JPH08211319A - Light deflector and optical scanner - Google Patents

Light deflector and optical scanner

Info

Publication number
JPH08211319A
JPH08211319A JP1539195A JP1539195A JPH08211319A JP H08211319 A JPH08211319 A JP H08211319A JP 1539195 A JP1539195 A JP 1539195A JP 1539195 A JP1539195 A JP 1539195A JP H08211319 A JPH08211319 A JP H08211319A
Authority
JP
Japan
Prior art keywords
scanning
scanned
radius
scanning direction
main scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1539195A
Other languages
Japanese (ja)
Inventor
Yuji Ono
裕士 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP1539195A priority Critical patent/JPH08211319A/en
Publication of JPH08211319A publication Critical patent/JPH08211319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE: To relax required precision for the error of the radius of an inscribed circle and to reduce an irregular amount of a dot position in a scanning end on a surface to be scanned by making a shape of a reflection surface in the direction of a main scanning into a non-circular arc and enlarging a radius of curvature of a vertex in the direction of the main scanning larger than a prescribed value obtained by specified calculation. CONSTITUTION: An optical scanner is constituted of a light source 1, an incident lens system 2 and a slit 3, a light deflector 4 provided with plural reflection surfaces 4A-4D, a cylindrical mirror 5 and a photoreceptor 6. At this time, the reflection surfaces 4A-4D are respectively constituted of a projecting aspherical surface provided with a projecting non-circular arc shape in the direction of the main scanning, and provided with a linear shape in the direction of a sub-scanning having no refractive power. Then, when a distance from a deflection point in a deflection angle 0 deg. to the surface to be scanned is defined L, and the distance from the scanning center of the surface to be scanned to an effective scanning end Y, the radius of curvature R of the vertex in the direction of the main scanning is provided with the relation of R>41.1(Y<3> / L<2> )-34.9(Y<2> /L)+9.7Y.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディジタル複写機やレ
ーザプリンタ等に適用される光偏向器、及び光走査装置
に関し、特に、像面湾曲を補正する機能を有しながら、
被走査面上の走査終端におけるドット位置の不揃いを抑
制し、しかも内接円半径誤差の精度を緩和してコストダ
ウンを図った光偏向器、及び光走査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical deflector and an optical scanning device applied to a digital copying machine, a laser printer, etc., and more particularly, while having a function of correcting field curvature.
The present invention relates to an optical deflector and an optical scanning device which suppress the unevenness of dot positions at the scanning end on the surface to be scanned and also reduce the accuracy of the inscribed circle radius error to reduce the cost.

【0002】[0002]

【従来の技術】ディジタル複写機やレーザプリンタ等に
適用される光走査装置として、画像信号に応じて変調さ
れた光束を反射型の光偏向器、例えば、ポリゴンミラー
により反射偏向し、感光体等の被走査面上を走査して画
像情報を記録するものが一般的に知られている。
2. Description of the Related Art As an optical scanning device applied to a digital copying machine, a laser printer, or the like, a light beam modulated according to an image signal is reflected and deflected by a reflection type optical deflector, for example, a polygon mirror, and a photoconductor or the like. In general, there is known one in which image information is recorded by scanning the surface to be scanned.

【0003】ところで、上記光走査装置には、像面湾曲
を補正して走査全域に渡って光束を被走査面上に焦光さ
せるためと、反射型偏向器により等角速度で偏向される
光束に意図的に歪曲を与えて被走査面上を等速度で走査
させるために、光偏向器の後段に走査レンズ(fθレン
ズ)が設けられている。
By the way, in the above optical scanning device, in order to correct the field curvature and focus the light beam on the surface to be scanned over the entire scanning area, the light beam is deflected at a constant angular velocity by the reflection type deflector. A scanning lens (fθ lens) is provided after the optical deflector in order to intentionally distort and scan the surface to be scanned at a constant speed.

【0004】ところが、この走査レンズで偏向光束を全
てカバーし得るようにするためには走査レンズを大型に
しなければならず、しかも上記の要求を満たすように高
精度のものが要求されることから高価になるという不都
合がある。
However, in order to be able to cover all the deflected light flux with this scanning lens, the scanning lens must be made large, and in addition, a highly accurate one is required to satisfy the above requirements. It has the disadvantage of being expensive.

【0005】そこで最近では、走査レンズを用いないで
像面湾曲を補正する、つまり、走査全域に渡って光束を
被走査面上に焦光させるようにした光偏向器が、例え
ば、特開昭61−156020号公報によって提案され
ている。
Therefore, recently, an optical deflector for correcting the field curvature without using a scanning lens, that is, for focusing a light beam on a surface to be scanned over the entire scanning region is disclosed in, for example, Japanese Patent Laid-Open No. It is proposed by Japanese Patent Laid-Open No. 61-156020.

【0006】上記光偏向器は、反射面が屈折力を有した
凸の球面または円筒面より構成されている。すなわち、
反射面を凸の球面または円筒面にすることにより、反射
面の屈折力が主走査方向の頂点から両端へ向けて弱くな
るようにし、走査端にいく程焦点位置を遠くして像面の
平坦化を図っている。また、特開平1−116515号
公報には、反射面が高次曲線で表される凸の非球面にな
ったものが、更に像面湾曲を補正できるものとして提案
されている。
In the above-mentioned optical deflector, the reflecting surface is composed of a convex spherical surface or a cylindrical surface having a refractive power. That is,
By making the reflecting surface a convex spherical surface or a cylindrical surface, the refractive power of the reflecting surface becomes weaker from the apex in the main scanning direction toward both ends, and the focus position becomes farther toward the scanning end and the image plane becomes flat. It is trying to make it. Further, Japanese Patent Application Laid-Open No. 1-116515 proposes that the reflecting surface is a convex aspherical surface represented by a higher-order curve, which can further correct the field curvature.

【0007】ところで、光偏向器はその形状精度が画質
を左右するため、形状誤差に対する要求精度は厳しくな
っている。
By the way, since the shape accuracy of the optical deflector influences the image quality, the accuracy required for the shape error becomes strict.

【0008】図7は、形状誤差が画質に与える影響を示
し、反射面に主走査対応方向の形状誤差があると、主走
査方向の走査特性が変化するため走査面上におけるドッ
ト生成位置が変動する。その結果、1ライン内では画像
の伸縮(倍率の変化)が発生すると共に、複数ライン間
では副走査方向のドット位置の不揃い(ジッタ)が反射
面数の周期(図示では、4周期)で繰り返し発生する。
ここで、倍率の変化には形状誤差の絶対量が影響し、ジ
ッタには複数反射面間の形状の差が影響するが、ジッタ
はドット径の1/2程度のずれでも画質上認識されるの
に対し、倍率はドット径の数倍以上変化しても認識され
難いことから、複数の反射面を有する光偏向器では面間
の形状誤差のばらつきに対する要求精度が形状誤差の絶
対量より厳しくなる。
FIG. 7 shows the influence of the shape error on the image quality. When there is a shape error in the main scanning corresponding direction on the reflecting surface, the scanning characteristic in the main scanning direction changes, so that the dot generation position on the scanning surface changes. To do. As a result, image expansion / contraction (change in magnification) occurs within one line, and dot position misalignment (jitter) in a plurality of lines repeats at a cycle of the number of reflecting surfaces (4 cycles in the figure). appear.
Here, the absolute amount of the shape error influences the change of the magnification, and the difference in the shape between the plurality of reflecting surfaces affects the jitter, but the jitter is recognized in the image quality even if the deviation is about 1/2 of the dot diameter. On the other hand, since the magnification is difficult to recognize even if it changes by several times the dot diameter, the required accuracy for the variation of the shape error between the surfaces is more severe than the absolute amount of the shape error in the optical deflector having a plurality of reflecting surfaces. Become.

【0009】図8の(a),(b),(c) は、凸形状の反射面4
A〜4Dを有した光偏光器4の形状誤差を示す。(a) は
偏向反射面4Aが4A’として主走査方向にずれている
横ずれ偏心、(b) は偏向反射面4Aが4A’として回転
方向にずれている回転偏心、(c) は偏向反射面4Aが4
A’として光束の入出射方向にずれている内接円半径誤
差を示しており、このうち要求精度が最も厳しいのは
(c) の内接円半径誤差である。これは、画像の書き出し
位置の同期制御と関係する。すなわち、書き出し位置の
制御により横ずれ偏心と回転偏心の影響は緩和されるの
に対し、内接円半径誤差は増加される方向に働く。
8A, 8B, and 8C are convex reflection surfaces 4
3 shows the shape error of the optical polarizer 4 with A to 4D. (a) is a lateral deviation eccentricity in which the deflection reflection surface 4A is 4A 'and is displaced in the main scanning direction, (b) is a rotation eccentricity in which the deflection reflection surface 4A is 4A' and is displaced in the rotation direction, and (c) is a deflection reflection surface. 4A is 4
A'indicates the radius error of the inscribed circle that is displaced in the incoming and outgoing directions of the light flux.
This is the radius error of the inscribed circle in (c). This is related to the synchronous control of the image writing start position. That is, the influence of the lateral deviation eccentricity and the rotational eccentricity is alleviated by controlling the writing position, whereas the inscribed circle radius error increases.

【0010】図9は、平面状の反射面の内接円半径誤差
と走査距離の関係を示す。反射面8の内接円半径Rpの
とき、光偏向器が回転軸Oを中心に2α回転することに
より4αの偏向が行われ、被走査面9において範囲S0
が走査される。これに対し、反射面8の内接円半径がΔ
Rpだけ大きくなると、偏向範囲4αは変化しないが、
反射面8’の繰り出し量分だけ被走査面9までの距離が
短くなるので、走査は範囲S1(<S0)で行われる。
この状態で画像の書き出し位置を同期制御すると、画像
の書き出しは内接円半径がRpのときと同じ位置Pから
始まり、4αの偏向角度にわたって範囲S2が走査され
る。その結果、複数の反射面間に内接円半径の差ΔRp
が存在すると、走査終端でS0−S2(=ΔS)のドッ
ト位置の不揃いが発生する。
FIG. 9 shows the relationship between the radius error of the inscribed circle of the flat reflecting surface and the scanning distance. When the radius of the inscribed circle of the reflecting surface 8 is Rp, the optical deflector rotates by 2α about the rotation axis O, thereby deflecting by 4α, and the range S0 on the surface 9 to be scanned is scanned.
Are scanned. On the other hand, the radius of the inscribed circle of the reflecting surface 8 is Δ
When Rp increases, the deflection range 4α does not change,
Since the distance to the surface to be scanned 9 is shortened by the amount of extension of the reflecting surface 8 ′, the scanning is performed in the range S1 (<S0).
When the image writing start position is synchronously controlled in this state, the image writing starts from the same position P as when the inscribed circle radius is Rp, and the range S2 is scanned over the deflection angle of 4α. As a result, the difference ΔRp in the radius of the inscribed circle between the plurality of reflecting surfaces
, The dot positions S0-S2 (= ΔS) are not aligned at the end of scanning.

【0011】図10は、凸形状の反射面の内接円半径誤
差と走査位置の関係を示し、光偏向器の回転軸Oから被
走査面9まで距離は変化せず、反射面4Aが4A’に変
位して光偏光器の内接円半径がΔRpだけ大きくなった
時の走査範囲の変化を検討する。このとき、凸反射面が
ΔRp繰り出すことにより走査位置YがY0からY1に
変化するのは平面状反射面の場合と同様であるが、反射
面が凸形状のときは凸反射面の法線方向がθからθ’に
変化するので、走査位置は更にY2へ移動する。この結
果、凸反射面間に内接円半径の差ΔRpが存在したと
き、走査開始位置を同期制御すると、走査終端で平面状
反射面の場合よりも(Y1−Y2)×2だけ大きなドッ
ト位置の不揃いが発生する。
FIG. 10 shows the relationship between the inscribed circle radius error of the convex reflecting surface and the scanning position. The distance from the rotation axis O of the optical deflector to the surface 9 to be scanned does not change, and the reflecting surface 4A is 4A. Consider the change in the scanning range when the radius of the inscribed circle of the optical polarizer is increased by ΔRp after the displacement to '. At this time, the scanning position Y changes from Y0 to Y1 as the convex reflecting surface moves out by ΔRp, as in the case of the planar reflecting surface, but when the reflecting surface is convex, the normal direction of the convex reflecting surface. Changes from θ to θ ′, the scanning position further moves to Y2. As a result, when there is a difference ΔRp in the radius of the inscribed circle between the convex reflecting surfaces, if the scanning start position is synchronously controlled, the dot position is larger by (Y1−Y2) × 2 at the scanning end than in the case of the planar reflecting surface. Irregularity occurs.

【0012】このように凸反射面の光偏向器は、形状誤
差、特に、内接円半径誤差の精度に対する要求が厳しく
なっており、発明者らの検討によると、上記公報の光偏
向器で被走査面上の走査終端におけるドット位置の不揃
い量を画質上認識し難いレベルまでにするには、内接円
半径誤差を0.01〜0.02mmの範囲にしなければ
ならないことが確認されている。
As described above, in the optical deflector having a convex reflecting surface, there is a strict requirement for the accuracy of the shape error, in particular, the error of the radius of the inscribed circle. It was confirmed that the radius error of the inscribed circle must be in the range of 0.01 to 0.02 mm in order to reach the level where it is difficult to recognize the unevenness of the dot positions at the scanning end on the surface to be scanned in terms of image quality. There is.

【0013】[0013]

【発明が解決しようとする課題】しかし、従来の光偏光
器によると、被走査面上の走査終端におけるドット位置
の不揃いを抑えるために部品精度、特に、内接円半径誤
差に要求される精度が厳しくなるため、コストアップに
なるという不都合がある。
However, according to the conventional optical polarizer, in order to suppress the unevenness of the dot position at the scanning end on the surface to be scanned, the accuracy of the parts, especially the accuracy required for the inscribed circle radius error, is required. However, there is an inconvenience that the cost is increased because

【0014】従って、本発明の目的は、像面湾曲を補正
する機能を有しながら、被走査面上の走査終端における
ドット位置の不揃いを抑制し、しかも内接円半径誤差の
精度を緩和してコストダウンを図ることができる光偏向
器を提供することである。
Therefore, an object of the present invention is to suppress the unevenness of the dot position at the scanning end on the surface to be scanned while having the function of correcting the curvature of field, and to alleviate the accuracy of the inscribed circle radius error. It is an object of the present invention to provide an optical deflector that can reduce costs.

【0015】[0015]

【課題を解決するための手段】本発明は上記問題点に鑑
み、像面湾曲を補正する機能を有しながら、被走査面上
の走査終端におけるドット位置の不揃いを発生させずに
内接円半径誤差の精度を緩和してコストダウンを図るた
め、反射面は主走査方向における形状が凸非円弧状であ
ると共に、副走査方向における形状が屈折力を有しない
直線状である凸非球面より構成され、偏向角0°におけ
る偏向点から被走査面までの距離をL、及び被走査面の
走査中心から有効走査端までの距離をYとしたとき、主
走査方向における頂点の曲率半径Rが、 R>41.1(Y3 /L2 )−34.9(Y2 /L)+
9.7Y の関係を有した光偏向器を提供するものである。
In view of the above problems, the present invention has an inscribed circle without causing irregular dot positions at the scanning end on the surface to be scanned while having a function of correcting field curvature. In order to reduce the accuracy of the radius error and reduce costs, the reflecting surface has a convex non-arcuate shape in the main scanning direction and a linear convex aspherical shape in the sub-scanning direction that has no refractive power. When the distance from the deflection point to the surface to be scanned at a deflection angle of 0 ° is L and the distance from the scanning center of the surface to be scanned to the effective scanning end is Y, the curvature radius R of the apex in the main scanning direction is , R> 41.1 (Y 3 / L 2 ) -34.9 (Y 2 / L) +
An optical deflector having a relationship of 9.7Y is provided.

【0016】また、上記目的を達成する本発明の光走査
装置は、光束を出射する光源と、光束を主走査方向に所
定の幅を有した光束にする光学系と、光学系から受けた
光束を反射偏向する複数の反射面を有し、主走査方向に
おける形状が凸非円弧状であると共に、副走査方向にお
ける形状が屈折力を有しない直線状である凸非球面より
構成され、且つ、偏向角0°における偏向点から被走査
面までの距離をL、及び被走査面の走査中心から有効走
査端までの距離をYとしたとき、主走査方向における頂
点の曲率半径Rが、 R>41.1(Y3 /L2 )−34.9(Y2 /L)+
9.7Y の関係を有した光偏向器と、光偏向器と被走査面の間に
設けられ、副走査方向において光偏向器の反射面と被走
査面を幾何光学的な共役関係として光偏向器の偏向光を
被走査面に導くアナモフィック光学素子とを備えてい
る。
Further, the optical scanning device of the present invention which achieves the above object, a light source for emitting a light beam, an optical system for converting the light beam into a light beam having a predetermined width in the main scanning direction, and a light beam received from the optical system. Having a plurality of reflecting surfaces for reflecting and deflecting, the shape in the main scanning direction is a convex non-arc shape, and the shape in the sub-scanning direction is composed of a linear convex aspheric surface having no refractive power, and, When the distance from the deflection point at the deflection angle of 0 ° to the scanned surface is L and the distance from the scanning center of the scanned surface to the effective scanning end is Y, the radius of curvature R of the apex in the main scanning direction is R> 41.1 (Y 3 / L 2 ) -34.9 (Y 2 / L) +
An optical deflector having a relationship of 9.7Y, and an optical deflector provided between the optical deflector and the surface to be scanned, in which the reflecting surface and the surface to be scanned of the optical deflector are geometrically-optically conjugate in the sub-scanning direction. And an anamorphic optical element that guides the deflected light of the container to the surface to be scanned.

【0017】上記光偏向器は、複数の反射面間における
回転軸から反射面までの距離の差が少なくとも0.02
5mm以上になっているプラスチック製ポリゴンミラー
である構成が好ましい。
In the above-mentioned optical deflector, a difference in distance between the plurality of reflecting surfaces from the rotation axis to the reflecting surface is at least 0.02.
A configuration of a plastic polygon mirror having a size of 5 mm or more is preferable.

【0018】[0018]

【作用】反射面の主走査方向の形状を非円弧とし、主走
査方向の頂点の曲率半径を前述した演算によって求めら
れる所定値より大きくすることにより、内接円半径誤差
に対する要求精度を緩和させ、被走査面上の走査端にお
けるドット位置の不揃い量の低減する。また、反射面の
頂点以外の部分でも像面湾曲を補正し、走査面上のドッ
ト径を均一な大きさにする。
The required accuracy for the inscribed circle radius error is relaxed by making the shape of the reflecting surface in the main scanning direction a non-circular arc and making the radius of curvature of the apex in the main scanning direction larger than the predetermined value obtained by the above-mentioned calculation. , The amount of misalignment of dot positions at the scanning end on the surface to be scanned is reduced. In addition, the field curvature is corrected even in a portion other than the apex of the reflecting surface, and the dot diameter on the scanning surface is made uniform.

【0019】[0019]

【実施例】以下、本発明の光偏向器、及び光走査装置に
ついて、添付図面を参照しながら詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The optical deflector and optical scanning device of the present invention will be described in detail below with reference to the accompanying drawings.

【0020】図1の(a),(b) には、本発明の光偏向器、
及び光走査装置の一実施例が示されている。ここで、光
走査装置は、画像信号に応じて変調された光束を出射す
る半導体レーザ等の光源1と、光源1から出射された光
束を後述する光偏向器4に導く入射レンズ系2、及びス
リット3と、主走査方向に対する屈折力を有する複数の
凸反射面4A〜4Dを有し、回転軸Oでの回転によって
入射した光束を反射偏向する光偏向器4と、光偏向器4
の偏向光を反射して感光体6の表面に導くシリンドリカ
ルミラー5と、シリンドリカルミラー5を介して入射し
た偏向光で走査される感光体6を備えて構成され、感光
体6には偏向光によるドットが走査線7の7Sから7E
に渡って形成される。
FIGS. 1A and 1B show an optical deflector of the present invention,
And an embodiment of an optical scanning device is shown. Here, the optical scanning device includes a light source 1 such as a semiconductor laser that emits a light beam modulated according to an image signal, an incident lens system 2 that guides the light beam emitted from the light source 1 to an optical deflector 4 described later, and An optical deflector 4 which has a slit 3 and a plurality of convex reflecting surfaces 4A to 4D having a refractive power in the main scanning direction, and which reflects and deflects a light beam incident by rotation about a rotation axis O, and an optical deflector 4
It is configured to include a cylindrical mirror 5 that reflects the deflected light of the above and guides it to the surface of the photoconductor 6, and a photoconductor 6 that is scanned by the deflected light that has entered through the cylindrical mirror 5. Dots are 7S to 7E of scan line 7
Formed across.

【0021】入射レンズ系2は、凸レンズ2A、及びシ
リンドリカルレンズ2Bより成り、光源1から発散され
た光束を、主走査方向においては集束する光束に、副走
査方向においては光偏向器4の反射面に集光する光束に
成形するように構成されている。
The incident lens system 2 is composed of a convex lens 2A and a cylindrical lens 2B. The light beam diverged from the light source 1 is converged into a light beam in the main scanning direction, and the reflection surface of the optical deflector 4 in the sub scanning direction. It is configured to form a light beam that is focused on.

【0022】シリンドリカルミラー5は、光偏向器4の
反射面4A〜4Dと感光体6の表面を幾何光学的共役関
係とする曲率半径を有し、主走査方向にパワーを有した
光偏向器4からの偏向光を感光体6の表面に集光させる
ように構成されている。このため、光偏向器4の反射面
4A〜4Dの副走査方向における法線と回転軸Oのなす
角度が面毎に異なる現象、所謂、面倒れにより感光体6
上の走査線7の副走査方向の書込み位置が走査線毎に変
動するのを抑制している。
The cylindrical mirror 5 has a radius of curvature such that the reflecting surfaces 4A to 4D of the optical deflector 4 and the surface of the photosensitive member 6 have a geometrical optical conjugate relationship, and the optical deflector 4 has power in the main scanning direction. It is configured to collect the deflected light from the surface of the photoconductor 6. Therefore, due to a phenomenon in which the angle formed by the rotation axis O and the normal line of the reflecting surfaces 4A to 4D of the optical deflector 4 in the sub-scanning direction varies from surface to surface, so-called surface inclination,
The writing position of the upper scanning line 7 in the sub-scanning direction is suppressed from varying for each scanning line.

【0023】次に、光偏向器4について詳細に説明す
る。光偏向器4は、各反射面4A〜4Dが主走査方向に
は屈折力を有する凸非円弧形状に、副走査方向には屈折
力を有しない直線形状になった凸非球面形状にそれぞれ
なっていると共に、反射面4A〜4Dの主走査方向の頂
点10A〜10Dの曲率が、以下の演算によって得られ
る所定の値より大きくなっている。
Next, the optical deflector 4 will be described in detail. In the optical deflector 4, each of the reflecting surfaces 4A to 4D has a convex non-arcuate shape having a refracting power in the main scanning direction, and a linear convex aspherical shape having no refracting power in the sub-scanning direction. In addition, the curvatures of the vertices 10A to 10D of the reflecting surfaces 4A to 4D in the main scanning direction are larger than a predetermined value obtained by the following calculation.

【0024】すなわち、反射面4A〜4Dの主走査方向
の頂点10A〜10Dの曲率半径をR、偏向角0°にお
ける偏向点から感光体6までの距離をL、及び走査中心
Cから有効走査端7S、或いは7Eまでの距離をYとし
たとき、 R>41.1(Y3 /L2 )−34.9(Y2 /L)+
9.7Y の関係を満足するようになっている。
That is, the radius of curvature of the vertices 10A to 10D of the reflecting surfaces 4A to 4D in the main scanning direction is R, the distance from the deflection point to the photoconductor 6 at a deflection angle of 0 ° is L, and the scanning center C to the effective scanning end. When the distance to 7S or 7E is Y, R> 41.1 (Y 3 / L 2 ) −34.9 (Y 2 / L) +
The relationship of 9.7Y is satisfied.

【0025】このような光偏向器4は、反射面4A〜4
Dの主走査方向における頂点の曲率半径Rが十分大きな
ものになっているため、光偏向器4の回転軸Oから複数
の反射面4A〜4Dまでの距離、すなわち、内接円半径
誤差にばらつきがある場合でも被走査面上の走査端にお
けるドット位置の不揃いを低減することができる。ま
た、反射面4A〜4Dを非円弧としているので、像面湾
曲が十分補正され、走査線7上でのドット径を均一な大
きさにすることができる。
Such an optical deflector 4 has reflecting surfaces 4A to 4A.
Since the radius of curvature R of the vertex of D in the main scanning direction is sufficiently large, the distance from the rotation axis O of the optical deflector 4 to the plurality of reflecting surfaces 4A to 4D, that is, the radius error of the inscribed circle varies. Even if there is, it is possible to reduce the unevenness of the dot position at the scanning end on the surface to be scanned. Further, since the reflecting surfaces 4A to 4D are non-arcuate, the curvature of field is sufficiently corrected, and the dot diameter on the scanning line 7 can be made uniform.

【0026】図1では、入射レンズ系2を凸レンズ2
A、及びシリンドリカルレンズ2Bの組み合わで構成し
たが、アナモフィックな結像特性を有する単レンズで構
成しても良い。更に、アナモフィック光学素子として、
シリンドリカルミラー5の代わりに、例えば、主走査方
向にも屈折力を有するトロイダルミラーやトロイダルレ
ンズ、或いは非球面ミラーや非球面レンズ等を使用して
走査速度の等速性を補正しても良い。
In FIG. 1, the incident lens system 2 is replaced by a convex lens 2.
Although a combination of A and the cylindrical lens 2B is used, a single lens having an anamorphic image forming characteristic may be used. Furthermore, as an anamorphic optical element,
Instead of the cylindrical mirror 5, for example, a toroidal mirror or toroidal lens having a refractive power also in the main scanning direction, an aspherical mirror, an aspherical lens, or the like may be used to correct the constant velocity of the scanning speed.

【0027】また、光偏向器4の反射面4A〜4Dは非
球面形状となっているが、非結晶ポリオレフィンや、ポ
リカーボネート等のプラスチック材料を用いて射出成形
し、表面にアルミニウムや銅を真空蒸着によりコーティ
ングして反射面を形成すれば安価に製作することが可能
となる。更に、本実施例の光偏向器4の反射面4A〜4
Dは筒状非球面となっているので、プラスチック成形用
金型内で凸反射面のマスターとなる金型部品を加工する
工程において、必要な反射面数分を重ねた状態で一度に
研削、研磨加工することにより、加工誤差が発生した場
合も含め複数の反射面用金型マスターを同一の形状に加
工できるので、副走査方向のドット位置の不揃いを抑制
することが可能となる。
Although the reflecting surfaces 4A to 4D of the optical deflector 4 are aspherical, they are injection-molded using a plastic material such as amorphous polyolefin or polycarbonate, and aluminum or copper is vacuum-deposited on the surface. If the reflective surface is formed by coating with, it can be manufactured at low cost. Furthermore, the reflecting surfaces 4A to 4 of the optical deflector 4 of the present embodiment.
Since D is a cylindrical aspherical surface, in the process of processing the mold component that becomes the master of the convex reflecting surface in the plastic molding die, the necessary number of reflecting surfaces are ground at the same time, By performing the polishing process, it is possible to process a plurality of reflection surface mold masters into the same shape even when a processing error occurs, and thus it is possible to suppress the unevenness of the dot positions in the sub-scanning direction.

【0028】次に、光偏向器4の反射面4A〜4Dを上
記のような構成にする根拠について説明する。
Next, the reason why the reflecting surfaces 4A to 4D of the optical deflector 4 are constructed as described above will be explained.

【0029】図2は、円弧形状の反射面4Aの光偏向器
において内接円半径誤差がある場合の反射特性の変化を
示す。ここで、反射面4Aの曲率半径をRf、光偏向器
の内接円半径をRp、光偏向器の回転角をα、内接円半
径Rpのときの反射面4上の反射点aにおける法線方向
をθ、光偏向器の内接円半径誤差をΔRp、内接円半径
誤差ΔRpのときの反射面4A’上の反射点a’におけ
る法線方向をθ’、光偏向器の回転中心をO、反射面4
Aの曲率中心をC、反射面4A’の曲率中心をC’とす
る。
FIG. 2 shows a change in the reflection characteristic when there is an inscribed circle radius error in the optical deflector having the arcuate reflecting surface 4A. Here, the radius of curvature of the reflecting surface 4A is Rf, the radius of the inscribed circle of the optical deflector is Rp, the rotation angle of the optical deflector is α, and the modulus at the reflection point a on the reflecting surface 4 when the radius of the inscribed circle is Rp. The linear direction is θ, the radius error of the inscribed circle of the optical deflector is ΔRp, and the normal direction at the reflection point a ′ on the reflecting surface 4A ′ when the radius error of the inscribed circle is ΔRp is θ ′, the rotation center of the optical deflector. O, reflective surface 4
The center of curvature of A is C, and the center of curvature of the reflecting surface 4A ′ is C ′.

【0030】三角形O、a、Cに正弦定理を適用する
と、 sinθ={(Rf−Rp)/Rf}sinα により反射後の偏向角2θが求められる。一方、光偏向
器の内接円半径がΔRpだけ変化した場合は、三角形
O、a’、C’に正弦定理を適用すると、 sinθ’=〔{Rf−(Rp+ΔRp)}/Rf〕s
inα により反射後の偏向角2θ’が求められる。これより内
接半径の変化ΔRpによる偏向角の変化Δθは、 Δθ=2(θ−θ’) となる。
When the sine theorem is applied to the triangles O, a and C, the deflection angle 2θ after reflection is obtained by sin θ = {(Rf-Rp) / Rf} sin α. On the other hand, when the radius of the inscribed circle of the optical deflector changes by ΔRp, applying the sine theorem to the triangles O, a ′, and C ′, sin θ ′ = [{Rf− (Rp + ΔRp)} / Rf] s
The deflection angle 2θ ′ after reflection is determined by inα. From this, the change in deflection angle Δθ due to the change in inscribed radius ΔRp is Δθ = 2 (θ−θ ′).

【0031】従って、画質(ドット位置の不揃い量)へ
の要求からΔθを決定し、加工精度を軽減できる条件か
らΔRpを決定した後、Δθを所望の値とするために必
要な反射面4Aの曲率半径Rfを上記式により決定すれ
ば、厳しい部品精度を必要としない光偏向器を提供する
ことが可能となる。
Therefore, after determining Δθ from the requirement for the image quality (the amount of non-uniformity of the dot positions) and ΔRp from the conditions that can reduce the processing accuracy, the reflecting surface 4A necessary for setting Δθ to a desired value. If the radius of curvature Rf is determined by the above equation, it is possible to provide an optical deflector that does not require strict component accuracy.

【0032】ところが、反射面の主走査方向の形状が円
弧の場合、Δθを小さくするために曲率半径Rfを大き
くすると、負の過大な像面湾曲が発生して、走査面上の
スポットサイズを均一に保てなくなる。そこで、本実施
例では反射面4Aの主走査方向の形状を非円弧とし、像
面湾曲の補正にそれほど影響がない主走査方向の頂点1
0A〜10Dの曲率半径を前述した演算によって求めら
れる所定値より大きくすることにより、内接円半径誤差
に対する要求精度を緩和しても画質の低下(走査終端に
おけるドット位置の不揃い)が抑制されるようにしてい
る。
However, in the case where the shape of the reflecting surface in the main scanning direction is an arc, if the radius of curvature Rf is increased in order to reduce Δθ, an excessive negative field curvature is generated and the spot size on the scanning surface is reduced. It cannot be maintained evenly. Therefore, in the present embodiment, the shape of the reflecting surface 4A in the main scanning direction is a non-circular arc, and the vertex 1 in the main scanning direction that does not significantly affect the correction of the field curvature.
By making the radius of curvature of 0A to 10D larger than the predetermined value obtained by the above-described calculation, deterioration of image quality (unevenness of dot positions at the scanning end) is suppressed even if the accuracy required for the inscribed circle radius error is relaxed. I am trying.

【0033】図3は、偏向角0°における偏向点から走
査面までの距離Lと凸面の反射面の主走査方向の頂点に
おける曲率半径Rの関係を内接円半径誤差のパラメータ
として示したグラフである。ここで、走査中心から有効
走査端までの距離Yは110mm、内接円半径は12m
mとし、走査終端でのドット位置の不揃い量50μmに
対して計算した結果である。ドット位置の不揃い量50
μmは、小型レーザプリンタのビーム径がおよそ100
μm程度であることからその1/2を選んだ。
FIG. 3 is a graph showing the relationship between the distance L from the deflection point at the deflection angle of 0 ° to the scanning surface and the radius of curvature R at the apex of the convex reflecting surface in the main scanning direction as a parameter of the inscribed circle radius error. Is. Here, the distance Y from the scanning center to the effective scanning end is 110 mm, and the radius of the inscribed circle is 12 m.
m is the result of calculation for an uneven amount of dot positions of 50 μm at the end of scanning. Uneven amount of dot position 50
The beam diameter of a small laser printer is about 100 μm.
Since it is on the order of μm, 1/2 of that was selected.

【0034】更に、図3には、反射面の主走査方向の形
状を円弧とした場合に像面湾曲を十分補正するために必
要な偏向角0°における偏向点から走査面までの距離L
と、反射面の主走査方向の頂点における曲率Rの関係
と、特開昭61−156020号公報に開示された光偏
向器、及び特開平1−116515号公報に開示された
光偏向器における像面湾曲を十分補正するために必要な
偏向角0°における偏向点から走査面までの距離Lと、
反射面の主走査方向の頂点における曲率Rの関係を併せ
て示している。なお、上記公報のものは走査中心から有
効走査端までの距離Yが110mmとなる条件に数値を
読み変えて示している。
Further, in FIG. 3, when the shape of the reflecting surface in the main scanning direction is an arc, the distance L from the deflection point to the scanning surface at a deflection angle of 0 ° necessary to sufficiently correct the curvature of field.
And the relationship between the curvature R at the apex of the reflecting surface in the main scanning direction, and the image in the optical deflector disclosed in JP-A-61-156020 and the optical deflector disclosed in JP-A-1-116515. A distance L from the deflection point to the scanning surface at a deflection angle of 0 ° necessary to sufficiently correct the surface curvature,
The relationship of the curvature R at the apex of the reflecting surface in the main scanning direction is also shown. In the above publication, numerical values are read under the condition that the distance Y from the scanning center to the effective scanning end is 110 mm.

【0035】図3から判るように、偏向角0°における
偏向点から走査面までの距離Lが小さくなるほど、反射
面において同一の許容内接円半径を確保するために必要
な主走査方向における頂点の曲率半径Rが大きくなって
いる。すなわち、光学系の小型化を狙って偏向角0°に
おける偏向点から走査面までの距離Lを小さくした場合
には、反射面の主走査方向における頂点の曲率半径Rを
大きくしないと、内接円半径誤差に対する要求精度が厳
しくなる。反射面の主走査方向における形状を円弧とし
た場合に許される内接円半径誤差は0.01〜0.02
mmの範囲であり、これは反射面が非平面形状の光偏向
器の加工精度としては非常に厳しいものである。
As can be seen from FIG. 3, as the distance L from the deflection point to the scanning surface at the deflection angle of 0 ° becomes smaller, the vertex in the main scanning direction required to secure the same allowable inscribed circle radius on the reflecting surface. Has a large radius of curvature R. That is, when the distance L from the deflection point at the deflection angle of 0 ° to the scanning surface is reduced in order to reduce the size of the optical system, the radius of curvature R of the apex of the reflecting surface in the main scanning direction must be increased inscribed. The required accuracy for the circle radius error becomes strict. When the shape of the reflecting surface in the main scanning direction is a circular arc, the inscribed circle radius error allowed is 0.01 to 0.02.
It is in the range of mm, which is very strict as the processing accuracy of an optical deflector having a non-planar reflecting surface.

【0036】また、特開平1−116515号公報に開
示された光偏向器でも、像面湾曲と走査非直線性を補正
するために反射面の主走査方向における頂点の曲率半径
Rを、円弧形状の場合とほぼ同程度の大きさとしている
ので、内接円半径誤差に対する要求精度は図示されるよ
うに、0.01〜0.02mmの範囲となってやはり厳
しくなる。
Also in the optical deflector disclosed in Japanese Patent Laid-Open No. 1-116515, the radius of curvature R of the apex of the reflecting surface in the main scanning direction is an arc shape in order to correct the field curvature and the scanning non-linearity. Since the size is about the same as in the case of (1), the required accuracy for the radius error of the inscribed circle is in the range of 0.01 to 0.02 mm as shown in FIG.

【0037】本発明者らは、このような偏向角0°にお
ける偏向点から走査面までの距離Lと凸面の反射面の主
走査方向の頂点における曲率半径Rの関係から、ドット
位置の不揃い量50μmに対し、凸面の反射面の内接円
半径誤差に対する要求精度を0.025mm以上に緩め
る条件を検討したところ、偏向角0°における偏向点か
ら走査面までの距離をL、走査中心から有効走査端まで
の距離をYとしたとき、反射面の主走査方向の頂点にお
ける曲率半径Rが R>41.1(Y3 /L2 )−34.9(Y2 /L)+
9.7Y の関係を満足することにより可能であることを見い出し
た。
From the relationship between the distance L from the deflection point at the deflection angle of 0 ° to the scanning surface and the radius of curvature R at the apex of the convex reflecting surface in the main scanning direction, the present inventors have found that the dot position is not uniform. When we examined the condition that the required accuracy for the radius error of the inscribed circle of the convex reflecting surface was loosened to 0.025 mm or more for 50 μm, the distance from the deflection point to the scanning surface at the deflection angle of 0 ° was L, and the effective distance from the scanning center was effective. when the distance to the scanning end was Y, the radius of curvature R is R> 41.1 in the main scanning direction the apex of the reflective surface (Y 3 / L 2) -34.9 (Y 2 / L) +
It has been found possible by satisfying the relationship of 9.7Y.

【0038】以下、本発明の具体的な実施例について説
明する。表1には、上記関係式を満足する実施例1から
実施例3の具体的な条件が示されている。
Specific examples of the present invention will be described below. Table 1 shows specific conditions of Examples 1 to 3 that satisfy the above relational expressions.

【表1】 なお、反射面は主走査方向の頂点における法線方向の座
標をZ、Z軸と直交し、主走査方向に含まれる座標をY
としたとき、 Z(Y)=a2 2 +a4 4 +a6 6 +a8 8
10102 :反射面の主走査方向非円弧形状を決定する2次の
計数 a4 :反射面の主走査方向非円弧形状を決定する4次の
計数 a6 :反射面の主走査方向非円弧形状を決定する6次の
計数 なる式により表されるとし、表に示した各記号の意味は
以下の通りである。 L :偏向角0°における偏向点から走査面までの距離
〔mm〕 Y :走査中心から有効走査端までの距離〔mm〕 S :反射面から入射光束の仮想集束点までの距離〔m
m〕 Rp:光偏向器の内接円半径 Rf:光偏向器の反射面の主走査方向における頂点の曲
率半径〔mm〕(Rf1/2a2 である) Rc:凸反射面の内接円半径誤差に対する要求精度を
0.025mm以上に緩める条件式の計算値
[Table 1] The reflecting surface has coordinates Z in the normal direction at the apex in the main scanning direction, orthogonal to the Z axis, and coordinates Y in the main scanning direction.
Then, Z (Y) = a 2 Y 2 + a 4 Y 4 + a 6 Y 6 + a 8 Y 8 +
a 10 Y 10 a 2 : Secondary count that determines the non-arc shape of the reflecting surface in the main scanning direction a 4 : Quaternary count that determines the non-arc shape of the reflecting surface in the main scanning direction a 6 : Main scanning of the reflecting surface It is assumed that it is represented by an equation of 6th order that determines the direction non-arc shape, and the meanings of the symbols shown in the table are as follows. L: Distance from the deflection point to the scanning surface at a deflection angle of 0 ° [mm] Y: Distance from the scanning center to the effective scanning end [mm] S: Distance from the reflecting surface to the virtual focusing point of the incident light beam [m
m] Rp: radius of the inscribed circle of the light deflector Rf: radius of curvature of the apex of the reflection surface of the light deflector in the main scanning direction [mm] (Rf1 / 2a 2 ) Rc: radius of the inscribed circle of the convex reflection surface Calculated value of conditional expression that loosens required accuracy for error to 0.025 mm or more

【0039】図4、図5、及び図6は、実施例1から実
施例3に対応する主走査方向の像面湾曲の特性を示す。
これらの図から、被走査面上の走査終端におけるドット
位置の不揃いを抑えつつ内接円半径誤差に対する要求精
度を緩和しても、各実施例とも像面湾曲が補正されてい
ることが判る。
FIG. 4, FIG. 5 and FIG. 6 show characteristics of field curvature in the main scanning direction corresponding to the first to third embodiments.
From these figures, it can be seen that the field curvature is corrected in each of the examples even if the required accuracy for the radius error of the inscribed circle is relaxed while suppressing the unevenness of the dot position at the scanning end on the surface to be scanned.

【0040】[0040]

【発明の効果】以上説明した通り、本発明の光偏向器に
よると、反射面の主走査方向における形状が凸非円弧状
とし、偏向角0°における偏向点から被走査面までの距
離L、及び被走査面の走査中心から有効走査端までの距
離Yとしたとき、主走査方向における頂点の曲率半径R
を、 R>41.1(Y3 /L2 )−34.9(Y2 /L)+
9.7Y としたため、像面湾曲を補正する機能を有しながら、被
走査面上の走査終端におけるドット位置の不揃いを抑制
し、しかも内接円半径誤差の精度を緩和してコストダウ
ンを図ることができ、本発明の光走査装置においてもコ
ストダウンを図ることができる。
As described above, according to the optical deflector of the present invention, the shape of the reflecting surface in the main scanning direction is a convex non-arcuate shape, and the distance L from the deflection point to the surface to be scanned at the deflection angle 0 °, And the radius Y of the vertex in the main scanning direction, where Y is the distance from the scanning center of the surface to be scanned to the effective scanning end.
R> 41.1 (Y 3 / L 2 ) −34.9 (Y 2 / L) +
Since it is set to 9.7Y, it has a function of correcting the curvature of field, while suppressing the unevenness of the dot position at the scanning end of the surface to be scanned, and further mitigating the accuracy of the inscribed circle radius error to reduce the cost. Therefore, the cost can be reduced also in the optical scanning device of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す説明図。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】円弧形状反射面の内接円半径誤差と反射特性の
関係を示す説明図。
FIG. 2 is an explanatory diagram showing a relationship between an inscribed circle radius error of an arcuate reflecting surface and a reflection characteristic.

【図3】偏向角0°における偏向点から走査面までの距
離と反射面の主走査方向における頂点の曲率半径の関係
を内接円半径誤差のパラメータとして示すグラフ。
FIG. 3 is a graph showing a relationship between a distance from a deflection point at a deflection angle of 0 ° to a scanning surface and a curvature radius of a vertex of a reflecting surface in a main scanning direction as a parameter of an inscribed circle radius error.

【図4】実施例1の主走査方向の像面湾曲特性を示す説
明図。
FIG. 4 is an explanatory diagram showing a field curvature characteristic in a main scanning direction of the first embodiment.

【図5】実施例2の主走査方向の像面湾曲特性を示す説
明図。
FIG. 5 is an explanatory diagram showing a field curvature characteristic in a main scanning direction of the second embodiment.

【図6】実施例3の主走査方向の像面湾曲特性を示す説
明図。
FIG. 6 is an explanatory diagram showing a field curvature characteristic in a main scanning direction according to a third embodiment.

【図7】光偏向器の形状誤差が画質に与える影響を示す
説明図。
FIG. 7 is an explanatory diagram showing the influence of the shape error of the optical deflector on the image quality.

【図8】光偏向器の凸反射面の形状誤差を示す説明図。FIG. 8 is an explanatory diagram showing a shape error of a convex reflecting surface of the optical deflector.

【図9】反射面が平面の場合の内接円半径誤差と走査距
離の関係を示す説明図。
FIG. 9 is an explanatory diagram showing a relationship between an inscribed circle radius error and a scanning distance when a reflecting surface is a flat surface.

【図10】凸反射面の内接円半径誤差と走査距離の関係
を示す説明図。
FIG. 10 is an explanatory diagram showing a relationship between an inscribed circle radius error of a convex reflecting surface and a scanning distance.

【符号の説明】[Explanation of symbols]

1 光源 2 入射レンズ系 2A 凸レンズ 2B シリンドリカルレンズ 3 スリット 4 光偏向器 4A〜4D 反射面 5 シリンドリカルミラー 6 感光体 7 走査線 8 反射面 9 走査面 10A〜10D 頂点 1 Light Source 2 Incident Lens System 2A Convex Lens 2B Cylindrical Lens 3 Slit 4 Optical Deflector 4A-4D Reflecting Surface 5 Cylindrical Mirror 6 Photoreceptor 7 Scanning Line 8 Reflecting Surface 9 Scanning Surface 10A-10D Vertex

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の反射面で光束を反射偏向し、被走
査面上を走査する光偏向器において、 前記反射面は、主走査方向における形状が凸非円弧状で
あると共に、副走査方向における形状が屈折力を有しな
い直線状である凸非球面より構成され、 偏向角0°における偏向点から前記被走査面までの距離
をL、及び前記被走査面の走査中心から有効走査端まで
の距離をYとしたとき、前記主走査方向における頂点の
曲率半径Rが、 R>41.1(Y3 /L2 )−34.9(Y2 /L)+
9.7Y の関係を有していることを特徴とする光偏向器。
1. An optical deflector for reflecting and deflecting a light beam on a plurality of reflecting surfaces and scanning the surface to be scanned, wherein the reflecting surface has a convex non-arcuate shape in the main scanning direction and a sub-scanning direction. Is composed of a linear convex aspherical surface having no refractive power, the distance from the deflection point at the deflection angle of 0 ° to the scanned surface is L, and the scanning center of the scanned surface to the effective scanning end. when the distance was set to Y, the radius of curvature R of the vertices in the main scanning direction, R> 41.1 (Y 3 / L 2) -34.9 (Y 2 / L) +
An optical deflector having a relationship of 9.7Y.
【請求項2】 光束を出射する光源と、 前記光束を主走査方向に所定の幅を有した光束にする光
学系と、 前記光学系から受けた前記光束を反射偏向する複数の反
射面を有し、主走査方向における形状が凸非円弧状であ
ると共に、副走査方向における形状が屈折力を有しない
直線状である凸非球面より構成され、且つ、偏向角0°
における偏向点から前記被走査面までの距離をL、及び
前記被走査面の走査中心から有効走査端までの距離をY
としたとき、前記主走査方向における頂点の曲率半径R
が、 R>41.1(Y3 /L2 )−34.9(Y2 /L)+
9.7Y の関係を有した光偏向器と、 前記光偏向器と被走査面の間に設けられ、副走査方向に
おいて前記光偏向器の前記反射面と前記被走査面を幾何
光学的な共役関係として前記光偏向器の偏向光を前記被
走査面に導くアナモフィック光学素子とを備えているこ
とを特徴とする光走査装置。
2. A light source for emitting a light beam, an optical system for converting the light beam into a light beam having a predetermined width in the main scanning direction, and a plurality of reflecting surfaces for reflecting and deflecting the light beam received from the optical system. However, the shape in the main scanning direction is a convex non-arcuate shape, the shape in the sub scanning direction is composed of a linear convex aspherical surface having no refractive power, and the deflection angle is 0 °.
, L is the distance from the deflection point to the scanned surface, and Y is the distance from the scanning center of the scanned surface to the effective scanning end.
And the radius of curvature R of the apex in the main scanning direction is
There, R> 41.1 (Y 3 / L 2) -34.9 (Y 2 / L) +
An optical deflector having a relationship of 9.7Y, and a geometrical-optical conjugate provided between the optical deflector and the surface to be scanned, the reflecting surface and the surface to be scanned of the optical deflector in the sub-scanning direction. Relatedly, an optical scanning device comprising: an anamorphic optical element that guides the deflected light of the optical deflector to the surface to be scanned.
【請求項3】 前記光偏向器は、前記複数の反射面間に
おける回転軸から前記反射面までの距離の差が少なくと
も0.025mm以上になっているプラスチック製ポリ
ゴンミラーである構成の請求項2の光走査装置。
3. The optical deflector is a plastic polygon mirror in which a difference in distance between the plurality of reflecting surfaces from the rotation axis to the reflecting surface is at least 0.025 mm or more. Optical scanning device.
JP1539195A 1995-02-01 1995-02-01 Light deflector and optical scanner Pending JPH08211319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1539195A JPH08211319A (en) 1995-02-01 1995-02-01 Light deflector and optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1539195A JPH08211319A (en) 1995-02-01 1995-02-01 Light deflector and optical scanner

Publications (1)

Publication Number Publication Date
JPH08211319A true JPH08211319A (en) 1996-08-20

Family

ID=11887445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1539195A Pending JPH08211319A (en) 1995-02-01 1995-02-01 Light deflector and optical scanner

Country Status (1)

Country Link
JP (1) JPH08211319A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120050443A1 (en) * 2010-08-30 2012-03-01 Samsung Electronics Co., Ltd. Rotational polygon mirror and light scanning unit employing the same
CN116127544A (en) * 2022-11-28 2023-05-16 西安电子科技大学 Modeling method for large-size light condensation error reflecting surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120050443A1 (en) * 2010-08-30 2012-03-01 Samsung Electronics Co., Ltd. Rotational polygon mirror and light scanning unit employing the same
US8922606B2 (en) 2010-08-30 2014-12-30 Samsung Electronics Co., Ltd. Rotational polygon mirror having convex reflection surfaces and light scanning unit employing the same
CN116127544A (en) * 2022-11-28 2023-05-16 西安电子科技大学 Modeling method for large-size light condensation error reflecting surface
CN116127544B (en) * 2022-11-28 2023-11-03 西安电子科技大学 Modeling method for large-size light condensation error reflecting surface

Similar Documents

Publication Publication Date Title
US6104522A (en) Optical scanning apparatus with controlled sag and ghost
US5808775A (en) Laser beam scanning optical apparatus
KR100266095B1 (en) Scanning optical apparatus
JP3466863B2 (en) Scanning optical device and image recording device using the same
EP0853253B1 (en) Optical scanning apparatus
KR20010107742A (en) Optical scanning apparatus and image forming apparatus using the same
US6512623B1 (en) Scanning optical device
KR0184650B1 (en) Optical scanning apparatus including a lens having aspherical surfaces on both sides
JPS63141020A (en) Optical scanning device
US5353047A (en) Beam scanning optical system
JP2003107382A (en) Scanning optical system
JP2000081584A (en) Scanning optical device
JPH07174998A (en) Scanning lens and optical scanner
JP3323354B2 (en) Optical scanning device
JPH08211319A (en) Light deflector and optical scanner
JPH08248345A (en) Optical scanner
JP3405373B2 (en) Optical deflector and optical scanning device
JP2773593B2 (en) Light beam scanning optical system
JP3420439B2 (en) Optical scanning optical system and laser beam printer including the same
US5652611A (en) Optical scanning system and image forming apparatus employing same for electrophoto graphically forming images
JP2000002848A (en) Scanning optical device
JP3320239B2 (en) Scanning optical device
JPH112769A (en) Optical scanner
JP3571808B2 (en) Optical scanning optical system and laser beam printer including the same
JP3680891B2 (en) Optical scanning device