を2つの
光ビームに分け、それぞれを光電変換した後両信号の差
動をとって信号を再生する方式は簡単な構成により同相
雑音が除去できる為、例えば光磁気デイスク用ピツクア
ツプ装置に使用される。この方式によれば例えば光磁気
ディスク表面の傷等のディスクノイズやレーザ光源に起
因するレーザノイズ等光ビームを2分する以前に発生し
両ビームに等量に存在する同相ノイズを簡単な構成で除
去できる。
2. Description of the Related Art As a method of reproducing a signal recorded on a medium, a light beam is irradiated, the transmitted or reflected light is divided into two light beams, each of which is photoelectrically converted, and the two signals are differentiated. The system for reproducing a signal can remove common-mode noise with a simple structure, and is therefore used, for example, in a pickup device for a magneto-optical disk. According to this method, for example, disk noise such as scratches on the surface of the magneto-optical disk and laser noise such as laser noise caused by the laser light source, which are generated before the light beam is divided into two and are present in equal amounts in both beams, have a simple structure. Can be removed.

【0003】図4、図5は従来の光磁気ディスク用ピッ
クアップ装置の主要部の構成を示す断面図で、1はレー
ザ・ダイオード、2はコリメータレンズ、3はビームス
プリツタ、4は対物レンズ、5は記録媒体、6,16は
偏光ビームスプリツタ、7は一方の光ビーム、8は他方
の光ビーム、11は第1の光検出器、12は第2の光検
出器、13,17,18はプリント基板である。
FIGS. 4 and 5 are sectional views showing the structure of the main part of a conventional magneto-optical disk pickup device. 1 is a laser diode, 2 is a collimator lens, 3 is a beam splitter, 4 is an objective lens, 5 is a recording medium, 6 and 16 are polarized beam splitters, 7 is one light beam, 8 is the other light beam, 11 is a first photodetector, 12 is a second photodetector, 13, 17, Reference numeral 18 is a printed circuit board.

【0004】[0004]

【発明が解決しようとする課題】従来、光磁気デイスク
用ピツクアツプ装置は、再生光を2分割する為の部材と
しては通常図4の16に示す如くスプリット面が入射光
に対して45゜に設定された偏光ビームスプリッタを使
用している。従って第1および第2の光検出器11及び
12の外囲体の底面が同一平面上にならない為、両光検
出器を同一基板に実装することができず、それぞれの光
検出器に位置決めの為の構造が必要であり構造が複雑化
し、位置決め作業が必要となり、工数が増加し、また基
板間の電気的接続の為配線が必要となると言う欠点があ
る。また、この欠点を克服する為、再生光を2分割する
為の部材としての偏光ビームスプリッタの形状を図5の
6に示す如くとすることもできるが、この方法では記録
媒体と両光検出器の光路長が一致しないため、両信号の
差をとる際のCMRR〔Common Mode RejectionRat
io〕が悪化するという欠点があつた。
Conventionally, in a pickup device for a magneto-optical disk, a split surface is usually set at 45 ° with respect to the incident light as a member for dividing the reproducing light into two as shown in 16 of FIG. Using a polarized beam splitter. Therefore, since the bottom surfaces of the outer enclosures of the first and second photodetectors 11 and 12 are not on the same plane, both photodetectors cannot be mounted on the same substrate, and the positioning of each photodetector cannot be performed. However, there are disadvantages that the structure is complicated, the structure is complicated, positioning work is required, the number of steps is increased, and wiring is required for electrical connection between the substrates. Further, in order to overcome this drawback, the shape of the polarization beam splitter as a member for splitting the reproduction light into two can be set as shown in 6 of FIG. 5, but in this method, the recording medium and both photodetectors are used. Since the optical path lengths of the two signals do not match, CMRR [Common Mode Rejection Rat]
[io]] gets worse.

【0005】尚CMRRとは同相電圧除去比の意味であ
る。一般に、信号の伝送を2本の経路で行なう場合、2
つの経路に乗る雑音が全く同じものであれば、引き算を
することによつて、雑音を皆無にすることができる。し
かし一般に理想的な系でないために雑音を0にすること
はできない。この理想状態からはずれている度合いを現
わすのがCMRRであつて、引き算器の+、−両入力
に、ある電圧Aを加え、その時の出力(理想的には0)
Bに対して−20log(B/A)〔dB〕で表わすのが
普通である。
CMRR means the common mode voltage rejection ratio. Generally, when a signal is transmitted by two paths, 2
If the noise on the two paths is exactly the same, subtraction can eliminate the noise. However, in general, the noise cannot be reduced to 0 because it is not an ideal system. The degree of deviation from this ideal state is represented by CMRR. A voltage A is applied to the + and-inputs of the subtractor, and the output at that time (ideally 0)
It is usually expressed as -20log (B / A) [dB] with respect to B.

【0006】従って理想的な系ではCMRRは∞であ
る。ここで光学式ピックアップ装置に於いてCMRRを
悪化させる要因の第1は、2つの経路(それぞれが光学
系及び電気信号系の両系を含む2つの経路)の利得の不
一致であり、要因の第2は2つの経路(光学系及び電気
信号系の両系を含む2つの経路)の位相特性の不一致で
ある。これらの不一致は光学系では光路長の差、電気信
号系ではディテクタ,アンプの周波数特性の差に起因す
る。 このうち第1の要因については一般的にAGC
〔Auto Gain Control〕回路で自動的に一致させる事
が出来るが、第2の要因については自動的に補償するこ
とができない。
Therefore, in an ideal system, CMRR is ∞. Here, the first factor that deteriorates CMRR in the optical pickup device is the mismatch of the gains of the two paths (two paths each including both the optical system and the electric signal system). Reference numeral 2 is a mismatch of the phase characteristics of the two paths (two paths including both the optical system and the electric signal system). These discrepancies are caused by a difference in optical path length in the optical system and a difference in frequency characteristics of the detector and the amplifier in the electric signal system. Of these, the first factor is generally AGC.
The [Auto Gain Control] circuit can automatically make the coincidence, but the second factor cannot be automatically compensated.

【0007】そこで第2の要因によるCMRRの低下は
どの程度許容されるのかを以下検討する。先ず電気信号
系について考える。一般に、差動アンプのCMRRは十
分に大きく、考えに入れる必要はない。プリアンプの位
相特性の不一致は可成り大きいが、十分高域までアンプ
の特性をのばしておけば、CMRRは40dB程度にす
ることができる。即ち電気信号系全体のCMRRはプリ
アンプによって40dB程度に制限されるので他の部分
をそれ以上に大きくしても無意味である。
Therefore, how much the reduction in CMRR due to the second factor is allowed will be examined below. First, consider the electric signal system. In general, the CMRR of a differential amplifier is large enough that it need not be taken into consideration. Although the mismatch of the phase characteristics of the preamplifier is quite large, if the characteristics of the amplifier are extended to a sufficiently high frequency band, the CMRR can be about 40 dB. That is, since the CMRR of the entire electric signal system is limited to about 40 dB by the preamplifier, it is meaningless to make the other parts larger than that.

【0008】次に光学系について考える。光学系には迷
光がある為、良く設計された光学系のCMRRで30d
B程度だと言われている。即ち光学系全体のCMRRは
迷光によって30dB程度に制限されるので他の部分を
それ以上に大きくしても無意味である。従って図5の如
く2つの光検出器を1平面に設けるものに於いては電気
信号系と光学系を合わせた場合のCMRRは光学系によ
り30dB程度に限定されるものであるから、第2の要
因によるCMRRの低下即ち2つの経路(それぞれが光
学系及び電気信号系の両系を含む2つの経路)の位相特
性の不一致(光学系では光路長の差、電気信号系ではデ
ィテクタ,アンプの周波数特性の差に起因する。)によ
るCMRRの低下は、全体のCMRRを30dBより低
下させないものであれば足りる。ここで図5に示す方式
で光学系の光路長の差を小さくするには偏光ビームスプ
リッタ6の形状を小さくする事で可能であるが、形状を
小さくする事は偏光ビームスプリッタ6の製造コストを
飛躍的に上昇せしめる事となり、実質的に製品化が困難
になる。
Next, the optical system will be considered. Since the optical system has stray light, the CMRR of the well designed optical system is 30d.
It is said to be about B. That is, since the CMRR of the entire optical system is limited to about 30 dB by stray light, it is meaningless to make other parts larger than that. Therefore, in the case where two photodetectors are provided on one plane as shown in FIG. 5, the CMRR when the electric signal system and the optical system are combined is limited to about 30 dB by the optical system. Decrease in CMRR due to a factor, that is, inconsistency in phase characteristics of two paths (two paths each including both an optical system and an electric signal system) (difference in optical path length in an optical system, detector and amplifier frequency in an electric signal system) The decrease in CMRR due to the difference in characteristics) is sufficient as long as it does not decrease the overall CMRR below 30 dB. Here, in order to reduce the difference in the optical path length of the optical system by the method shown in FIG. 5, it is possible to reduce the shape of the polarization beam splitter 6, but reducing the shape reduces the manufacturing cost of the polarization beam splitter 6. It will dramatically increase, and practically it will be difficult to commercialize.

【0009】図6は図5に示す構成の実際の光磁気ピッ
クアップ装置について記録・再生信号の周波数とCMR
Rとの関係を光路長差をパラメータとして算出した結果
を示した図である。但し、光路長の差による効果のみを
調べるのが目的である為差動アンプ、光学系等で決まる
CMRRは理想的なもの(無限大)として計算してい
る。
FIG. 6 shows the actual magneto-optical pickup device having the structure shown in FIG.
It is a figure showing the result of having calculated the relation with R using the optical path length difference as a parameter. However, since the purpose is to investigate only the effect due to the difference in optical path length, the CMRR determined by the differential amplifier, the optical system, etc. is calculated as an ideal one (infinity).

【0010】ところで光路長差によるCMRRの低下は
両信号間の位相差が原因であり、位相差は光路長差に対
して
The decrease in CMRR due to the difference in optical path length is due to the phase difference between the two signals, and the phase difference is relative to the difference in optical path length.

【0011】[0011]

【数3】 (Equation 3)

【0012】なる関係がある事から、一定の位相差即ち
一定のCMRRを与える光路長差は
From the above relationship, the optical path length difference that gives a constant phase difference, that is, a constant CMRR, is

【0013】[0013]

【数4】 [Equation 4]

【0014】図6より光路差によって決まるCMRRの
目安として40dBという値をとると、光路差100m
m、50mm、25mm、12.5mmの場合、それぞれ約5M
Hz、10MHz、20MHz 、40MHz、でそれぞれ40dBと
なっている事が分かる。次に、実際の光磁気ピックアッ
プ装置について許容できる光路長差を求め、上記式の
定数kを求める。
As shown in FIG. 6, when the value of 40 dB is used as a guideline for the CMRR determined by the optical path difference, the optical path difference is 100 m.
In case of m, 50mm, 25mm and 12.5mm, each is about 5M
It can be seen that the values are 40 dB at Hz, 10 MHz, 20 MHz, and 40 MHz, respectively. Next, the allowable optical path length difference of the actual magneto-optical pickup device is obtained, and the constant k in the above equation is obtained.

【0015】先に光路長差0の装置に於いてもプリアン
プによってCMRRは40dB程度に制限され、更に光
学系の迷光によって30dB程度に制限される事を述べ
た。そこで次の様な根拠で定数kを定める。 (1)光磁気ピックアップ装置としてCMRR=30d
Bを達成する。 (2)上記(1)を達成する為光路長差のみで決まるC
MRRを40dBに抑える。
It has been described above that even in an apparatus having an optical path length difference of 0, the CMRR is limited to about 40 dB by the preamplifier and further to about 30 dB due to stray light of the optical system. Therefore, the constant k is determined on the basis of the following. (1) CMRR = 30d as a magneto-optical pickup device
Achieve B. (2) To achieve the above (1), C determined only by the difference in optical path length
Keep MRR at 40 dB.

【0016】先に述べた様に、CMRRを左右する要因
は最大の要因である迷光の他、差動アンプ、プリアン
プ、光路長差等である為、光路長差のみで決まるCMR
Rを、光磁気ピックアップ装置のCMRRより10dB
低く設定しておくことは妥当な事である。従って図6よ
りkの値は、次の様に求められる。光路長差d=50m
m、f=10MHz、CMRR=40dBであるから、
As described above, the factors that influence the CMRR are the stray light, which is the largest factor, the differential amplifier, the preamplifier, the optical path length difference, etc., and therefore the CMR is determined only by the optical path length difference.
R is 10 dB from the CMRR of the magneto-optical pickup device
It is reasonable to set it low. Therefore, the value of k is obtained from FIG. 6 as follows. Optical path length difference d = 50m
Since m, f = 10 MHz and CMRR = 40 dB,

【0017】[0017]

【数5】 (Equation 5)

【0018】従ってこの装置の最大周波数をfmax とす
れば、
Therefore, if the maximum frequency of this device is fmax,

【0019】[0019]

【数6】 (Equation 6)

【0020】この不等式は一般的に通じる関係式であ
る。例えばfmax=18MHzの光磁気ピックアップ装置の
場合は
This inequality is a general relational expression. For example, in the case of a magneto-optical pickup device with fmax = 18 MHz

【0021】[0021]

【数7】 (Equation 7)

【0022】とすれば良い事が分かる。図7は図5に示
す構成の実際の光磁気ピックアップ装置について記録・
再生信号の周波数とCMRRとの関係を光路長差をパラ
メータとして算出した結果を示した図である。但し、図
7では光路長の差による効果のみならず現状の装置につ
いての効果を調べる為に差動アンプ、光学系等で決まる
CMRRも考慮して計算している。
It can be understood that the following is good. FIG. 7 shows an actual magneto-optical pickup device having the structure shown in FIG.
It is a figure showing the result of having calculated the relation between the frequency of a reproduced signal and CMRR using the optical path length difference as a parameter. However, in FIG. 7, calculation is performed in consideration of CMRR determined by a differential amplifier, an optical system, etc. in order to investigate not only the effect of the difference in optical path length but also the effect of the current device.

【0023】図7の性能を示す光磁気ピックアップ装置
について許容出来る光路長差を求める。図7によれば光
路長差0mmでは再生する信号が18MHzのときCMRR
は約30dBであ るが、33mmの光路長差では記録・再
生信号が18MHz のときCMRRが30dBを下回り、従
って18MHzの再生信号を得る場合は光路長差を33mm
より充分小さく、少なくとも1/2の16.5mm程度にす
る必要がある。
An allowable optical path length difference is obtained for the magneto-optical pickup device having the performance shown in FIG. According to FIG. 7, when the optical path length difference is 0 mm and the reproduced signal is 18 MHz, CMRR
Is about 30 dB, but with an optical path length difference of 33 mm, the CMRR is less than 30 dB when the recording / playback signal is 18 MHz, so when obtaining the 18 MHz playback signal, the optical path length difference is 33 mm.
It should be sufficiently smaller, at least 1/2 the size of 16.5 mm.

【0024】ここで図7の性能を示す光磁気ピックアッ
プ装置について前記式より
The magneto-optical pickup device having the performance shown in FIG.

【0025】[0025]

【数8】 (Equation 8)

【0026】従って、この装置の場合、再生信号の最大
周波数fmax=18MHz の光磁気ピックアップ装置の場合
Therefore, in the case of this device, in the case of the magneto-optical pickup device of the maximum frequency fmax = 18 MHz of the reproduction signal,

【0027】[0027]

【数9】 [Equation 9]

【0028】とすれば良い事が分かる。この不等式は装
置を製作する際の各種の条件(例えば光学系の迷光の
量、電気信号系の調整限界等)から求まったもので、現
状の技術レベルから一般的に妥当する値である。本発明
は上述の欠点を解決し、2つの光検出器を1枚のプリン
ト板に装着可能であり且つ2つの光ビームの光路差を少
なく或いは光路差を無くする事によりCMRRの良好な
光磁気ピックアップ装置を得る事を目的とする。
It can be understood that the following is good. This inequality is obtained from various conditions when manufacturing the device (for example, the amount of stray light in the optical system, the adjustment limit of the electric signal system, etc.), and is a value that is generally appropriate from the current technical level. The present invention solves the above-mentioned drawbacks and allows two photodetectors to be mounted on one printed board, and the optical path difference between the two light beams can be reduced or eliminated to obtain a good magneto-optical characteristic. The purpose is to obtain a pickup device.

【0029】[0029]

【課題を解決するための手段】本発明は2分した光ビー
ムの光検出器に至る光路長の差を少なくする或いは無く
する光路長補正光学系を設けた事を要点としている。
SUMMARY OF THE INVENTION The main point of the present invention is to provide an optical path length correction optical system for reducing or eliminating the difference in the optical path lengths of two divided light beams to a photodetector.

【0030】[0030]

【発明の実施の形態】図1は本発明の第1の実施例であ
つて、半導体レーザ1を発した光ビームはコリメータレ
ンズ2、ビームスプリツタ3、対物レンズ4を経て記録
媒体5に焦点を結ぶ。記録媒体5に反射された光ビーム
は、記録媒体に書き込まれた情報に応じて偏光面の回転
を受け、再び対物レンズ4、ビームスプリツタ3を経て
偏光ビームスプリツタ6に入る。その後、1つの基板1
3に装着された光検出器11および光検出器12と記録
媒体5の間の光路長をそろえるため、全反射プリズム
9、および10を用いている。このような構造であるか
ら全反射プリズム9、10の位置を調節して2つの光検
出器と記録媒体の光路長を等しく、かつ2つの光検出器
の底面を同一平面上に持ってくることが可能である。
1 is a first embodiment of the present invention in which a light beam emitted from a semiconductor laser 1 is focused on a recording medium 5 via a collimator lens 2, a beam splitter 3 and an objective lens 4. Tie The light beam reflected by the recording medium 5 undergoes rotation of the plane of polarization in accordance with the information written on the recording medium, and again enters the polarized beam splitter 6 via the objective lens 4 and the beam splitter 3. Then one substrate 1
Total reflection prisms 9 and 10 are used to align the optical path lengths between the photodetector 11 and the photodetector 12 mounted on the recording medium 3 and the recording medium 5. Due to this structure, the positions of the total reflection prisms 9 and 10 are adjusted so that the optical path lengths of the two photodetectors and the recording medium are equal, and the bottom surfaces of the two photodetectors are on the same plane. Is possible.

【0031】図2は本発明の第2の実施例であつて、半
導体レーザ1を発した光ビームが記録媒体5に至り、再
びビームスプリツタ3に至る経路は、前記第1の実施例
と同じである。ビームスプリツタ3を出た光は変形偏光
ビームスプリツタ14を経て光検出器11および12に
入射する。このような構造であるから記録媒体5から2
つの光検出器11および12に至る2つの光路長を合致
させるために特に部品を増加することなく、また、変形
偏光ビームスプリツタ14の形状を適宜変更することに
より、両光検出器11及び12に至る光路長の差を等し
く保ちつつプリント基板13上で光検出器11および1
2の間隔を変えることができ、プリント基板13のパタ
ーン設計が容易になるという利点がある。
FIG. 2 shows a second embodiment of the present invention, in which the light beam emitted from the semiconductor laser 1 reaches the recording medium 5 and reaches the beam splitter 3 again in the same way as in the first embodiment. Is the same. The light emitted from the beam splitter 3 enters the photodetectors 11 and 12 via the modified polarized beam splitter 14. Due to this structure, the recording media 5 to 2
The two photodetectors 11 and 12 are not required to be increased in order to match the two optical path lengths to the two photodetectors 11 and 12, and by appropriately changing the shape of the modified polarization beam splitter 14. To the photodetectors 11 and 1 on the printed circuit board 13 while maintaining the same optical path length difference between
There is an advantage that the interval of 2 can be changed and the pattern design of the printed circuit board 13 becomes easy.

【0032】図3は本発明の第3の実施例であつて、半
導体レーザ1を発した光ビームが記録媒体5に至り、再
びビームスプリツタ3に至る経路は、前記第1及び第2
の実施例と同じである。偏光ビームスプリツタ6を経た
光ビーム7は、光検出器11および12と記録媒体5の
光路長を合致させる為高屈折率部材15を経て光検出器
12へ入射し、光ビーム8はそのまま光検出器11へ入
射する。このような構造であるからこの実施例では製造
し易く安価な偏光ビームスプリツタ6に単純な形状(角
柱、円柱等)の高屈折率部材15を追加するだけで本発
明の目的を達せられる利点がある。
FIG. 3 shows a third embodiment of the present invention in which the light beam emitted from the semiconductor laser 1 reaches the recording medium 5 and reaches the beam splitter 3 again in the first and second directions.
Is the same as the embodiment described above. The light beam 7 that has passed through the polarized beam splitter 6 enters the photodetector 12 through the high refractive index member 15 in order to match the optical path lengths of the photodetectors 11 and 12 and the recording medium 5, and the light beam 8 remains as it is. It is incident on the detector 11. Due to such a structure, in the present embodiment, it is possible to achieve the object of the present invention simply by adding the high refractive index member 15 having a simple shape (such as a prism or a cylinder) to the polarized beam splitter 6 which is easy to manufacture and inexpensive. There is.

【0033】[0033]

【発明の効果】以上のように本発明によれば、2分した
光ビームの光検出器に至る光路長の差を少なくする或い
は無くする光路長補正光学系を設けたので2つの光検出
器を1枚のプリント板に装着可能であり実装上の利点が
あるとともに2つの光ビームの光路長差を少なく或いは
光路差を無くする事によりCMRRの良好な光学式ピッ
クアップ装置を得る事ができる。
As described above, according to the present invention, since the optical path length correction optical system for reducing or eliminating the difference in the optical path lengths of the two divided light beams to the photodetector is provided, the two photodetectors are provided. Can be mounted on a single printed board, which has an advantage in mounting, and an optical pickup device having a good CMRR can be obtained by reducing the optical path length difference between the two light beams or eliminating the optical path difference.

【0034】図1、図3に示す第1、第3の実施例では
比較的単純な形状の為製造し易く安価な偏光ビームスプ
リツタ6に単純な形状の全反射プリズム9、10或いは
単純な形状の(角柱、円柱等)高屈折率部材15を追加
するだけで良いのでピックアップ全体として安価である
という利点がある。更に図2に示す第2実施例では変形
偏光ビームスプリツタ14の形状を適宜変更することに
より、記録媒体5から両光検出器11及び12に至る両
光路長を等しく保ちつつプリント基板13上で光検出器
11および12の間隔を適宜変えることができ、プリン
ト基板13のパターン設計上の自由度が増し、設計が非
常に容易になるという利点がある。
In the first and third embodiments shown in FIGS. 1 and 3, since the polarization beam splitter 6 is relatively simple and easy to manufacture, the total number of prisms 9 and 10 or the simple total reflection prisms 9 and 10 is used. Since it is only necessary to add the high refractive index member 15 having a shape (square column, column, etc.), there is an advantage that the entire pickup is inexpensive. Further, in the second embodiment shown in FIG. 2, the shape of the modified polarized beam splitter 14 is appropriately changed so that both optical path lengths from the recording medium 5 to the photodetectors 11 and 12 are kept the same on the printed circuit board 13. There is an advantage that the distance between the photodetectors 11 and 12 can be changed appropriately, the degree of freedom in pattern design of the printed circuit board 13 is increased, and the design is very easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による光学式ピックアッ
プ装置の構成を示す図。
FIG. 1 is a diagram showing a configuration of an optical pickup device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例による光学式ピックアッ
プ装置の構成を示す図。
FIG. 2 is a diagram showing a configuration of an optical pickup device according to a second embodiment of the present invention.

【図3】本発明の第3の実施例による光学式ピックアッ
プ装置の構成を示す図。
FIG. 3 is a diagram showing a configuration of an optical pickup device according to a third embodiment of the present invention.

【図4】従来の光磁気ディスク用ピックアップ装置の主
要部の構成を示す断面図。
FIG. 4 is a sectional view showing a configuration of a main part of a conventional magneto-optical disk pickup device.

【図5】従来の光磁気ディスク用ピックアップ装置の主
要部の構成を示す断面図。
FIG. 5 is a cross-sectional view showing a configuration of a main part of a conventional magneto-optical disk pickup device.

【図6】図5に示す従来の光磁気ディスク用ピックアッ
プ装置の再生信号の周波数とCMRRとの関係を光路差
をパラメータとして算出した結果を示す図。
FIG. 6 is a diagram showing a result of calculating the relationship between the frequency of a reproduction signal and CMRR of the conventional magneto-optical disk pickup device shown in FIG. 5 by using an optical path difference as a parameter.

【図7】図5に示す従来の光磁気ディスク用ピックアッ
プ装置の再生信号の周波数とCMRRとの関係を光路差
をパラメータとして算出した結果を示す図。
FIG. 7 is a diagram showing a result of calculating a relationship between a frequency of a reproduction signal and CMRR of the conventional magneto-optical disk pickup device shown in FIG. 5 by using an optical path difference as a parameter.

【符号の説明】[Explanation of symbols]

1----レーザ・ダイオード、 2----コリメータレンズ、 3----ビームスプリツタ、 4----対物レンズ、 5----記録媒体、 6、16----偏光ビームスプリツタ、 7、8----光ビーム、 9、10----全反射プリズム、 11、12----光検出器、 13、17、18----プリント基板、 14----変形偏光ビームスプリツタ、 15----高屈折率部材。 1 ---- laser diode, 2 ---- collimator lens, 3 ---- beam splitter, 4 ---- objective lens, 5 ---- recording medium, 6, 16 ---- polarized light Beam Splitter, 7, 8 ---- Light Beam, 9, 10 ---- Total Reflection Prism, 11, 12 ---- Photo Detector, 13, 17, 18 ---- Printed Circuit Board, 14- --- Modified polarized beam splitter, 15 ---- High refractive index material.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】媒体からの光ビームを2分する分割光学系
と、該光学系により2分した光ビームをそれぞれ受光し
て光電変換する2つの光検出器とを有し、該光検出器の
出力差をとることによって、媒体に記録された信号を再
生する光学式ピックアップ装置において、 前記分割光学系は、入射する光ビームをスプリット面を
反射する光と透過する光に分割する偏光ビームスプリッ
タであり、 前記2分された光ビームの前記光検出器に至る光路長の
差を少なくするあるいはなくするために、前記2分され
た光ビームの光路の一方あるいは両方に補正光学系を設
けたことを特徴とする光学式ピックアップ装置。
1. A photodetector comprising: a splitting optical system for splitting a light beam from a medium into two parts; and two photodetectors for respectively receiving and photoelectrically converting the split light beam by the optical system. In the optical pickup device that reproduces the signal recorded on the medium by taking the output difference of, the splitting optical system splits the incident light beam into light reflected by the split surface and light transmitted therethrough. In order to reduce or eliminate the difference in the optical path length of the bisected light beam to the photodetector, a correction optical system is provided in one or both of the optic paths of the bisected light beam. An optical pickup device characterized by the above.
【請求項2】前記補正光学系による補正後の前記光路長
の差dは、 【数1】 の条件をみたすものである事を特徴とする請求項1記載
の光学式ピックアップ装置。
2. The difference d in the optical path length after correction by the correction optical system is The optical pickup device according to claim 1, wherein the optical pickup device satisfies the above condition.
【請求項3】前記補正光学系による補正後の前記光路長
の差dは、 【数2】 の条件をみたすものである事を特徴とする請求項1記載
の光学式ピックアップ装置。
3. The difference d in the optical path length after correction by the correction optical system is The optical pickup device according to claim 1, wherein the optical pickup device satisfies the above condition.
JP7281484A 1995-10-30 1995-10-30 Optical pickup device Pending JPH08212582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7281484A JPH08212582A (en) 1995-10-30 1995-10-30 Optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7281484A JPH08212582A (en) 1995-10-30 1995-10-30 Optical pickup device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61292889A Division JP2569513B2 (en) 1985-12-12 1986-12-09 Optical pickup device

Publications (1)

Publication Number Publication Date
JPH08212582A true JPH08212582A (en) 1996-08-20

Family

ID=17639836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7281484A Pending JPH08212582A (en) 1995-10-30 1995-10-30 Optical pickup device

Country Status (1)

Country Link
JP (1) JPH08212582A (en)

Similar Documents

Publication Publication Date Title
JP2569513B2 (en) Optical pickup device
US4663750A (en) Focus error detection device for an optical recording/playing back system
US4658391A (en) Focus error detection device for an optical recording/playing back system
JPH04263150A (en) Magneto-optical head device
JP4902337B2 (en) Optical pickup and optical information reproducing apparatus
JP2006114165A (en) Optical information reproducing device
US6992953B2 (en) Tracking servo apparatus of optical information recording and reproducing apparatus
JPH08212582A (en) Optical pickup device
JPS6316449A (en) Magneto-optical disk device
JP3112087B2 (en) Magneto-optical recording and / or reproducing apparatus
JPS62134839A (en) Optical magnetic reproducing device
JP2903554B2 (en) Multi-beam magneto-optical head device
KR100257624B1 (en) Tracking error signal generation device
JPS598148A (en) Optical information reproducing device
JPH02105357A (en) Magneto-optical disk device
JPS5911549A (en) Optical reproducer
JPS6019569B2 (en) optical playback device
JP3887044B2 (en) Optical semiconductor device
KR0119522Y1 (en) Optical pick-up
JPH0519853Y2 (en)
JPH03252925A (en) Optical reproducing device
JPH08255368A (en) Optical head
JPH01173330A (en) Device for detecting focus error
JP2012059358A (en) Optical pickup and optical information reproducing device
JPS61222038A (en) Disc device