JPH08211289A - Compact high variable magnifying power zoom lens - Google Patents

Compact high variable magnifying power zoom lens

Info

Publication number
JPH08211289A
JPH08211289A JP31579395A JP31579395A JPH08211289A JP H08211289 A JPH08211289 A JP H08211289A JP 31579395 A JP31579395 A JP 31579395A JP 31579395 A JP31579395 A JP 31579395A JP H08211289 A JPH08211289 A JP H08211289A
Authority
JP
Japan
Prior art keywords
lens
lens group
group
zoom
refracting power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31579395A
Other languages
Japanese (ja)
Other versions
JP3032955B2 (en
Inventor
Takanori Yamanashi
隆則 山梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP7315793A priority Critical patent/JP3032955B2/en
Publication of JPH08211289A publication Critical patent/JPH08211289A/en
Application granted granted Critical
Publication of JP3032955B2 publication Critical patent/JP3032955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a high variable magnifying power zoom lens which has an included angle of view of about 76 to 18 deg. and a variable magnifying power ratio of about 3 to 4 and has the optical performance good over the entire variable power region by composing a second lens group of a front group having a negative refracting power and a rear group having a positive refracting power and satisfying specific conditions. CONSTITUTION: This high variable magnifying power zoom lens is composed of, successively from an object side, a first lens group G1 having the positive refracting power, the second lens group G2 provided with the positive refracting power as a whole by integrating the second lens group of the negative refracting power and the third lens group of the positive refracting power in a lens system of a four-group zoom system and a third lens group G3 having the negative refracting power. The power of this zoom lens is varied by changing the spacings between the respective lens groups G1 to G3 . The zoom lens described above is constituted to satisfy the conditions 0.05<ϕ1 /ϕW<0.9, 1.0<ϕ12 W/ϕW<2.0, 2.0<β3 T<5.0; where, ϕ1 is the refracting power of the first lens group G1 ; ϕ12 W is the combined refracting power of the first lens group G1 and the second lens group G2 at the wide angle end; ϕW is the refracting power of the entire system at the wide angle end; β3 T is the lateral magnification of the third lens group G3 at the telephoto end.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コンパクトな高変
倍率ズームレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact high variable power zoom lens.

【0002】[0002]

【従来の技術】近年、カメラの全自動化が進み、多機能
でありながら携帯性の優れたコンパクトカメラに、ズー
ムレンズを内蔵して撮影領域を広げることが一般に行な
われている。そのためズームレンズ自体が撮影光学系と
してカメラシステム中に組込まれるために、コンパクト
なレンズ系が必要である。
2. Description of the Related Art In recent years, full automation of cameras has progressed, and it has been common practice to expand the photographic area by incorporating a zoom lens into a compact camera which is multifunctional and has excellent portability. Therefore, a compact lens system is required because the zoom lens itself is incorporated in the camera system as a photographing optical system.

【0003】この種のレンズ系は、いわゆる一眼レフカ
メラのようにミラーを配置することを考慮する必要がな
く、バックフォーカスを短くすることが可能である。そ
のために、一眼レフカメラ用のように、その画角が広い
レンズ系に対しては、レトロフォーカスタイプにして後
側主平面位置を光学系の後側に配する必要がなく、逆に
テレフォトタイプとして、後側主平面位置をいくぶん物
体側へ位置させるような屈折力配置にすることが出来
る。
In this type of lens system, it is not necessary to consider disposing a mirror as in a so-called single-lens reflex camera, and the back focus can be shortened. Therefore, for lens systems with a wide angle of view, such as those for single-lens reflex cameras, there is no need to use a retrofocus type and place the rear main plane position behind the optical system. As a type, it is possible to adopt a refracting power arrangement in which the rear principal plane position is located somewhat toward the object side.

【0004】基本的には、単焦点レンズをはじめとして
多焦点切換え式の変倍光学系や、特開昭57−2012
13号公報に記載されたような2群ズームもテレフォト
タイプのレンズ系である。更に2群ズームレンズの発展
形として、その特定のレンズ群を分割して収差補正の改
善を試みたものや、変倍率を分担させた3群ズームレン
ズが提供されている。更に四つのレンズ群にて構成し、
可動群を3にした4群ズームレンズが特開昭60−57
814号に記載されている。
Basically, a multifocal switching type variable magnification optical system including a single focus lens, and Japanese Patent Laid-Open No. 57-2012 are available.
The two-group zoom as described in Japanese Patent No. 13 is also a telephoto type lens system. Further, as an advanced form of the two-group zoom lens, there are provided one in which the specific lens group is divided and an attempt is made to improve aberration correction, and a three-group zoom lens in which the magnification is shared. Furthermore, it consists of four lens groups,
A 4-group zoom lens having a movable group of 3 is disclosed in JP-A-60-57.
No. 814.

【0005】[0005]

【発明が解決しようとする課題】上記のズームレンズ
は、変倍比が1.5からせいぜい2程度であり、口径比
も小さく実用面では不十分である。
The zoom lens described above has a variable power ratio of 1.5 to at most 2 and a small aperture ratio, which is not practical.

【0006】これに対して本出願人は、変倍比と光学性
能の向上を意図して特開昭63−43115号公報記載
の4群ズームレンズを開発した。又このズームレンズの
機構を簡略化したものとして特開昭63−153511
号公報に記載されたレンズ系等を提案した。これらのズ
ームレンズは、変倍比が約3で全変倍域にわたって光学
性能の良好なレンズ系である。
On the other hand, the present applicant has developed a four-group zoom lens disclosed in Japanese Patent Laid-Open No. 63-43115 in order to improve the zoom ratio and the optical performance. Further, as a simplified structure of this zoom lens, it is disclosed in Japanese Patent Laid-Open No. 63-153511.
The lens system and the like described in Japanese Patent Laid-Open Publication No. 2004-242242 are proposed. These zoom lenses are lens systems having a zoom ratio of about 3 and excellent optical performance over the entire zoom range.

【0007】本発明は光学設計上非常な困難性を伴う高
変倍率化を意図し、パースペクティブの変化をさらに作
画意図に生かして実用上の要望を満足するために更に変
倍域を拡張したレンズ系で一層の小型化を図るものであ
る。
The present invention intends to realize a high zoom ratio accompanied by great difficulty in optical design, and further expands the zoom range in order to further utilize the perspective change for the purpose of drawing to satisfy the practical demand. The system is intended to be further miniaturized.

【0008】したがって本発明の目的は、包括画角が7
6°〜18°程度で変倍比が3〜4程度の光学性能が全
変倍域にわたって良好な3群ズーム方式のコンパクトな
高変倍率ズームレンズを提供することにある。
Therefore, an object of the present invention is to have a comprehensive angle of view of 7
It is an object of the present invention to provide a compact, high zoom ratio zoom lens of a three-group zoom system, which has an optical performance of about 6 ° to 18 ° and a zoom ratio of about 3 to 4 over all zoom range.

【0009】[0009]

【課題を解決するための手段】本発明のズームレンズ
は、基本的には前記の特開昭63−153511号のレ
ンズ系を発展させることを出発点とし更に鏡枠構造の簡
単化とフォーカシング方式の最適化によるコンパクト化
を考慮して3群ズーム方式のレンズ系としてその目的を
達成した。
The zoom lens of the present invention basically starts from the development of the lens system of the above-mentioned Japanese Patent Laid-Open No. 63-153511, and further simplifies the lens frame structure and the focusing system. The objective was achieved as a lens system of a three-group zoom system in consideration of compactness by optimization of.

【0010】またレンズ構成およびズーミング時のレン
ズ群の挙動は、本来はズーミング時の倍率負担と収差補
正特に像面わん曲の補正の点から又レンズ系の小型化を
目的として、物体側から順に正,負,正,負の屈折力を
有するレンズ構成を基本の屈折力配分にしている。この
4群ズーム方式をズーム方程式の一般解とする時、第2
レンズ群と第3レンズ群がほぼ同一のズーミング移動を
しながら、しかも光学性能を良好にし得ることを見出し
たものである。つまり4群ズーム方式の中の特殊解とし
ての3群ズーム方式を見出した。
The lens structure and the behavior of the lens group during zooming are originally from the object side in terms of magnification burden and aberration correction during zooming, especially correction of image plane distortion, and from the object side for the purpose of downsizing the lens system. A lens configuration having positive, negative, positive, and negative refractive power is used as the basic refractive power distribution. When this 4-group zoom method is used as a general solution of the zoom equation,
It has been found that the lens group and the third lens group can perform substantially the same zooming movement and yet have good optical performance. That is, the third group zoom method was found as a special solution among the four group zoom methods.

【0011】本発明のズームレンズは、上記のように4
群ズーム方式のレンズ系における負の屈折力の第2レン
ズ群と正の屈折力の第3レンズ群を全体として正の屈折
力を有する一つのレンズ群としこれを第2レンズ群とし
たものである。このようにして3群ズーム方式として変
倍比が3〜4程度を達成するためには各レンズ群の屈折
力配置を適切にすることがレンズ系を小型にする上で重
要であり、更に最適な厚肉レンズの構成や新素材の使用
等によって一層効果をあげることが出来る。
The zoom lens of the present invention has the above-mentioned structure.
The second lens unit having a negative refracting power and the third lens unit having a positive refracting power in the group zoom type lens system are collectively referred to as one lens unit having a positive refracting power. is there. In this way, in order to achieve a variable power ratio of about 3 to 4 in the three-group zoom system, it is important to appropriately arrange the refractive power of each lens group in order to reduce the size of the lens system. The effect can be further enhanced by the construction of a thick lens and the use of new materials.

【0012】本発明のズームレンズは、以上の考えにも
とづくもので、物体側より順に正の屈折力の第1レンズ
群と、正の屈折力の第2レンズ群と、負の屈折力の第3
レンズ群とより構成され、各レンズ群間の間隔を変化さ
せて変倍を行なうものである。又次の条件(1),
(2),(3)を満足することを特徴とする。
The zoom lens according to the present invention is based on the above idea. The first lens group having a positive refractive power, the second lens group having a positive refractive power, and the second lens group having a negative refractive power are arranged in this order from the object side. Three
It is composed of a lens group and changes the distance between the lens groups to perform zooming. In addition, the following condition (1),
It is characterized by satisfying (2) and (3).

【0013】(1) 0.05<φ1 /φW <0.9 (2) 1.0<φ12W /φW <2.0 (3) 2.0<β3T<5.0 ただし、φ1 は第1レンズ群の屈折力、φ12W は広角端
における第1レンズ群と第2レンズ群の合成屈折力、φ
W は広角端における全系の屈折力、β3Tは望遠端におけ
る第3レンズ群の横倍率である。
(1) 0.05 <φ 1 / φ W <0.9 (2) 1.0 <φ 12 W / φ W <2.0 (3) 2.0 <β 3T <5.0 φ 1 is the refractive power of the first lens group, φ 12W is the combined refractive power of the first lens group and the second lens group at the wide-angle end, φ
W is the refractive power of the entire system at the wide-angle end, and β 3T is the lateral magnification of the third lens group at the telephoto end.

【0014】本発明のズームレンズは、以上述べたよう
な構成を特徴とするものであるが、次のようにしてレン
ズ系の全長並びに外径を小にしてコンパクトな構成とし
更に高変倍率化を達成するようにしている。
The zoom lens according to the present invention is characterized by the above-mentioned structure. However, the overall length and outer diameter of the lens system are made small to make the structure compact, and the zoom ratio is further increased. To achieve.

【0015】本発明は、前述の通り、図38に示すよう
な4群ズーム方式のレンズ系の解析を行なって、レンズ
系のコンパクト化のみならず、機構、構造上の検討を行
なった結果にもとづいて、第3レンズ群の広角端から望
遠端へのズーミング時に負担する変倍率が比較的小さい
解が存在すること、そしてその時のこの第3レンズ群の
役割は変倍よりもむしろ像面わん曲の補正を担っている
等の光学性能の改善にあることがわかった。
As described above, the present invention analyzes the lens system of the four-group zoom system as shown in FIG. 38, and not only downsizes the lens system, but also examines the mechanism and structure. Based on the fact that there is a solution with a relatively small zoom ratio that is borne during zooming from the wide-angle end to the telephoto end of the third lens unit, and the role of this third lens unit at that time is not the zooming, but the image plane loss. It was found to be in the improvement of the optical performance such as being responsible for the correction of the song.

【0016】このようにして4群ズームのうちの第2レ
ンズ群と第3レンズ群を適宜な光軸上間隔を隔てた一つ
のレンズ群とすることが可能となった。
In this way, it becomes possible to make the second lens group and the third lens group of the four-group zoom one lens group with an appropriate interval on the optical axis.

【0017】一方、第3レンズ群が有していた像面わん
曲の補正作用は、3群ズームレンズにおいては、光軸上
間隔の調整即ち望遠側のレンズ構成に望遠比の余裕を与
えることや、各レンズを構成する厚肉レンズの中に凸の
メニスカス形状の空気レンズを設けて高次の収差を発生
させることによって得るようにした。
On the other hand, the effect of correcting the image plane distortion that the third lens group has is to adjust the optical axis interval in the third lens group zoom lens, that is, to give a margin of the telephoto ratio to the lens construction on the telephoto side. Alternatively, a convex meniscus-shaped air lens is provided in a thick lens forming each lens to generate high-order aberrations.

【0018】上記のようにして構成した3群ズーム方式
のレンズ系は、図4に示すように広角端において第1レ
ンズ群G1 と第2レンズ群G2 とでその合成の屈折力が
正の一つのレンズ群と考えることが出来る。そしてそれ
に続く負の屈折力の第3レンズ群G3 とでいわゆる望遠
タイプを構成している。
In the three-group zoom type lens system constructed as described above, the combined refractive power of the first lens group G 1 and the second lens group G 2 is positive at the wide-angle end, as shown in FIG. Can be considered as one lens group. The subsequent third lens group G 3 having a negative refractive power constitutes a so-called telephoto type.

【0019】このように広角端における屈折力配置は、
基本的には望遠タイプであり、バックフォーカスの短い
広角端を構成する上では最適である。一方広角端では、
焦点距離が短いので後側主平面位置がレンズ系の比較的
後に来るような屈折力配置が可能である。つまりコンパ
クトでしかも性能が良好な近軸配置になし得る。
As described above, the refractive power arrangement at the wide-angle end is
Basically, it is a telephoto type, and is optimal for constructing a wide-angle end with a short back focus. On the other hand, at the wide-angle end,
Since the focal length is short, it is possible to arrange the refractive power such that the rear principal plane position is relatively behind the lens system. That is, a paraxial arrangement that is compact and has good performance can be achieved.

【0020】以上の理由から設けたのが条件(1)およ
び条件(2)である。
The conditions (1) and (2) are provided for the above reasons.

【0021】条件(1)は、第1レンズ群の屈折力を規
定する条件である。第1レンズ群は基本的には広角端で
のレンズ系全長よりも、望遠端での望遠比と全変倍域で
の収差補正状況への影響力や、さらにはフォーカシング
方式についての考慮をする必要がある。つまり高変倍率
を達成しながらコンパクトで良好な光学性能を得る上で
重要な要因を決定する条件がこの条件(1)である。
The condition (1) defines the refractive power of the first lens group. The first lens group basically considers the influence on the telephoto ratio at the telephoto end and the aberration correction situation in the entire zoom range, as well as the focusing method, rather than the overall length of the lens system at the wide-angle end. There is a need. That is, this condition (1) is a condition that determines an important factor in obtaining a compact and good optical performance while achieving a high zoom ratio.

【0022】ここで図4に示すような3群ズームレンズ
で、広角端における屈折力をφW、レンズ系の全長をLW
とすると次の式が成立する。 φW =φ1(1-e2W・φ3)+(1-e1W ・φ1 )(φ2 +φ3-e'2Wφ2 φ3) (a) LW =e1W +e2W +l'W (b) l’W ={-φ1e2W+(1-e1W・ φ1)(1-e2W・ φ2)}/φW (c) ただし、φ1 ,φ2 ,φ3 は夫々第1レンズ群G1 ,第
2レンズ群G2 ,第3レンズ群G3 の屈折力、e1Wは広
角端における第1レンズ群G1 と第2レンズ群G2 の主
点間隔、e1Tは望遠端における第1レンズ群G1 と第2
レンズ群G2の主点間隔、e2Wは広角端における第2レ
ンズ群G2 と第3レンズ群G3 の主点間隔、e2Tは望遠
端における第2レンズ群G2 と第3レンズ群G3 の主点
間隔、l’W は広角端におけるバックフォーカス、l’
T は望遠端におけるバックフォーカスである。
Here, in a three-group zoom lens as shown in FIG. 4, the refracting power at the wide-angle end is φ W , and the total length of the lens system is L W.
Then, the following equation holds. φ W = φ 1 (1-e 2W・ φ 3 ) + (1-e 1W・ φ 1 ) (φ 2 + φ 3 -e ' 2W φ 2 φ 3 ) (a) L W = e 1W + e 2W +1' W (b) l' W = {-φ 1 e 2W + (1-e 1W・ φ 1 ) (1-e 2W・ φ 2 )} / φ W (c) where φ 1 , φ 2 , φ 3 Is the refracting power of the first lens group G 1 , the second lens group G 2 , and the third lens group G 3 , respectively, e 1W is the distance between the principal points of the first lens group G 1 and the second lens group G 2 at the wide-angle end, e 1T is the first lens group G 1 and the second lens group at the telephoto end.
The main point interval of the lens group G 2, e 2W second lens group G 2 and the main point interval of the third lens group G 3, e 2T and the second lens group G 2 at the telephoto end the third lens group at the wide-angle end the main point interval of G 3, l 'W back at the wide-angle end focus, l'
T is the back focus at the telephoto end.

【0023】これらの近軸関係式からわかるように、本
発明のように広角端でレンズ系の全長が最も短くなるこ
とが明らかな場合には、広角端にのみ注目すればよい。
したがって望遠端における全長については、屈折力配置
に基くズーミング移動軌跡と移動量を考慮して厚肉構成
を割当てることになる。
As can be seen from these paraxial relational expressions, when it is clear that the total length of the lens system is shortest at the wide-angle end as in the present invention, only the wide-angle end should be focused on.
Therefore, for the total length at the telephoto end, a thick-walled structure is assigned in consideration of the zooming movement locus and the movement amount based on the refractive power arrangement.

【0024】条件(1)の上限を越えると、仕様として
定まる広角端の焦点距離が一定であるので、第1レンズ
群の屈折力が強くなりズーミング時の移動量が少なくな
るためレンズ系全体が小型になるので好ましい。しかし
本発明は、高変倍率化を主たる目的にしているので、望
遠側は必然的に画角が24°程度を越える望遠域に入る
ため色収差が発生し、像面の平坦性も維持出来なくな
る。そのため第1レンズ群の厚肉レンズの構成に留意し
て本発明の目的を達成することも考えられるが、その場
合レンズ枚数が増加し又レンズの肉厚が大になり好まし
くない。
When the upper limit of the condition (1) is exceeded, the focal length at the wide-angle end, which is determined by the specifications, is constant, so that the refracting power of the first lens group becomes strong and the movement amount during zooming becomes small, so that the entire lens system is reduced. It is preferable because it becomes smaller. However, since the present invention is mainly aimed at increasing the zoom ratio, the telephoto side inevitably enters the telephoto area where the angle of view exceeds about 24 °, so that chromatic aberration occurs and the flatness of the image surface cannot be maintained. . Therefore, it is possible to achieve the object of the present invention by paying attention to the configuration of the thick lens of the first lens group, but in that case, the number of lenses increases and the thickness of the lens becomes large, which is not preferable.

【0025】条件(1)の下限を越えると、第1レンズ
群の屈折力が弱くなるので、広角端から望遠端までのズ
ーミング移動量が大になりレンズ系の全長が大になる。
そのため収差補正上は有利だが、本発明の目的であるコ
ンパクト化に反することになる。
When the value goes below the lower limit of the condition (1), the refractive power of the first lens unit becomes weak, so that the amount of zooming movement from the wide-angle end to the telephoto end becomes large and the total length of the lens system becomes large.
Therefore, it is advantageous in terms of aberration correction, but it is against the object of the present invention, compactness.

【0026】このように条件(1)は、変倍比が3〜4
の本発明ズームレンズにおいての光学性能とレンズ系の
全長との均衡のとれる屈折力配置を決定する上で重要な
条件である。
As described above, under the condition (1), the zoom ratio is 3 to 4
This is an important condition for determining the refractive power arrangement that balances the optical performance and the total length of the lens system in the zoom lens of the present invention.

【0027】条件(2)は、広角端における第1レンズ
群G1 と第2レンズ群G2 の合成屈折力を規定したもの
である。そしてこの正の合成系と負の第3レンズ群とで
いわゆる望遠タイプを構成し、これによって全系のコン
パクト化を達成するためのものである。
The condition (2) defines the combined refractive power of the first lens group G 1 and the second lens group G 2 at the wide-angle end. The positive compound system and the negative third lens group constitute a so-called telephoto type, whereby the compactness of the entire system is achieved.

【0028】第3レンズ群の近軸的バックフォーカスを
設定した時に、その横倍率を設定すると第3レンズ群の
屈折力が決まる。即ち変倍率が与えられた時は条件
(2)によりほぼ屈折力配置が定まり、全系の近軸的な
配置を設定することが出来る。
When the paraxial back focus of the third lens group is set and the lateral magnification thereof is set, the refractive power of the third lens group is determined. That is, when the magnification is given, the arrangement of the refractive power is almost determined by the condition (2), and the paraxial arrangement of the entire system can be set.

【0029】条件(2)の上限を越えると、広角端にお
けるレンズ系の全長を短くする上では効果的であり、望
遠端までのズーミング時の移動量も比較的少なくてす
む。しかし第1レンズ群G1 と第2レンズ群G2 の屈折
力が共に強くなる傾向となり、像面わん曲の補正をはじ
めとして各収差のバランスをとることが困難になり、最
終的には撮影レンズの性能,品質上での偏芯による感度
が高くなるため好ましくない。
When the value exceeds the upper limit of the condition (2), it is effective in shortening the total length of the lens system at the wide-angle end, and the amount of movement during zooming to the telephoto end is relatively small. However, the refracting powers of the first lens group G 1 and the second lens group G 2 both tend to become strong, making it difficult to balance each aberration, including the correction of image plane distortion, and finally, shooting. This is not desirable because the sensitivity due to decentering in terms of lens performance and quality will increase.

【0030】条件(2)の下限を越えると収差補正上は
有利であるが、広角端におけるレンズ系の全長を短くす
ることが困難となるばかりでなく、後続する第3レンズ
群G3 の屈折力が弱くなるので収差補正上のバランスを
とることが必要になり、後側主平面位置が第3レンズ群
の厚肉レンズ系中に入り込むためレンズ系のバックフォ
ーカスが短くなる。そのためレンズ径も大になり本発明
の目的に反することになる。
When the value goes below the lower limit of the condition (2), it is advantageous for aberration correction, but it is difficult to shorten the total length of the lens system at the wide-angle end, and the refraction of the third lens group G 3 that follows is difficult. Since the power becomes weaker, it is necessary to balance aberration correction, and the back side principal plane position enters into the thick lens system of the third lens group, so that the back focus of the lens system becomes short. Therefore, the lens diameter also becomes large, which is contrary to the object of the present invention.

【0031】以上述べた条件(1),(2)を満足する
と本発明のレンズ系の基本的な骨組になる第1レンズ群
と第2レンズ群の屈折力配置が設定される。
When the conditions (1) and (2) described above are satisfied, the refractive power arrangements of the first lens group and the second lens group, which form the basic framework of the lens system of the present invention, are set.

【0032】更に第3レンズ群の屈折力の配分が定まれ
ば本発明のレンズ系の近軸的なレイアウトが決定される
ことになる。
Further, if the distribution of the refractive power of the third lens group is determined, the paraxial layout of the lens system of the present invention is determined.

【0033】この第3レンズ群の屈折力配分を定めるた
めには、広角端から望遠端へのズーミングの時の倍率負
担が重要である。これと近軸的バックフォーカスとの兼
ね合いで全系の屈折力配置を決定し得る。
In order to determine the distribution of the refractive power of this third lens group, it is important to bear the magnification load during zooming from the wide-angle end to the telephoto end. The refractive power arrangement of the entire system can be determined by the balance between this and the paraxial back focus.

【0034】ここで広角端でのコンパクト化と高倍率化
とを考えた時、第3レンズ群の負担する近軸横倍率が重
要な意味を持ち、良好な性能を得る上でも大きな意味を
持つ。即ち第3レンズ群の負担する近軸横倍率(以下倍
率と言う)を規定したのが条件(3)である。
Here, when considering compactness and high magnification at the wide-angle end, the paraxial lateral magnification that the third lens group bears has an important meaning, and also has a great meaning in obtaining good performance. . That is, the condition (3) defines the paraxial lateral magnification (hereinafter referred to as magnification) that the third lens group bears.

【0035】第3レンズ群の倍率は、広角端から望遠端
までの変倍率に直接結びついており、またズーミング時
の第3レンズ群の移動量自体にも関係している。したが
って、同じ変倍率を得ようとする時、第3レンズ群の担
う倍率の与え方で第2レンズ群の担う倍率も変化し、ズ
ーミング時の移動軌跡も変化し、収差補正の状況も変化
する。
The magnification of the third lens unit is directly linked to the magnification change from the wide-angle end to the telephoto end, and is also related to the movement amount itself of the third lens unit during zooming. Therefore, when trying to obtain the same magnification, the magnification of the second lens group changes depending on how the magnification of the third lens group is given, the movement locus during zooming also changes, and the state of aberration correction also changes. .

【0036】即ち条件(1),(2)によって基本的な
屈折力配置が決まり、条件(3)で変倍率を設定すべき
望遠端における第3レンズ群の倍率を与えることによっ
て基本的な近軸的レイアウトがほぼ決定される。更に各
レンズ群の厚肉構成を割り当てることによって、良好な
結像性能と所望の変倍率とレンズ系の小型化を達成する
ように繰返し近軸構成を見直して目的が実現される。
That is, the basic refractive power arrangement is determined by the conditions (1) and (2), and the basic near power is obtained by giving the magnification of the third lens group at the telephoto end for which the magnification change is to be set under the condition (3). The axial layout is almost determined. Further, by allocating a thick structure to each lens group, the objective is realized by repeatedly reviewing the paraxial structure so as to achieve good imaging performance, desired zoom ratio, and downsizing of the lens system.

【0037】条件(3)の上限を越えると第3レンズ群
の持つ倍率が高くなり、高変倍率を得るためには好まし
いが、第3レンズ群のズーミング時の移動量が大きくな
る。また厚肉レンズ構成を少ないレンズで達成しようと
することと、性能上からレンズ群の移動量を大にして望
遠比をかせぐことからは、条件(3)の上限を越えるこ
とは好ましくない。又レンズ鏡枠および駆動機構が複雑
になりコスト高になる。また下限を越えると、高変倍率
にするためには、第2レンズ群の負担する倍率が高くな
り、広角端から望遠端までのレンズ系の全長の変化が比
較的少なくコンパクトになし得るが収差補正が困難にな
る。そのため良好に収差補正を行なうためには、屈折率
分布型レンズを併用しなければならなくなる。このよう
に収差補正が困難なことから実際上は高変倍にすること
が難しく、変倍率が2程度となりそれ以上は困難にな
る。
When the value exceeds the upper limit of the condition (3), the magnification of the third lens group becomes high, which is preferable for obtaining a high zoom ratio, but the movement amount of the third lens group during zooming becomes large. Further, from the viewpoint of achieving a thick lens configuration with a small number of lenses and increasing the amount of movement of the lens group to obtain a telephoto ratio from the viewpoint of performance, it is not preferable to exceed the upper limit of the condition (3). Further, the lens barrel and the driving mechanism are complicated, resulting in high cost. If the value goes below the lower limit, in order to obtain a high variable magnification, the magnification that the second lens group bears becomes high, and there is relatively little change in the total length of the lens system from the wide-angle end to the telephoto end, which can be made compact. Correction becomes difficult. Therefore, in order to satisfactorily correct aberrations, a gradient index lens must be used together. As described above, since it is difficult to correct aberrations, it is actually difficult to obtain a high zoom ratio, and the zoom ratio becomes about 2 and becomes more difficult.

【0038】本発明の高変倍率ズームレンズにおいて、
特にその変倍率を一層高くするためには、条件(1)の
条件を次の条件(1’)の範囲に限定することが望まし
い。
In the high magnification zoom lens of the present invention,
In particular, in order to further increase the scaling factor, it is desirable to limit the condition (1) to the range of the following condition (1 ′).

【0039】 (1’) 0.05<φ1 /φW <0.6 これらの条件は、第1レンズ群の屈折力を規定するもの
で高変倍率化を図るためには、第1レンズ群,第2レン
ズ群および第3レンズ群の各々が広角端から望遠端への
変倍の際に独立して移動するための自由度が大であるこ
とが好ましい。この自由度を多く与えるためには上記条
件(1’)の範囲に限定することが好ましい。
(1 ′) 0.05 <φ 1 / φ W <0.6 These conditions define the refracting power of the first lens group, and in order to achieve a high zoom ratio, the first lens group It is preferable that each of the group, the second lens group, and the third lens group has a large degree of freedom for independently moving during zooming from the wide-angle end to the telephoto end. In order to provide a large degree of freedom, it is preferable to limit the range to the above condition (1 ′).

【0040】この条件(1’)の下限の範囲内であれば
レンズ系の全長に関しては望遠端で余裕を持つことにな
り又光学性能の面では、第1レンズ群をフォーカシング
群として用いることを考えなければ極めて良好になし得
て、高性能な高変倍率ズームレンズが得られる。又上限
値以下であればレンズ系の小型化特に望遠側で全長を短
くなし得る屈折力配分が出来る。そして第2レンズ群の
屈折力の配分と合わせて小型な高変倍率ズームレンズが
得られる。
If the lower limit of this condition (1 ') is satisfied, the overall length of the lens system will have a margin at the telephoto end, and in terms of optical performance, it is recommended to use the first lens group as a focusing group. If you don't think about it, you can do very well and you can get a high-performance zoom lens with high magnification. If the upper limit is not exceeded, the lens system can be downsized, and in particular, the refractive power can be distributed so that the total length can be shortened on the telephoto side. Then, a compact high-magnification zoom lens can be obtained in combination with the distribution of the refractive power of the second lens group.

【0041】更に条件(3)に関して次の条件(3’)
のように限定すれば変倍率を3〜4程度になし得る。
Regarding the condition (3), the following condition (3 ')
If it is limited as described above, the scaling factor can be about 3 to 4.

【0042】(3’) 2.5<β3T<5.0 高変倍率化には、第3レンズ群の横倍率を適切に選ぶこ
とが、光学性能上も製造上も重要になる。条件(3’)
の下限をこえると上記のように一層高変倍率にすること
が容易でなくなる。
(3 ') 2.5 <β 3T <5.0 In order to obtain a high zoom ratio, it is important to properly select the lateral magnification of the third lens group in terms of optical performance and manufacturing. Condition (3 ')
If the lower limit of is exceeded, it becomes difficult to increase the magnification as described above.

【0043】以上のような各条件によって各レンズ群の
基本的な屈折力配分を決定し得る。
The basic distribution of the refractive power of each lens group can be determined based on the above conditions.

【0044】次に実際の厚肉レンズの構成について述べ
る。
Next, the structure of an actual thick lens will be described.

【0045】第1レンズ群は、前記の条件によってその
屈折力は与えられているが、そのレンズ構成は、基本的
には正レンズと負レンズの接合レンズよりなっている。
しかしこれに更に正レンズを追加してもよい。又接合レ
ンズを分離してその間にメニスカス状の空気レンズを形
成することによって収差補正効果を増大させ得る。
The refractive power of the first lens group is given by the above-mentioned conditions, but the lens structure is basically composed of a cemented lens of a positive lens and a negative lens.
However, a positive lens may be added to this. Further, the aberration correction effect can be increased by separating the cemented lens and forming a meniscus-shaped air lens between them.

【0046】第2レンズ群は、その役割から二つの群か
らなると考えられ、負の前群G2Fと正の後群G2Rとにて
構成されている。
The second lens group is considered to consist of two groups because of its role, and is composed of a negative front group G 2F and a positive rear group G 2R .

【0047】第2レンズ群中の前群G2Fは、第1レンズ
群で発生する軸外収差のうち、後群G2Rのみでは補正困
難な歪曲収差の補正や像面わん曲の補正のために、第1
レンズ群で発生するこれら収差と反対符号の収差を発生
させている。又球面収差の補正に関しては、特にマージ
ナル光束径が大になる望遠域における色の球面収差の補
正に重要な役割を有している。
The front lens group G 2F in the second lens group is for correcting the distortion aberration and the field curvature of the off-axis aberrations generated in the first lens group, which are difficult to correct only by the rear lens group G 2R. First
Aberrations having the opposite signs to those of the lens groups are generated. Further, with respect to correction of spherical aberration, it has an important role in correction of spherical aberration of color particularly in the telephoto range where the marginal beam diameter becomes large.

【0048】この前群G2Fのレンズ構成は、物体側より
正レンズと負レンズを配置することを基本とするもの
で、要求される結像性能に応じて更に正レンズもしくは
負レンズを配置してもよい。この前群G2Fの正レンズも
しくは負レンズを分割しその間に空気レンズを形成した
り、前群G2F中のレンズに非球面を用いることにより一
層性能を向上させることが可能である。
The lens structure of the front lens group G 2F is basically arranged by arranging a positive lens and a negative lens from the object side, and a positive lens or a negative lens is further arranged according to the required imaging performance. May be. Or an air lens therebetween by dividing the positive lens or a negative lens of the front group G 2F, it is possible to improve further the performance by using an aspherical lens in the front group G 2F.

【0049】また第2レンズ群の後群G2Rは、前群G2F
と光軸上の間隔Dだけ隔てて配置され、基本的にはトリ
プレットもしくはテッサータイプのように1枚の負レン
ズと2枚の正レンズからなっている。ここで第1レンズ
群と第2レンズ群とで全体として結像系になっているの
で、この後群G2Rは、いわゆるリレー系を構成している
と考えることも出来る。
The rear group G 2R of the second lens group is the front group G 2F.
Is arranged with an interval D on the optical axis, and basically consists of one negative lens and two positive lenses like a triplet or tesser type. Here, since the first lens group and the second lens group together form an image forming system as a whole, it can be considered that the rear group G 2R constitutes a so-called relay system.

【0050】この後群G2Rは、望遠域でマージナル光束
径が大になる位置にあり、球面収差の補正に大きく寄与
せしめる必要があり、又偏芯感度をはじめとして製造上
の困難を伴うことが少ないように各面での入射角もしく
は出射角が大きくならないように配慮する必要がある。
The rear lens group G 2R is located at a position where the marginal luminous flux diameter becomes large in the telephoto range, and it is necessary to make a large contribution to the correction of spherical aberration. In addition, decentering sensitivity and other manufacturing difficulties are involved. It is necessary to make sure that the incident angle or the output angle on each surface does not become large so that

【0051】本発明のズームレンズにおいて、一層の小
型化を実現するためには、第2レンズ群G2 の前群G2F
と後群G2Rの主点間隔e’2 の値をある範囲内に設定
し、この近軸構成を満足するように厚肉レンズを割り当
てることによってデッドスペースを少なくすることが必
要である。
In the zoom lens of the present invention, in order to realize further downsizing, the front lens group G 2F of the second lens group G 2 is used.
It is necessary to reduce the dead space by setting the value of the principal point distance e ′ 2 of the rear lens group G 2R within a certain range and assigning a thick lens so as to satisfy this paraxial configuration.

【0052】又レンズ系を小型化することによって第2
レンズ群G2 の前群G2F又は後群G2Rのいずれかの屈折
力が強くなり性能劣化に結びつくことがある。その場合
非球面や屈折率分布型レンズを用いることが有効であ
る。
In addition, the size of the lens system can be reduced to a second value.
The refracting power of either the front group G 2F or the rear group G 2R of the lens group G 2 becomes strong, which may lead to performance deterioration. In that case, it is effective to use an aspherical surface or a gradient index lens.

【0053】本発明のズームレンズの第2レンズ群は、
負の屈折力の前群G2Fと正の屈折力の後群G2Rにて構成
され、例えば後に示す実施例1〜7のように開口絞りの
前後の軸上空気間隔を設けてレンズ系全長に余裕をもた
せ、高画質をねらったり、ビームスプリッター等を設け
て受光素子やファイダー光学系等に光路を分岐させるこ
と等を考慮しなければ、より小型のレンズ系になし得
る。つまりこれによって後に示す実施例8〜11のよう
に一層小型になし得る。
The second lens group of the zoom lens of the present invention comprises
It is composed of a front lens group G 2F having a negative refractive power and a rear lens group G 2R having a positive refractive power. For example, as in Examples 1 to 7 described later, the axial air gaps before and after the aperture stop are provided and the entire length of the lens system. If there is no margin, and a high image quality is aimed at, or a beam splitter or the like is provided to branch the optical path to a light receiving element or a finder optical system, a smaller lens system can be obtained. That is, this makes it possible to further reduce the size as in Examples 8 to 11 described later.

【0054】このようにして小型化を実現するために
は、第2レンズ群G2 中の前群G2Fの屈折力φ2Fと前群
2Fと後群G2Rの二つのレンズ群の主点間隔e’2 等を
適切に選択すればよい。ここで第2レンズ群G2 の屈折
力φ2 は前記の条件(2)によって一定の範囲内に規定
されている。
[0054] In order to realize this way miniaturization of the two lens groups of the optical power phi 2F front group G 2F and the rear group G 2R of the front group G 2F in the second lens group G 2 main The point interval e ′ 2 etc. may be selected appropriately. Here, the refracting power φ 2 of the second lens group G 2 is defined within a certain range by the above condition (2).

【0055】又第2レンズ群G2 の後群G2Rの屈折力φ
2Rは次の式にもとづいて規定される。
The refractive power φ of the rear group G 2R of the second lens group G 2
2R is defined based on the following formula.

【0056】 φ2R=(φ2 −φ2F)/(1−φ2F・e’2 ) この第2レンズ群G2 自体の屈折力配置は、いわゆるレ
トロフォーカスタイプとみることが出来る。つまり正の
屈折力の後群G2Rの前に負の屈折力の前群G2Fを配置す
ることによって第2レンズ群G2 からの結像点位置を長
くする働きをしている。そして第3レンズ群に対する物
点位置を長くし、収差補正上は有利な配置にしてある。
Φ 2R = (φ 2 −φ 2F ) / (1−φ 2F · e ′ 2 ) The refractive power arrangement of the second lens group G 2 itself can be regarded as a so-called retrofocus type. That is, by arranging the front lens group G 2F having a negative refractive power in front of the rear lens group G 2R having a positive refractive power, the position of the image forming point from the second lens group G 2 is lengthened. The position of the object point with respect to the third lens group is lengthened, and the arrangement is advantageous for aberration correction.

【0057】ここで前群G2Fと後群G2Rの主点間隔e’
2 を短くすると共に前群G2Fの屈折力φ21を強めること
によって、前群G2Fの実質的な口径比が大になることに
なり、主として望遠端での球面収差の補正にはいくぶん
不利になるが、軸外収差の補正にはそれ程不利ではな
い。
Here, the principal point distance e ′ between the front group G 2F and the rear group G 2R
By strengthening the refractive power phi 21 of the front group G 2F with a shorter 2, results in a substantial aperture ratio of the front group G 2F becomes large, somewhat disadvantageous mainly correct spherical aberration at the telephoto end However, it is not so disadvantageous in correcting the off-axis aberration.

【0058】更にレンズ系の全長が短くなるので、一般
に外径が大きくなりやすいが、第1レンズ群の入射瞳距
離が短くなるので小型化は達成出来、全体としては小型
になる。
Further, since the total length of the lens system is shortened, the outer diameter is generally apt to be large, but the entrance pupil distance of the first lens group is shortened, so that miniaturization can be achieved and the overall size is reduced.

【0059】以上のことから一層の小型化を達成するた
めには、主点間隔e’2 を次の条件(4)に示す範囲内
に選ぶことが望ましい。
[0059] To achieve further miniaturization From the above, it is desirable to select within a range showing a principal point interval e '2 the following conditions (4).

【0060】(4) 5<e’2 <20 この条件(4)は、広角端での全長と、レンズ外径を小
さくすることによってレンズ系全体の小型化を達成する
ものである。
(4) 5 <e ' 2 <20 This condition (4) achieves downsizing of the entire lens system by reducing the overall length at the wide-angle end and the lens outer diameter.

【0061】この条件の上限を越えると光学性能上にと
っては好ましいが、全長がいくぶん長くなる。又下限を
越えると前群G2Fと後群G2Rが干渉するので好ましくな
い。
Exceeding the upper limit of this condition is preferable for optical performance, but the total length is somewhat longer. If the value goes below the lower limit, the front group G 2F and the rear group G 2R interfere with each other, which is not preferable.

【0062】第3レンズ群は、負の屈折力を有してお
り、いわゆる望遠タイプのレンズ系における負の屈折力
の後群とみなすことが出来る。広角端においては、後側
主平面の位置が像面に比較的近いために光学系全体とし
ては本来の望遠タイプのように主平面位置がレンズ系の
前方に位置するようにはならない。しかしながら望遠端
に近づくにつれて望遠タイプの特徴が顕著になって来
る。この第3レンズ群は、条件(3)の説明で述べたよ
うに、望遠側で大きな横倍率を持つリアーコンバージョ
ンレンズとしての作用を有すると考えると、像面位置で
の縦方向での効きが縦倍率として作用するので、これを
活用すると同時に十分に制御することが重要である。
The third lens group has a negative refracting power, and can be regarded as the rear group of the negative refracting power in a so-called telephoto type lens system. At the wide-angle end, the position of the rear main plane is relatively close to the image plane, and therefore the main plane position does not come to be located in front of the lens system as in the original telephoto type as the entire optical system. However, the characteristics of the telephoto type become more prominent as it approaches the telephoto end. As described in the explanation of the condition (3), when it is considered that the third lens group has a function as a rear conversion lens having a large lateral magnification on the telephoto side, it is effective in the vertical direction at the image plane position. Since it acts as a vertical magnification, it is important to utilize it and at the same time sufficiently control it.

【0063】本発明のレンズ系では、この第3レンズ群
によって広角端でのバックフォーカスを短く構成し得る
ので、逆にバックフォーカスが極端に短くなることもあ
り得る。そのため第3レンズ群の後側主平面位置があま
り物体側に入らないように留意する必要がある。そのた
めにこの第3レンズ群は、正レンズおよび負レンズにて
構成することを基本にしている。これを負レンズ1枚の
みで構成することも可能であるが、その屈折力を弱くし
ないと結像性能が十分良好になし得ない。しかしその屈
折力を弱くするとズーミング時の移動量が大になり好ま
しくない。
In the lens system of the present invention, since the back focus at the wide-angle end can be shortened by the third lens group, on the contrary, the back focus can become extremely short. Therefore, it is necessary to take care so that the rear principal plane position of the third lens group does not come too close to the object side. Therefore, the third lens group is basically composed of a positive lens and a negative lens. It is possible to configure this with only one negative lens, but unless the refractive power is weakened, the imaging performance cannot be sufficiently improved. However, weakening the refracting power undesirably increases the amount of movement during zooming.

【0064】以上のように構成することによって、本発
明の目的である高変倍率で小型なズームレンズを構成し
得る。
With the above construction, a compact zoom lens with a high zoom ratio, which is the object of the present invention, can be constructed.

【0065】[0065]

【実施例】次に本発明のコンパクトな高変倍率ズームレ
ンズの各実施例を示す。 実施例1 f=36.0〜102.51,F/4.5 〜F/6.9 ,2ω=62°〜23.83 ° r1 =-166.4075 d1 =1.8500 n1 =1.85026 ν1 =32.28 r2 =62.2552 d2 =1.6845 r3 =55.0491 d3 =3.9500 n2 =1.49700 ν2 =81.61 r4 =-220.3122 d4 =0.2000 r5 =45.8646 d5 =4.2500 n3 =1.61700 ν3 =62.79 r6 =164.3370 d6 =D1 (可変) r7 =-104.0826 d7 =1.6200 n4 =1.83481 ν4 =42.72 r8 =18.9433 d8 =1.3080 r9 =21.7916 d9 =3.6500 n5 =1.80518 ν5 =25.43 r10=-56.3446 d10=1.5000 r11=-26.4587(非球面)d11=1.8500 n6 =1.74400 ν6 =44.73 r12=-45.7190 d12=4.8500 r13=∞(絞り) d13=2.1500 r14=115.6110 d14=2.7500 n7 =1.77250 ν7 =49.66 r15=-35.8400 d15=0.3000 r16=-103.9152 d16=3.3000 n8 =1.49700 ν8 =81.61 r17=-19.6769 d17=0.7500 r18=-16.9975(非球面)d18=1.7500 n9 =1.80518 ν9 =25.43 r19=163.2352 d19=0.8500 r20=557.4189 d20=4.0000 n10=1.67790 ν10=55.33 r21=-19.4399 d21=D2 (可変) r22=85.7977 d22=3.4000 n11=1.78472 ν11=25.68 r23=-74.6440(非球面)d23=0.2000 r24=-350.7649 d24=1.1000 n12=1.80400 ν12=46.57 r25=39.5546 d25=7.9800 r26=-16.4027 d26=1.3000 n13=1.80400 ν13=46.57 r27=-44.4413 非球面係数 (第11面)A11=-0.56568×10-5,B11=0.23101 ×10-711=-0.20694×10-9,D11=0.12871 ×10-11 (第18面)A18=-0.12126×10-4,B18=0.44951 ×10-818=-0.10654×10-9,D18=0.12613 ×10-11 (第23面)A23=-0.10924×10-4,B23=0.20316 ×10-723=-0.89838×10-10 ,D23=-0.19119×10-13 f 36.0 62.50 102.51 D1 2.283 16.780 20.850 D2 18.000 7.500 1.450 φ1 /φW =0.119 ,φ12W /φW =1.186 ,β3T=3.186 ,e’2 =26.919
Embodiments Next, respective embodiments of a compact high variable power zoom lens according to the present invention will be described. Example 1 f = 36.0~102.51, F / 4.5 ~F / 6.9, 2ω = 62 ° ~23.83 ° r 1 = -166.4075 d 1 = 1.8500 n 1 = 1.85026 ν 1 = 32.28 r 2 = 62.2552 d 2 = 1.6845 r 3 = 55.0491 d 3 = 3.9500 n 2 = 1.49700 ν 2 = 81.61 r 4 = -220.3122 d 4 = 0.2000 r 5 = 45.8646 d 5 = 4.2500 n 3 = 1.61700 ν 3 = 62.79 r 6 = 164.3370 d 6 = D 1 ( Variable) r 7 = -104.0826 d 7 = 1.6200 n 4 = 1.83481 ν 4 = 42.72 r 8 = 18.9433 d 8 = 1.380 r 9 = 21.7916 d 9 = 3.6500 n 5 = 1.80518 ν 5 = 25.43 r 10 = -56.3446 d 10 = 1.5000 r 11 = -26.4587 (aspherical) d 11 = 1.8500 n 6 = 1.74400 ν 6 = 44.73 r 12 = -45.7190 d 12 = 4.8500 r 13 = ∞ ( stop) d 13 = 2.1500 r 14 = 115.6110 d 14 = 2.7500 n 7 = 1.77250 ν 7 = 49.66 r 15 = -35.8400 d 15 = 0.3000 r 16 = -103.9152 d 16 = 3.3000 n 8 = 1.49700 ν 8 = 81.61 r 17 = -19.6769 d 17 = 0.7500 r 18 = -16.9975 ( non-spherical) d 18 1.7500 n 9 = 1.80518 ν 9 = 25.43 r 19 = 163.2352 d 19 = 0.8500 r 20 = 557.4189 d 20 = 4.0000 n 10 = 1.67790 ν 10 = 55.33 r 21 = -19.4399 d 21 = D 2 ( variable) r 22 = 85.7977 d 22 = 3.4000 n 11 = 1.78472 ν 11 = 25.68 r 23 = -74.6440 ( aspherical) d 23 = 0.2000 r 24 = -350.7649 d 24 = 1.1000 n 12 = 1.80400 ν 12 = 46.57 r 25 = 39.5546 d 25 = 7.9800 r 26 = -16.4027 d 26 = 1.3000 n 13 = 1.80400 ν 13 = 46.57 r 27 = -44.4413 aspherical coefficients (surface No. 11) A 11 = -0.56568 × 10 -5 , B 11 = 0.23101 × 10 -7 C 11 = -0.20694 x 10 -9 , D 11 = 0.12871 x 10 -11 (18th surface) A 18 = -0.12126 x 10 -4 , B 18 = 0.44951 x 10 -8 C 18 = -0.10654 x 10 -9 , D 18 = 0.12613 x 10 -11 (23rd surface) A 23 = -0.109 924 x 10 -4 , B 23 = 0.20316 x 10 -7 C 23 = -0.89838 x 10 -10 , D 23 = -0.1919 19 x 10 -13 f 36.0 62.50 102.51 D 1 2.283 16.780 20.850 D 2 18.000 7.500 1.450 φ 1 / φ W = 0.1 19, φ 12W / φ W = 1.186, β 3T = 3.186, e '2 = 26.919

【0066】実施例2 f=36〜102.51,F/4.5 〜F/6.9 ,2ω=62°〜23.83 ° r1 =502.5293 d1 =1.8500 n1 =1.83400 ν1 =37.16 r2 =37.9948 d2 =1.0000 r3 =36.4586 d3 =3.9500 n2 =1.48749 ν2 =70.20 r4 =505.2364 d4 =0.2000 r5 =34.7995 d5 =4.2500 n3 =1.61700 ν3 =62.79 r6 =81.7654 d6 =D1 (可変) r7 =-108.8354 d7 =1.6200 n4 =1.83481 ν4 =42.72 r8 =18.9756 d8 =1.3080 r9 =21.0831 d9 =3.6500 n5 =1.80518 ν5 =25.43 r10=-123.0270 d10=1.5000 r11=-24.7536(非球面)d11=1.8500 n6 =1.74400 ν6 =44.73 r12=-38.2169 d12=4.8500 r13=∞(絞り) d13=2.1500 r14=76.6588 d14=2.7500 n7 =1.77250 ν7 =49.66 r15=-36.4149 d15=0.3000 r16=-137.5101 d16=3.3000 n8 =1.48749 ν8 =70.20 r17=-21.0700 d17=0.7500 r18=-18.1883(非球面)d18=1.7500 n9 =1.80518 ν9 =25.43 r19=180.9686 d19=0.8500 r20=458.6435 d20=4.0000 n10=1.69100 ν10=54.84 r21=-20.7155 d21=D2 (可変) r22=80.7565 d22=3.4000 n11=1.78470 ν11=26.30 r23=-68.6262(非球面)d23=0.2000 r24=-189.9115 d24=1.1000 n12=1.80300 ν12=46.66 r25=35.7987 d25=7.9800 r26=-16.6678 d26=1.3000 n13=1.80300 ν13=46.66 r27=-38.9529 非球面係数 (第11面)A11=-0.79645×10-5,B11=0.24914 ×10-811=-0.88961×10-10 ,D11=0.16372 ×10-11 (第18面)A18=-0.13873×10-4,B18=-0.48202×10-818=-0.12835×10-10 ,D18=0.75290 ×10-12 (第23面)A23=-0.84212×10-5,B23=-0.13374×10-723=0.34160 ×10-9,D23=-0.12614×10-11 f 36 62.50 102.51 D1 2.283 16.780 20.850 D2 18.000 7.500 1.450 φ1 /φW =0.113 ,φ12W /φW =1.204 ,β3T=3.23511 e’2 =22.483Example 2 f = 36 to 102.51, F / 4.5 to F / 6.9, 2ω = 62 ° to 23.83 ° r 1 = 502.5293 d 1 = 1.8500 n 1 = 1.83400 ν 1 = 37.16 r 2 = 37.9948 d 2 = 1.0000 r 3 = 36.4586 d 3 = 3.9500 n 2 = 1.48749 ν 2 = 70.20 r 4 = 505.2364 d 4 = 0.2000 r 5 = 34.7995 d 5 = 4.2500 n 3 = 1.61700 ν 3 = 62.79 r 6 = 81.7654 d 6 = D 1 (variable) r 7 = -108.8354 d 7 = 1.6200 n 4 = 1.83481 ν 4 = 42.72 r 8 = 18.9756 d 8 = 1.3080 r 9 = 21.0831 d 9 = 3.6500 n 5 = 1.80518 ν 5 = 25.43 r 10 = -123.0270 d 10 = 1.5000 r 11 = -24.7536 (aspherical) d 11 = 1.8500 n 6 = 1.74400 ν 6 = 44.73 r 12 = -38.2169 d 12 = 4.8500 r 13 = ∞ ( stop) d 13 = 2.1500 r 14 = 76.6588 d 14 = 2.7500 n 7 = 1.77250 ν 7 = 49.66 r 15 = -36.4149 d 15 = 0.3000 r 16 = -137.5101 d 16 = 3.3000 n 8 = 1.48749 ν 8 = 70.20 r 17 = -21.0700 d 17 = 0.7500 r 18 = -18.1883 (Non-sphere ) D 18 = 1.7500 n 9 = 1.80518 ν 9 = 25.43 r 19 = 180.9686 d 19 = 0.8500 r 20 = 458.6435 d 20 = 4.0000 n 10 = 1.69100 ν 10 = 54.84 r 21 = -20.7155 d 21 = D 2 ( variable) r 22 = 80.7565 d 22 = 3.4000 n 11 = 1.78470 v 11 = 26.30 r 23 = -68.6262 (aspherical surface) d 23 = 0.2000 r 24 = -189.9115 d 24 = 1.1000 n 12 = 1.80300 v 12 = 46.66 r 25 = 35.7987 d 25 = 7.9800 r 26 = -16.6678 d 26 = 1.3000 n 13 = 1.80300 ν 13 = 46.66 r 27 = -38.9529 aspherical coefficients (surface No. 11) A 11 = -0.79645 × 10 -5 , B 11 = 0.24914 × 10 -8 C 11 = -0.88961 x 10 -10 , D 11 = 0.16372 x 10 -11 (18th surface) A 18 = -0.13873 x 10 -4 , B 18 = -0.48202 x 10 -8 C 18 = -0.12835 x 10 -10 , D 18 = 0.75290 × 10 -12 (23rd surface) A 23 = -0.84212 × 10 -5 , B 23 = -0.13374 × 10 -7 C 23 = 0.34160 × 10 -9 , D 23 = -0.12614 × 10 -11 f 36 62.50 102.51 D 1 2.283 16.780 20.850 D 2 18.000 7.500 1.450 φ 1 φ W = 0.113, φ 12W / φ W = 1.204, β 3T = 3.23511 e '2 = 22.483

【0067】実施例3 f=39.3〜132.6 ,F/4.6 〜F/7.75,2ω=57.66 °〜18.53 ° r1 =1111.6796 d1 =1.7300 n1 =1.83400 ν1 =37.16 r2 =45.9404 d2 =1.7000 r3 =70.0465 d3 =3.6800 n2 =1.62041 ν2 =60.27 r4 =493.3583 d4 =0.2100 r5 =34.3218 d5 =5.8500 n3 =1.49700 ν3 =81.61 r6 =-102.1033 d6 =D1 (可変) r7 =-36.1920 d7 =1.6200 n4 =1.83481 ν4 =42.72 r8 =22.2827 d8 =1.3229 r9 =28.5155 (非球面)d9 =2.7200 n5 =1.78472 ν5 =25.68 r10=-45.3406 d10=2.2978 r11=-23.7783 d11=1.5300 n6 =1.70000 ν6 =48.08 r12=-30.8734 d12=5.9500 r13=∞(絞り) d13=1.9961 r14=-102.2083 d14=2.7500 n7 =1.61700 ν7 =62.79 r15=-33.5731 d15=0.3800 r16=66.3498 d16=3.2400 n8 =1.61272 ν8 =58.75 r17=-27.2123 d17=0.5700 r18=-23.5275 d18=1.7500 n9 =1.78470 ν9 =26.22 r19=76.9210 d19=0.4800 r20=85.0000 d20=4.6500 n10=1.61720 ν10=54.04 r21=-23.2593(非球面)d21=D2 (可変) r22=488.0762 d22=3.3500 n11=1.78472 ν11=25.68 r23=-37.3997 d23=1.5157 r24=-35.7145 d24=1.4500 n12=1.77250 ν12=49.66 r25=44.5594 d25=5.2500 r26=-25.2038 d26=1.2620 n13=1.73520 ν13=41.08 r27=-59.6041 非球面係数 (第9面)A9 =-0.89555×10-6,B9 =-0.95694×10-89 =0.37493 ×10-9,D9 =-0.30414×10-11 (第21面)A21=0.82922 ×10-5,B21=0.16310 ×10-721=-0.20748×10-9,D21=0.90282 ×10-12 f 39.3 89.1 132.6 D1 1.950 14.722 18.077 D2 18.485 5.442 1.450 φ1 /φW =0.4166,φ12W /φW =1.336 ,β3T=3.8 ,e’2 =26.288Example 3 f = 39.3 to 132.6, F / 4.6 to F / 7.75, 2ω = 57.66 ° to 18.53 ° r 1 = 1111.6796 d 1 = 1.7300 n 1 = 1.83400 ν 1 = 37.16 r 2 = 45.9404 d 2 = 1.7000 r 3 = 70.0465 d 3 = 3.6800 n 2 = 1.62041 ν 2 = 60.27 r 4 = 493.3583 d 4 = 0.2100 r 5 = 34.3218 d 5 = 5.8500 n 3 = 1.49700 ν 3 = 81.61 r 6 = -102.1033 d 6 = D 1 (variable) r 7 = -36.1920 d 7 = 1.6200 n 4 = 1.83481 ν 4 = 42.72 r 8 = 22.2827 d 8 = 1.3229 r 9 = 28.5155 ( aspherical) d 9 = 2.7200 n 5 = 1.78472 ν 5 = 25.68 r 10 = -45.3406 d 10 = 2.2978 r 11 = -23.7783 d 11 = 1.5300 n 6 = 1.70000 ν 6 = 48.08 r 12 = -30.8734 d 12 = 5.9500 r 13 = ∞ (aperture) d 13 = 1.9961 r 14 = -102.2083 d 14 = 2.7500 n 7 = 1.61700 ν 7 = 62.79 r 15 = -33.5731 d 15 = 0.3800 r 16 = 66.3498 d 16 = 3.2400 n 8 = 1.61272 ν 8 = 58.75 r 17 = -27.2123 d 17 = 0.5700 r 18 = - 23.5275 18 = 1.7500 n 9 = 1.78470 ν 9 = 26.22 r 19 = 76.9210 d 19 = 0.4800 r 20 = 85.0000 d 20 = 4.6500 n 10 = 1.61720 ν 10 = 54.04 r 21 = -23.2593 ( aspherical) d 21 = D 2 ( variable) r 22 = 488.0762 d 22 = 3.3500 n 11 = 1.78472 ν 11 = 25.68 r 23 = -37.3997 d 23 = 1.5157 r 24 = -35.7145 d 24 = 1.4500 n 12 = 1.77250 ν 12 = 49.66 r 25 = 44.5594 d 25 = 5.2500 r 26 = -25.2038 d 26 = 1.2620 n 13 = 1.73520 ν 13 = 41.08 r 27 = -59.6041 aspherical coefficients (surface No. 9) A 9 = -0.89555 × 10 -6, B 9 = -0.95694 × 10 - 8 C 9 = 0.37493 × 10 -9 , D 9 = -0.304 414 × 10 -11 (21st surface) A 21 = 0.82922 × 10 -5 , B 21 = 0.16310 × 10 -7 C 21 = -0.20748 × 10 -9 , D 21 = 0.90282 × 10 -12 f 39.3 89.1 132.6 D 1 1.950 14.722 18.077 D 2 18.485 5.442 1.450 φ 1 / φ W = 0.4166, φ 12W / φ W = 1.336, β 3T = 3.8, e ' 2 = 26.288

【0068】実施例4 f=39.3〜132.6 ,F/4.5 〜F/7.71,2ω=57.66 °〜18.53 ° r1 =5475.5289 d1 =1.7200 n1 =1.83400 ν1 =37.16 r2 =50.6199 d2 =1.2000 r3 =79.7805 d3 =3.6500 n2 =1.64000 ν2 =60.09 r4 =413.2292 d4 =0.2000 r5 =33.4990 d5 =5.2500 n3 =1.49700 ν3 =81.61 r6 =-110.0606 d6 =D1 (可変) r7 =-32.0020 d7 =1.6200 n4 =1.84100 ν4 =43.23 r8 =21.9789 d8 =1.3080 r9 =27.9975 (非球面)d9 =2.7200 n5 =1.78472 ν5 =25.68 r10=-41.0641 d10=2.0000 r11=-23.2209 d11=1.8500 n6 =1.70000 ν6 =48.08 r12=-30.0726 d12=3.8500 r13=∞(絞り) d13=2.1500 r14=-232.0353 d14=2.7500 n7 =1.61800 ν7 =63.38 r15=-36.8408 d15=0.3500 r16=65.9953 d16=3.2400 n8 =1.60881 ν8 =58.94 r17=-28.2241 d17=0.5850 r18=-24.1104 d18=1.7500 n9 =1.78470 ν9 =26.22 r19=52.7043 d19=0.8550 r20=61.9805 d20=4.0000 n10=1.61720 ν10=54.04 r21=-22.1366(非球面)d21=D2 (可変) r22=193.4725 d22=3.3500 n11=1.78470 ν11=26.22 r23=-36.7360(非球面)d23=0.9500 r24=-36.4680 d24=1.4500 n12=1.77250 ν12=49.66 r25=40.3314 d25=5.4500 r26=-26.1119 d26=1.7500 n13=1.73520 ν13=41.08 r27=-69.2496 非球面係数 (第9面)A9 =-0.16572×10-5,B9 =-0.10996×10-79 =0.44878 ×10-9,D9 =-0.34885×10-11 (第21面)A21=0.97261 ×10-5,B21=0.19926 ×10-721=-0.36802×10-9,D21=0.20193 ×10-11 (第23面)A23=-0.68780×10-6,B23=0.99067 ×10-823=0.69513 ×10-10 ,D23=-0.49493×10-12 f 39.3 89.1 132.6 D1 2.090 14.802 18.166 D2 18.625 5.522 1.539 φ1 /φW =0.4055,φ12W /φW =1.346 ,β3T=3.8513,e’2 =21.863Example 4 f = 39.3 to 132.6, F / 4.5 to F / 7.71, 2ω = 57.66 ° to 18.53 ° r 1 = 5475.5289 d 1 = 1.7200 n 1 = 1.83400 ν 1 = 37.16 r 2 = 50.6199 d 2 = 1.2000 r 3 = 79.7805 d 3 = 3.6500 n 2 = 1.64000 ν 2 = 60.09 r 4 = 413.2292 d 4 = 0.2000 r 5 = 33.4990 d 5 = 5.2500 n 3 = 1.49700 ν 3 = 81.61 r 6 = -110.0606 d 6 = D 1 (variable) r 7 = -32.0020 d 7 = 1.6200 n 4 = 1.84100 ν 4 = 43.23 r 8 = 21.9789 d 8 = 1.3080 r 9 = 27.9975 ( aspherical) d 9 = 2.7200 n 5 = 1.78472 ν 5 = 25.68 r 10 = -41.0641 d 10 = 2.0000 r 11 = -23.2209 d 11 = 1.8500 n 6 = 1.70000 ν 6 = 48.08 r 12 = -30.0726 d 12 = 3.8500 r 13 = ∞ ( stop) d 13 = 2.1500 r 14 = -232.0353 d 14 = 2.7500 n 7 = 1.61800 ν 7 = 63.38 r 15 = -36.8408 d 15 = 0.3500 r 16 = 65.9953 d 16 = 3.2400 n 8 = 1.60881 ν 8 = 58.94 r 17 = -28.2241 d 17 = 0.5850 r 18 = - 24.1104 18 = 1.7500 n 9 = 1.78470 ν 9 = 26.22 r 19 = 52.7043 d 19 = 0.8550 r 20 = 61.9805 d 20 = 4.0000 n 10 = 1.61720 ν 10 = 54.04 r 21 = -22.1366 ( aspherical) d 21 = D 2 ( Variable) r 22 = 193.4725 d 22 = 3.3500 n 11 = 1.78470 v 11 = 26.22 r 23 = -36.7360 (aspherical surface) d 23 = 0.9500 r 24 = -36.4680 d 24 = 1.4500 n 12 = 1.77250 v 12 = 49.66 r 25 = 40.3314 d 25 = 5.4500 r 26 = -26.1119 d 26 = 1.7500 n 13 = 1.73520 ν 13 = 41.08 r 27 = -69.2496 Aspherical coefficient (9th surface) A 9 = -0.16572 × 10 -5 , B 9 =- 0.10996 × 10 -7 C 9 = 0.44878 × 10 -9 , D 9 = -0.34885 × 10 -11 (21st surface) A 21 = 0.97261 × 10 -5 , B 21 = 0.19926 × 10 -7 C 21 = -0.36802 × 10 -9 , D 21 = 0.20193 × 10 -11 (23rd surface) A 23 = -0.68780 × 10 -6 , B 23 = 0.99067 × 10 -8 C 23 = 0.69513 × 10 -10 , D 23 = -0.49493 × 10 -12 f 39.3 89.1 132.6 D 1 2.090 14.802 18.166 D 2 18.625 5.522 1.539 φ 1 / W = 0.4055, φ 12W / φ W = 1.346, β 3T = 3.8513, e '2 = 21.863

【0069】実施例5 f=39.3〜131.6 ,F/4.6 〜F/7.75,2ω=57.66 °〜18.67 ° r1 =80.7343 d1 =1.9000 n1 =1.83400 ν1 =37.16 r2 =38.4838 d2 =3.2000 r3 =-75.7956 d3 =2.8000 n2 =1.64000 ν2 =60.09 r4 =-90.7971 d4 =0.2000 r5 =32.6398 d5 =5.5000 n3 =1.49700 ν3 =81.61 r6 =-114.9080 d6 =D1 (可変) r7 =-28.6342 d7 =1.7000 n4 =1.83481 ν4 =42.72 r8 =22.4483 d8 =1.3200 r9 =31.3921 (非球面)d9 =2.8500 n5 =1.78472 ν5 =25.68 r10=-87.2017 d10=2.3000 r11=-105.4924 d11=2.4000 n6 =1.70000 ν6 =48.08 r12=-28.8013 d12=5.9800 r13=∞(絞り) d13=2.0000 r14=-313.1522 d14=2.7500 n7 =1.61700 ν7 =62.79 r15=-50.4776 d15=0.3000 r16=109.0157 d16=3.2500 n8 =1.61272 ν8 =58.75 r17=-49.2713 d17=0.7000 r18=-36.6175 d18=1.7500 n9 =1.78472 ν9 =25.71 r19=46.0377 d19=1.0000 r20=82.1062 d20=4.6500 n10=1.61720 ν10=54.04 r21=-21.9383(非球面)d21=D2 (可変) r22=-2777.0227 d22=3.3500 n11=1.78472 ν11=25.68 r23=-41.0373 d23=1.5157 r24=-36.7693 d24=1.4500 n12=1.77250 ν12=49.66 r25=45.9942 d25=4.6000 r26=-46.8725 d26=1.6000 n13=1.73520 ν13=41.08 r27=-110.6815 非球面係数 (第9面)A9 =-0.52873×10-5,B9 =-0.68602×10-79 =0.18557 ×10-8,D9 =-0.11923×10-10 (第21面)A21=0.76464 ×10-5,B21=-0.81476×10-721=0.14387 ×10-8,D21=-0.83446×10-11 f 39.3 89.1 131.6 D1 1.700 17.965 21.673 D2 20.964 5.793 1.242 φ1 /φW =0.33,φ12W /φW =1.3074,β3T=3.7085,e’2 =69.746Example 5 f = 39.3 to 131.6, F / 4.6 to F / 7.75, 2ω = 57.66 ° to 18.67 ° r 1 = 80.7343 d 1 = 1.9000 n 1 = 1.83400 ν 1 = 37.16 r 2 = 38.4838 d 2 = 3.2000 r 3 = -75.7956 d 3 = 2.8000 n 2 = 1.64000 v 2 = 60.09 r 4 = -90.7971 d 4 = 0.2000 r 5 = 32.6398 d 5 = 5.5000 n 3 = 1.49700 v 3 = 81.61 r 6 = -114.9080 d 6 = D 1 (variable) r 7 = -28.6342 d 7 = 1.7000 n 4 = 1.83481 ν 4 = 42.72 r 8 = 22.4483 d 8 = 1.3200 r 9 = 31.3921 ( aspherical) d 9 = 2.8500 n 5 = 1.78472 ν 5 = 25.68 r 10 = -87.2017 d 10 = 2.3000 r 11 = -105.4924 d 11 = 2.4000 n 6 = 1.70000 ν 6 = 48.08 r 12 = -28.8013 d 12 = 5.9800 r 13 = ∞ (diaphragm) d 13 = 2.0000 r 14 = -313.1522 d 14 = 2.7500 n 7 = 1.61700 v 7 = 62.79 r 15 = -50.4776 d 15 = 0.3000 r 16 = 109.0157 d 16 = 3.2500 n 8 = 1.61272 v 8 = 58.75 r 17 = -49.2713 d 17 = 0.7000 r 18 = -36.6175 d 18 = 1.7500 n 9 = 1.78472 ν 9 = 25.71 r 19 = 46.0377 d 19 = 1.0000 r 20 = 82.1062 d 20 = 4.6500 n 10 = 1.61720 ν 10 = 54.04 r 21 = -21.9383 (aspherical surface) d 21 = D 2 (variable) r 22 = -2777.0227 d 22 = 3.3500 n 11 = 1.78472 ν 11 = 25.68 r 23 = -41.0373 d 23 = 1.5157 r 24 = -36.7693 d 24 = 1.4500 n 12 = 1.77250 ν 12 = 49.66 r 25 = 45.9942 d 25 = 4.6000 r 26 = -46.8725 d 26 = 1.6000 n 13 = 1.73520 ν 13 = 41.08 r 27 = -110.6815 Aspheric coefficient (9th surface) A 9 = -0.52873 × 10 -5 , B 9 = -0.68602 × 10 −7 C 9 = 0.18557 × 10 −8 , D 9 = −0.11923 × 10 −10 (21st surface) A 21 = 0.76464 × 10 −5 , B 21 = −0.81476 × 10 −7 C 21 = 0.14387 × 10 -8 , D 21 = -0.83446 x 10 -11 f 39.3 89.1 131.6 D 1 1.700 17.965 21.673 D 2 20.964 5.793 1.242 φ 1 / φ W = 0.33, φ 12W / φ W = 1.3074, β 3T = 3.7085, e ' 2 = 69.746

【0070】実施例6 f=39.3〜131.6 ,F/4.6 〜F/7.75,2ω=57.66 °〜18.67 ° r1 =201.3566 d1 =1.7500 n1 =1.83400 ν1 =37.16 r2 =43.2604 d2 =1.7000 r3 =134.5966 d3 =3.7000 n2 =1.60300 ν2 =65.48 r4 =-852.0851 d4 =0.2100 r5 =29.1194 d5 =5.8000 n3 =1.49700 ν3 =81.61 r6 =-117.0703 d6 =D1 (可変) r7 =-27.5859 d7 =1.7000 n4 =1.83481 ν4 =42.72 r8 =18.8682 d8 =1.3200 r9 =28.8176 (非球面)d9 =2.8500 n5 =1.78472 ν5 =25.68 r10=-53.7701 d10=2.3000 r11=-31.2775 d11=1.8500 n6 =1.70000 ν6 =48.08 r12=-21.1532 d12=5.9800 r13=∞(絞り) d13=2.0000 r14=-117.0197 d14=2.7500 n7 =1.61700 ν7 =62.79 r15=-40.5176 d15=0.3000 r16=98.8887 d16=3.2500 n8 =1.61272 ν8 =58.75 r17=-44.5790 d17=0.5700 r18=-24.5454 d18=1.7500 n9 =1.78472 ν9 =25.71 r19=90.1223 d19=0.4000 r20=136.5959 d20=4.6500 n10=1.61720 ν10=54.04 r21=-18.1746(非球面)d21=D2 (可変) r22=-861.0376 d22=3.3500 n11=1.78472 ν11=25.68 r23=-38.8664 d23=1.5157 r24=-35.5994 d24=1.4500 n12=1.77250 ν12=49.66 r25=45.9952 d25=5.2500 r26=-34.6923 d26=1.2620 n13=1.73520 ν13=41.08 r27=-64.4792 非球面係数 (第9面)A9 =0.16261 ×10-5,B9 =-0.28806×10-79 =0.13717 ×10-8,D9 =-0.62948×10-11 (第21面)A21=0.11850 ×10-4,B21=-0.40165×10-721=0.93423 ×10-9,D21=-0.41105×10-11 f 39.3 89.1 131.6 D1 1.900 14.411 17.110 D2 20.826 5.864 1.270 φ1 /φW =0.49,φ12W /φW =1.307 ,β3T=3.6617,e’2 =43.331Example 6 f = 39.3 to 131.6, F / 4.6 to F / 7.75, 2ω = 57.66 ° to 18.67 ° r 1 = 201.3566 d 1 = 1.7500 n 1 = 1.83400 ν 1 = 37.16 r 2 = 43.2604 d 2 = 1.7000 r 3 = 134.5966 d 3 = 3.7000 n 2 = 1.60300 ν 2 = 65.48 r 4 = -852.0851 d 4 = 0.2100 r 5 = 29.1194 d 5 = 5.8000 n 3 = 1.49700 ν 3 = 81.61 r 6 = -117.0703 d 6 = D 1 (variable) r 7 = -27.5859 d 7 = 1.7000 n 4 = 1.83481 ν 4 = 42.72 r 8 = 18.8682 d 8 = 1.3200 r 9 = 28.8176 ( aspherical) d 9 = 2.8500 n 5 = 1.78472 ν 5 = 25.68 r 10 = -53.7701 d 10 = 2.3000 r 11 = -31.2775 d 11 = 1.8500 n 6 = 1.70000 ν 6 = 48.08 r 12 = -21.1532 d 12 = 5.9800 r 13 = ∞ (diaphragm) d 13 = 2.0000 r 14 =- 117.0197 d 14 = 2.7500 n 7 = 1.61700 ν 7 = 62.79 r 15 = -40.5176 d 15 = 0.3000 r 16 = 98.8887 d 16 = 3.2500 n 8 = 1.61272 ν 8 = 58.75 r 17 = -44.5790 d 17 = 0.5700 r 18 = -24.5454 d 18 = 1.7500 n 9 = 1.78472 ν 9 = 25.71 r 19 = 90.1223 d 19 = 0.4000 r 20 = 136.5959 d 20 = 4.6500 n 10 = 1.61720 ν 10 = 54.04 r 21 = -18.1746 ( aspherical) d 21 = D 2 (Variable) r 22 = -861.0376 d 22 = 3.3500 n 11 = 1.78472 v 11 = 25.68 r 23 = -38.8664 d 23 = 1.5157 r 24 = -35.5994 d 24 = 1.4500 n 12 = 1.77250 v 12 = 49.66 r 25 = 45.9952 d 25 = 5.2500 r 26 = -34.6923 d 26 = 1.2620 n 13 = 1.73520 ν 13 = 41.08 r 27 = -64.4792 Aspheric coefficient (9th surface) A 9 = 0.16261 × 10 -5 , B 9 = -0.28806 × 10 -7 C 9 = 0.13717 × 10 -8 , D 9 = -0.62948 × 10 -11 ( 21 surface) A 21 = 0.11850 × 10 -4 , B 21 = -0.40165 × 10 -7 C 21 = 0.93423 × 10 - 9 , D 21 = -0.41105 × 10 -11 f 39.3 89.1 131.6 D 1 1.900 14.411 17.110 D 2 20.826 5.864 1.270 φ 1 / φ W = 0.49, φ 12W / φ W = 1.307, β 3T = 3.6617, e ' 2 = 43.331

【0071】実施例7 f=39.37 〜102.69,F/3.38〜F/6.4 ,2ω=57.58 °〜23.79 ° r1 =229.9769 d1 =1.7300 n1 =1.83400 ν1 =37.16 r2 =28.1914 d2 =1.3500 r3 =44.7599 d3 =3.6800 n2 =1.62041 ν2 =60.27 r4 =224.2787 d4 =0.2100 r5 =25.8699 d5 =5.8500 n3 =1.55671 ν3 =58.68 r6 =-95.5121 d6 =D1 (可変) r7 =-34.8103 d7 =1.6200 n4 =1.79500 ν4 =45.29 r8 =27.5584 d8 =1.0200 r9 =33.2775 d9 =2.7200 n5 =1.78472 ν5 =25.68 r10=-104.1054 d10=1.9200 r11=-157.1266 d11=1.5300 n6 =1.69100 ν6 =54.84 r12=-40271.8331 d12=5.2660 r13=∞(絞り) d13=3.4720 r14=147.1875 d14=2.7500 n7 =1.63636 ν7 =35.37 r15=-30.9280 d15=0.3800 r16=72.4462 d16=3.2400 n8 =1.62230 ν8 =53.20 r17=-45.1421 d17=0.8500 r18=-18.4663 d18=1.7500 n9 =1.74000 ν9 =28.29 r19=28.0593 d19=4.6500 n10=1.62299 ν10=58.14 r20=-18.5239 d20=D2 (可変) r21=-45.2119 d21=2.9500 n11=1.78470 ν11=26.30 r22=-20.9146 d22=1.5500 r23=-19.7591 d23=1.4500 n12=1.72916 ν12=54.68 r24=-102.3405 d24=2.7200 r25=-31.4912 d25=1.3000 n13=1.72916 ν13=54.68 r26=∞ f 39.37 62.9 102.69 D1 2.550 12.560 17.590 D2 18.570 9.830 2.820 φ1 /φW =0.563 ,φ12W /φW =1.321 ,β3T=2.781 ,e’2 =21.525Example 7 f = 39.37 to 102.69, F / 3.38 to F / 6.4, 2ω = 57.58 ° to 23.79 ° r 1 = 229.9769 d 1 = 1.7300 n 1 = 1.83400 ν 1 = 37.16 r 2 = 28.1914 d 2 = 1.3500 r 3 = 44.7599 d 3 = 3.6800 n 2 = 1.62041 ν 2 = 60.27 r 4 = 224.2787 d 4 = 0.2100 r 5 = 25.8699 d 5 = 5.8500 n 3 = 1.55671 ν 3 = 58.68 r 6 = -95.5121 d 6 = D 1 (variable) r 7 = -34.8103 d 7 = 1.6200 n 4 = 1.79500 ν 4 = 45.29 r 8 = 27.5584 d 8 = 1.0200 r 9 = 33.2775 d 9 = 2.7200 n 5 = 1.78472 ν 5 = 25.68 r 10 = -104.1054 d 10 = 1.9200 r 11 = -157.1266 d 11 = 1.5300 n 6 = 1.69100 ν 6 = 54.84 r 12 = -40271.8331 d 12 = 5.2660 r 13 = ∞ (diaphragm) d 13 = 3.4720 r 14 = 147.1875 d 14 = 2.7500 n 7 = 1.63636 ν 7 = 35.37 r 15 = -30.9280 d 15 = 0.3800 r 16 = 72.4462 d 16 = 3.2400 n 8 = 1.62230 ν 8 = 53.20 r 17 = -45.1421 d 17 = 0.8500 r 18 = -18.4663 d 18 = 1 . 7500 n 9 = 1.74000 ν 9 = 28.29 r 19 = 28.0593 d 19 = 4.6500 n 10 = 1.62299 ν 10 = 58.14 r 20 = -18.5239 d 20 = D 2 (variable) r 21 = -45.2119 d 21 = 2.9500 n 11 = 1.78470 v 11 = 26.30 r 22 = -20.9146 d 22 = 1.5500 r 23 = -19.7591 d 23 = 1.4500 n 12 = 1.72916 v 12 = 54.68 r 24 = -102.3405 d 24 = 2.7200 r 25 = -31.4912 d 25 = 1.3000 n 13 = 1.72916 ν 13 = 54.68 r 26 = ∞ f 39.37 62.9 102.69 D 1 2.550 12.560 17.590 D 2 18.570 9.830 2.820 φ 1 / φ W = 0.563, φ 12W / φ W = 1.321, β 3T = 2.781, e ' 2 = 21.525

【0072】実施例8 f=39.5〜102.7 ,F/4.65〜F/6.55,2ω=57.4°〜23.8° r1 =115.2670 d1 =1.4000 n1 =1.83400 ν1 =37.16 r2 =28.8331 d2 =0.7100 r3 =28.2651 d3 =3.4000 n2 =1.60300 ν2 =65.48 r4 =102.8707 d4 =0.2000 r5 =29.0721 d5 =3.8000 n3 =1.55671 ν3 =58.68 r6 =-339.3697 d6 =D1 (可変) r7 =-19.5695 d7 =1.4000 n4 =1.79500 ν4 =45.29 r8 =33.4856 d8 =0.5500 r9 =32.5005 d9 =2.5000 n5 =1.78472 ν5 =25.68 r10=-70.3092 d10=0.5000 r11=-97.0891 d11=1.4000 n6 =1.69100 ν6 =54.84 r12=-1305.1334 d12=1.0000 r13=∞(絞り) d13=1.0000 r14=-133.7972 d14=2.2500 n7 =1.63636 ν7 =35.37 r15=-18.7647 d15=0.2000 r16=38.5688 d16=2.5000 n8 =1.62230 ν8 =53.20 r17=-44.5886 d17=0.8500 r18=-16.5161 d18=1.2500 n9 =1.74000 ν9 =28.29 r19=33.1126 d19=0.2400 r20=39.7549 d20=3.2500 n10=1.62299 ν10=58.14 r21=-16.5460 d21=D2 (可変) r22=-23.9539 d22=2.9500 n11=1.78470 ν11=26.30 r23=-17.3716 d23=0.8600 r24=-24.3055 d24=1.3000 n12=1.72916 ν12=54.68 r25=-33.1828 d25=2.1000 r26=-18.2661 d26=1.3000 n13=1.72916 ν13=54.68 r27=-304.9233 f 39.5 63.2 102.7 D1 2.550 12.560 17.590 D2 18.850 9.830 2.820 φ1 /φW =0.596 ,φ12W /φW =1.332 ,β3T=2.824 ,e’2 =10.852Example 8 f = 39.5 to 102.7, F / 4.65 to F / 6.55, 2ω = 57.4 ° to 23.8 ° r 1 = 115.2670 d 1 = 1.4000 n 1 = 1.83400 ν 1 = 37.16 r 2 = 28.8331 d 2 = 0.7100 r 3 = 28.2651 d 3 = 3.4000 n 2 = 1.60300 ν 2 = 65.48 r 4 = 102.8707 d 4 = 0.2000 r 5 = 29.0721 d 5 = 3.8000 n 3 = 1.55671 ν 3 = 58.68 r 6 = -339.3697 d 6 = D 1 (variable) r 7 = -19.5695 d 7 = 1.4000 n 4 = 1.79500 ν 4 = 45.29 r 8 = 33.4856 d 8 = 0.5500 r 9 = 32.5005 d 9 = 2.5000 n 5 = 1.78472 ν 5 = 25.68 r 10 = -70.3092 d 10 = 0.5000 r 11 = -97.0891 d 11 = 1.4000 n 6 = 1.69100 ν 6 = 54.84 r 12 = -1305.1334 d 12 = 1.0000 r 13 = ∞ (diaphragm) d 13 = 1.0000 r 14 = -133.7972 d 14 = 2.2500 n 7 = 1.63636 ν 7 = 35.37 r 15 = -18.7647 d 15 = 0.2000 r 16 = 38.5688 d 16 = 2.5000 n 8 = 1.62230 ν 8 = 53.20 r 17 = -44.5886 d 17 = 0.8500 r 18 = -16.5161 d 18 = 1.2500 9 = 1.74000 ν 9 = 28.29 r 19 = 33.1126 d 19 = 0.2400 r 20 = 39.7549 d 20 = 3.2500 n 10 = 1.62299 ν 10 = 58.14 r 21 = -16.5460 d 21 = D 2 ( variable) r 22 = -23.9539 d 22 = 2.9500 n 11 = 1.78470 v 11 = 26.30 r 23 = -17.3716 d 23 = 0.8600 r 24 = -24.3055 d 24 = 1.3000 n 12 = 1.72916 v 12 = 54.68 r 25 = -33.1828 d 25 = 2.1000 r 26 =- 18.2661 d 26 = 1.3000 n 13 = 1.72916 ν 13 = 54.68 r 27 = -304.9233 f 39.5 63.2 102.7 D 1 2.550 12.560 17.590 D 2 18.850 9.830 2.820 φ 1 / φ W = 0.596, φ 12W / φ W = 1.332, β 3T = 2.824, e '2 = 10.852

【0073】実施例9 f=29.36 〜75.1,F/4.62〜F/6.55,2ω=72.8°〜32.1° r1 =85.9422 d1 =1.4000 n1 =1.83400 ν1 =37.16 r2 =27.5784 d2 =0.6500 r3 =27.5225 d3 =4.1000 n2 =1.60300 ν2 =65.48 r4 =107.2895 d4 =0.2000 r5 =32.6753 d5 =4.2000 n3 =1.55963 ν3 =61.17 r6 =-352.2657 d6 =D1 (可変) r7 =-18.2062 d7 =1.4000 n4 =1.79500 ν4 =45.29 r8 =28.7159 d8 =0.5500 r9 =43.3677 d9 =2.5000 n5 =1.80518 ν5 =25.43 r10=-54.1439 d10=0.5000 r11=-61.6568 d11=1.4000 n6 =1.69100 ν6 =54.84 r12=-73.5293 d12=1.0000 r13=∞(絞り) d13=1.0000 r14=-138.0629 d14=2.2500 n7 =1.59270 ν7 =35.29 r15=-17.0525 d15=0.2000 r16=43.9725 d16=2.5000 n8 =1.71285 ν8 =43.19 r17=-33.7692 d17=0.8500 r18=-13.9493 d18=1.2500 n9 =1.74000 ν9 =28.29 r19=33.0554 d19=0.3500 r20=36.6402 d20=3.2500 n10=1.60300 ν10=65.48 r21=-13.5900 d21=D2 (可変) r22=-32.9569 d22=2.3500 n11=1.80518 ν11=25.43 r23=-21.3235 d23=0.1500 r24=-47.5616 d24=1.1000 n12=1.74100 ν12=52.68 r25=-137.5488 d25=5.0000 r26=-16.6330 d26=1.1000 n13=1.72916 ν13=54.68 r27=-209.0778 f 29.36 48.3 75.1 D1 1.699 9.028 20.082 D2 13.962 5.716 0.250 φ1 /φW =0.435 ,φ12W /φW =1.23,β3T=2.376 ,e’2 =12.03 Example 9 f = 29.36 to 75.1, F / 4.62 to F / 6.55, 2ω = 72.8 ° to 32.1 ° r 1 = 85.9422 d 1 = 1.4000 n 1 = 1.83400 ν 1 = 37.16 r 2 = 27.5784 d 2 = 0.6500 r 3 = 27.5225 d 3 = 4.1000 n 2 = 1.60300 ν 2 = 65.48 r 4 = 107.2895 d 4 = 0.2000 r 5 = 32.6753 d 5 = 4.2000 n 3 = 1.55963 ν 3 = 61.17 r 6 = -352.2657 d 6 = D 1 (variable) r 7 = -18.2062 d 7 = 1.4000 n 4 = 1.79500 ν 4 = 45.29 r 8 = 28.7159 d 8 = 0.5500 r 9 = 43.3677 d 9 = 2.5000 n 5 = 1.80518 ν 5 = 25.43 r 10 = -54.1439 d 10 = 0.5000 r 11 = -61.6568 d 11 = 1.4000 n 6 = 1.69100 ν 6 = 54.84 r 12 = -73.5293 d 12 = 1.0000 r 13 = ∞ (diaphragm) d 13 = 1.0000 r 14 = -138.0629 d 14 = 2.2500 n 7 = 1.59270 ν 7 = 35.29 r 15 = -17.0525 d 15 = 0.2000 r 16 = 43.9725 d 16 = 2.5000 n 8 = 1.71285 ν 8 = 43.19 r 17 = -33.7692 d 17 = 0.8500 r 18 = -13.9493 d 18 = 1.2500 n 9 = 1.74000 ν 9 = 28.29 r 19 = 33.0554 d 19 = 0.3500 r 20 = 36.6402 d 20 = 3.2500 n 10 = 1.60300 ν 10 = 65.48 r 21 = -13.5900 d 21 = D 2 (variable) r 22 = -32.9569 d 22 = 2.3500 n 11 = 1.80518 ν 11 = 25.43 r 23 = -21.3235 d 23 = 0.1500 r 24 = -47.5616 d 24 = 1.1000 n 12 = 1.74100 ν 12 = 52.68 r 25 = -137.5488 d 25 = 5.0000 r 26 = -16.6330 d 26 = 1.1000 n 13 = 1.72916 ν 13 = 54.68 r 27 = -209.0778 f 29.36 48.3 75.1 D 1 1.699 9.028 20.082 D 2 13.962 5.716 0.250 φ 1 / φ W = 0.435, φ 12W / φ W = 1.23, β 3T = 2.376, e '2 = 12.03

【0074】実施例10 f=36.22 〜102.0 ,F/4.65〜F/6.55,2ω=61.7°〜23.95 ° r1 =100.2088 d1 =1.4000 n1 =1.83400 ν1 =37.16 r2 =28.3094 d2 =0.6500 r3 =27.7669 d3 =3.4000 n2 =1.60300 ν2 =65.48 r4 =89.0092 d4 =0.2000 r5 =28.3930 d5 =3.8000 n3 =1.55963 ν3 =61.17 r6 =-426.2746 d6 =D1 (可変) r7 =-19.8065 d7 =1.4000 n4 =1.79500 ν4 =45.29 r8 =30.7191 d8 =0.5500 r9 =32.0073 d9 =2.5000 n5 =1.80518 ν5 =25.43 r10=-76.3193 d10=0.5000 r11=-106.8207 d11=1.4000 n6 =1.69100 ν6 =54.84 r12=-302.6502 d12=1.0000 r13=∞(絞り) d13=1.0000 r14=-88.6629 d14=2.2500 n7 =1.59270 ν7 =35.29 r15=-17.5588 d15=0.2000 r16=43.3709 d16=2.5000 n8 =1.71285 ν8 =43.19 r17=-39.4877 d17=0.8500 r18=-14.7456 d18=1.2500 n9 =1.74000 ν9 =28.29 r19=34.6451 d19=0.3500 r20=40.2667 d20=3.2500 n10=1.60300 ν10=65.48 r21=-14.7039 d21=D2 (可変) r22=-25.6419 d22=2.9500 n11=1.80518 ν11=25.43 r23=-18.3466 d23=0.3000 r24=-28.5968 d24=1.5000 n12=1.73400 ν12=51.49 r25=-38.0285 d25=3.1000 r26=-18.0602 d26=1.3000 n13=1.72916 ν13=54.68 r27=-11866.4764 f 36.22 60.6 102.0 D1 2.607 13.399 18.440 D2 16.792 7.507 0.472 φ1 /φW =0.5506,φ12W /φW =1.303 ,β3T=2.92,e’2 =11.642Example 10 f = 36.22 to 102.0, F / 4.65 to F / 6.55, 2ω = 61.7 ° to 23.95 ° r 1 = 100.2088 d 1 = 1.4000 n 1 = 1.83400 ν 1 = 37.16 r 2 = 28.3094 d 2 = 0.6500 r 3 = 27.7669 d 3 = 3.4000 n 2 = 1.60300 ν 2 = 65.48 r 4 = 89.0092 d 4 = 0.2000 r 5 = 28.3930 d 5 = 3.8000 n 3 = 1.55963 ν 3 = 61.17 r 6 = -426.2746 d 6 = D 1 (variable) r 7 = -19.8065 d 7 = 1.4000 n 4 = 1.79500 ν 4 = 45.29 r 8 = 30.7191 d 8 = 0.5500 r 9 = 32.0073 d 9 = 2.5000 n 5 = 1.80518 ν 5 = 25.43 r 10 = -76.3193 d 10 = 0.5000 r 11 = -106.8207 d 11 = 1.4000 n 6 = 1.69100 ν 6 = 54.84 r 12 = -302.6502 d 12 = 1.0000 r 13 = ∞ (diaphragm) d 13 = 1.0000 r 14 = -88.6629 d 14 = 2.2500 n 7 = 1.59270 ν 7 = 35.29 r 15 = -17.5588 d 15 = 0.2000 r 16 = 43.3709 d 16 = 2.5000 n 8 = 1.71285 ν 8 = 43.19 r 17 = -39.4877 d 17 = 0.8500 r 18 = -14.7456 d 18 = 1.25 00 n 9 = 1.74000 ν 9 = 28.29 r 19 = 34.6451 d 19 = 0.3500 r 20 = 40.2667 d 20 = 3.2500 n 10 = 1.60300 ν 10 = 65.48 r 21 = -14.7039 d 21 = D 2 (variable) r 22 =- 25.6419 d 22 = 2.9500 n 11 = 1.80518 ν 11 = 25.43 r 23 = -18.3466 d 23 = 0.3000 r 24 = -28.5968 d 24 = 1.5000 n 12 = 1.73400 ν 12 = 51.49 r 25 = -38.0285 d 25 = 3.1000 r 26 = -18.0602 d 26 = 1.3000 n 13 = 1.72916 ν 13 = 54.68 r 27 = -11866.4764 f 36.22 60.6 102.0 D 1 2.607 13.399 18.440 D 2 16.792 7.507 0.472 φ 1 / φ W = 0.5506, φ 12 W / φ W = 1.303, β 3T = 2.92, e '2 = 11.642

【0075】実施例11 f=30.28 〜77.8,F/4.65〜F/6.4 ,2ω=71.1°〜31.1° r1 =213.8660 d1 =1.4000 n1 =1.83400 ν1 =37.16 r2 =23.8020 d2 =0.6440 r3 =24.3680 d3 =4.9250 n2 =1.60300 ν2 =65.48 r4 =138.7480 d4 =0.2020 r5 =33.2500 d5 =4.8000 n3 =1.56013 ν3 =46.99 r6 =-97.1720 d6 =D1 (可変) r7 =-18.4410 d7 =1.4000 n4 =1.79500 ν4 =45.29 r8 =29.9330 d8 =0.5500 r9 =27.8420 d9 =2.5000 n5 =1.80518 ν5 =25.43 r10=-74.0800 d10=0.4970 r11=-71.0280 d11=1.4000 n6 =1.69680 ν6 =56.49 r12=-75.0820 d12=1.0000 r13=∞(絞り) d13=1.0000 r14=-89.7660(非球面)d14=2.2500 n7 =1.59270 ν7 =35.29 r15=-18.5670 d15=0.2000 r16=48.1400 d16=2.5000 n8 =1.71285 ν8 =43.19 r17=-28.8620 d17=0.8830 r18=-12.9000 d18=1.2500 n9 =1.74077 ν9 =27.79 r19=30.6950 d19=0.3540 r20=34.4110 d20=3.2500 n10=1.60300 ν10=65.48 r21=-13.2500 d21=D2 (可変) r22=-31.7310 d22=2.3500 n11=1.80518 ν11=25.43 r23=-20.0930 d23=0.1500 r24=-35.3150 d24=1.1400 n12=1.73500 ν12=49.82 r25=-40.9110 d25=4.0600 r26=-15.1790(非球面)d26=1.1000 n13=1.72916 ν13=54.68 r27=641.4940 非球面係数 (第14面)A14=-0.41714×10-5,B14=0.42167 ×10-714=0.92130 ×10-9,D14=0.17517 ×10-10 (第26面)A26=0.83684 ×10-5,B26=0.74530 ×10-726=-0.41430×10-9,D26=0.32416 ×10-11 f 30.28 49.1 77.8 D1 1.830 9.310 18.850 D2 14.060 5.850 0.250 φ1 /φW =0.392 ,φ12W /φW =1.257 ,β3T=2.61,e’2 =13.197 ただしr1 ,r2 ,・・・ はレンズ各面の曲率半径、d
1 ,d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n
1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2 ,・・・
は各レンズのアッベ数である。
Example 11 f = 30.28 to 77.8, F / 4.65 to F / 6.4, 2ω = 71.1 ° to 31.1 ° r 1 = 213.8660 d 1 = 1.4000 n 1 = 1.83400 ν 1 = 37.16 r 2 = 23.8020 d 2 = 0.6440 r 3 = 24.3680 d 3 = 4.9250 n 2 = 1.60300 ν 2 = 65.48 r 4 = 138.7480 d 4 = 0.2020 r 5 = 33.2500 d 5 = 4.8000 n 3 = 1.56013 ν 3 = 46.99 r 6 = -97.1720 d 6 = D 1 (Variable) r 7 = -18.4410 d 7 = 1.4000 n 4 = 1.79500 ν 4 = 45.29 r 8 = 29.9330 d 8 = 0.5500 r 9 = 27.8420 d 9 = 2.5000 n 5 = 1.80518 ν 5 = 25.43 r 10 = -74.0800 d 10 = 0.4970 r 11 = -71.0280 d 11 = 1.4000 n 6 = 1.69680 ν 6 = 56.49 r 12 = -75.0820 d 12 = 1.0000 r 13 = ∞ ( stop) d 13 = 1.0000 r 14 = -89.7660 ( aspherical) d 14 = 2.2500 n 7 = 1.59270 ν 7 = 35.29 r 15 = -18.5670 d 15 = 0.2000 r 16 = 48.1400 d 16 = 2.5000 n 8 = 1.71285 ν 8 = 43.19 r 17 = -28.8620 d 17 = 0.8830 r 18 = - 12.9000 d 18 = 1.2500 n 9 = 1.74077 ν 9 = 27.79 r 19 = 30.6950 d 19 = 0.3540 r 20 = 34.4110 d 20 = 3.2500 n 10 = 1.60300 ν 10 = 65.48 r 21 = -13.2500 d 21 = D 2 ( variable) r 22 = -31.7310 d 22 = 2.3500 n 11 = 1.80518 ν 11 = 25.43 r 23 = -20.0930 d 23 = 0.1500 r 24 = -35.3150 d 24 = 1.1400 n 12 = 1.73500 ν 12 = 49.82 r 25 = -40.9110 d 25 = 4.0600 r 26 = -15.1790 (aspherical surface) d 26 = 1.1000 n 13 = 1.72916 ν 13 = 54.68 r 27 = 641.4940 Aspherical surface coefficient (14th surface) A 14 = -0.41714 × 10 -5 , B 14 = 0.42167 × 10 -7 C 14 = 0.92130 × 10 -9 , D 14 = 0.17517 × 10 -10 (26th surface) A 26 = 0.83684 × 10 -5 , B 26 = 0.74530 × 10 -7 C 26 = -0.41430 × 10 -9 , D 26 = 0.32416 × 10 -11 f 30.28 49.1 77.8 D 1 1.830 9.310 18.850 D 2 14.060 5.850 0.250 φ 1 / φ W = 0.392, φ 12W / φ W = 1.257, β 3T = 2.61, e ' 2 = 13.197 However r 1 , r 2, ··· curvature of the lens surfaces Diameter, d
1 , d 2 , ... Is the thickness of each lens and the lens interval, n
1 , n 2 , ... Is the refractive index of each lens, ν 1 , ν 2 ,.
Is the Abbe number of each lens.

【0076】実施例1および実施例2は図1に示すレン
ズ構成で、広角端が画角62°程度を含むものである。
Example 1 and Example 2 are the lens configurations shown in FIG. 1, in which the wide-angle end includes an angle of view of about 62 °.

【0077】実施例1の広角端,中間焦点距離,望遠端
における収差状況は夫々図5,図6,図7に示す通りで
あり又実施例2の広角端、中間焦点距離、望遠端におけ
る収差状況は夫々図8,図9,図10に示す通りであ
る。これら収差曲線図より明らかなように極めて良好な
光学性能を有している。又像点分布の径も、その波長ご
とに小さくなっている。
Aberrations at the wide-angle end, the intermediate focal length, and the telephoto end of the first embodiment are as shown in FIGS. 5, 6, and 7, respectively, and aberrations at the wide-angle end, the intermediate focal length, and the telephoto end of the second embodiment are as follows. The situation is as shown in FIGS. 8, 9 and 10, respectively. As is clear from these aberration curve diagrams, it has extremely good optical performance. Further, the diameter of the image point distribution also becomes smaller for each wavelength.

【0078】実施例3乃至実施例6も図1に示すレンズ
構成で広角端の画角58°程度から望遠端の画角18°
程度まで包括するものである。これら実施例は、全長が
短いばかりか、レンズの外径が小で携帯に便利な構成で
ある。
In Embodiments 3 to 6 as well, in the lens configuration shown in FIG. 1, the angle of view at the wide-angle end is about 58 ° to the angle of view at the telephoto end of 18 °.
It is included to the extent. In these embodiments, not only the overall length is short, but the lens outer diameter is small, which is convenient for carrying.

【0079】実施例3の広角端,中間焦点距離,望遠端
における収差状況は夫々図11,図12,図13に、実
施例4の広角端,中間焦点距離,望遠端における収差状
況は夫々図14,図15,図16に、実施例5の広角
端,中間焦点距離,望遠端における収差状況は夫々図1
7,図18,図19に、実施例6の広角端,中間焦点距
離,望遠端における収差状況は夫々図20,図21,図
22に示す通りである。
Aberrations at the wide-angle end, the intermediate focal length, and the telephoto end in the third embodiment are shown in FIGS. 11, 12, and 13, respectively, and aberrations at the wide-angle end, the intermediate focal length, and the telephoto end in the fourth embodiment are shown in FIG. 14, FIG. 15, and FIG. 16 show the aberration states at the wide-angle end, the intermediate focal length, and the telephoto end of the fifth embodiment, respectively.
7, FIG. 18, and FIG. 19, the aberration conditions at the wide-angle end, the intermediate focal length, and the telephoto end of the sixth embodiment are as shown in FIGS. 20, 21, and 22, respectively.

【0080】実施例7は図2に示すレンズ構成で広角端
の画角が58°程度で、口径比が大であり広角側で明る
いレンズ系を構成している。この実施例は、開口絞りの
径を一定にし絞り機構の簡単化を図ったもので、一方光
学性能も良好になっている。
The seventh embodiment has a lens configuration shown in FIG. 2 in which the angle of view at the wide-angle end is about 58 °, the aperture ratio is large, and a wide-angle side bright lens system is constructed. In this embodiment, the diameter of the aperture stop is kept constant and the stop mechanism is simplified, while the optical performance is improved.

【0081】この実施例の広角端,中間焦点距離,望遠
端における収差状況は夫々図23,図24,図25に示
す通りである。
The aberrations at the wide-angle end, the intermediate focal length, and the telephoto end in this embodiment are as shown in FIGS. 23, 24, and 25, respectively.

【0082】以上の各実施例は、変倍率が高く結像性能
が良好であることが特徴である。条件(3)に示す第3
レンズ群の横倍率が高く、像面に対する縦倍率の寄与が
大きいことも特徴であり、製造上重要である。又第3レ
ンズ群の偏芯感度の効きが比較的小さく、これも大きな
長所になっている。更に条件(1)にて示す第1レンズ
群の屈折力が弱くなっていて3〜4の変倍率であるにも
かかわらず、結像性能が極めて良好で、望遠端の望遠比
に無理がないことも特徴の一つである。
Each of the above embodiments is characterized by a high zoom ratio and good imaging performance. Third condition (3)
The lateral magnification of the lens group is high, and the contribution of the vertical magnification to the image plane is also large, which is important in manufacturing. Further, the effect of decentering sensitivity of the third lens group is relatively small, which is also a great advantage. Further, although the refractive power of the first lens group shown in the condition (1) is weak and the magnification is 3 to 4, the imaging performance is extremely good and the telephoto ratio at the telephoto end is reasonable. That is also one of the features.

【0083】実施例8は、図3に示すレンズ構成で、非
常に小型で結像性能は良好である。
The eighth embodiment has a lens configuration shown in FIG. 3 and is very small and has good image forming performance.

【0084】この実施例の広角端,中間焦点距離,望遠
端における収差状況は、夫々図26,図27,図28に
示す通りである。
Aberration conditions at the wide-angle end, the intermediate focal length, and the telephoto end of this embodiment are as shown in FIGS. 26, 27, and 28, respectively.

【0085】実施例9および実施例11も図3に示すレ
ンズ構成で、広角端での画角が73°程度で、この種の
ズームレンズとしては最も広角である。実施例9の広角
端,中間焦点距離,望遠端の収差状況は、夫々図29,
図30,図31に又実施例11の広角端,中間焦点距
離,望遠端の収差状況は夫々図35,図36,図37に
示す通りである。
The ninth and eleventh embodiments also have the lens configuration shown in FIG. 3, and the angle of view at the wide-angle end is about 73 °, which is the widest angle for this type of zoom lens. The aberrations at the wide-angle end, the intermediate focal length, and the telephoto end of the ninth embodiment are shown in FIG.
30 and 31, and the aberrations at the wide-angle end, the intermediate focal length, and the telephoto end of the eleventh embodiment are as shown in FIGS. 35, 36, and 37, respectively.

【0086】実施例10は図3に示すレンズ構成で広角
端での画角が62°程度で、変倍率が3程度の高変倍率
ズームレンズであり、小型化と結像性能に特徴がある。
この実施例の広角端,中間焦点距離,望遠端の収差状況
は、夫々図32,図33,図34に示す通りである。
The tenth embodiment is a high-magnification zoom lens which has a lens configuration shown in FIG. 3 and has an angle of view at the wide-angle end of about 62 ° and a magnification of about 3 and is characterized by miniaturization and imaging performance. .
The aberrations at the wide-angle end, the intermediate focal length, and the telephoto end in this embodiment are as shown in FIGS. 32, 33, and 34, respectively.

【0087】これら実施例9〜11はいずれも広角端で
も軸上間隔を詰めてあり全系の全長を短くしレンズ外径
を縮小してレンズ系を大幅に小型化している。
In all of the ninth to eleventh embodiments, the axial spacing is reduced even at the wide-angle end, the overall length of the entire system is shortened, the outer diameter of the lens is reduced, and the lens system is greatly downsized.

【0088】尚以上の実施例は、いずれも夫々第1レン
ズ群,第2レンズ群,第3レンズ群に強い作用を有する
空気レンズが設けられており収差補正上からは高次の収
差発生面となり多くの自由度を与えながら微妙な収差バ
ランスを達成するようにしている。
In each of the above embodiments, an air lens having a strong action is provided in each of the first lens group, the second lens group, and the third lens group, and a high-order aberration generating surface is provided from the viewpoint of aberration correction. Next, we try to achieve a delicate aberration balance while giving a lot of freedom.

【0089】本発明のレンズ系において、変倍比をより
大きくしたり、性能を一層向上させるためには非球面を
設けることが効果的である。即ち第1レンズ群G1 又は
第2レンズ群G2 に非球面を採用することによってレン
ズ成分の負担を軽くし屈折力を弱めることが出来るので
余裕のある設計が可能で光学性能の向上をはかることが
出来る。
In the lens system of the present invention, it is effective to provide an aspherical surface in order to increase the zoom ratio and further improve the performance. That is, by adopting an aspherical surface for the first lens group G 1 or the second lens group G 2 , it is possible to reduce the burden on the lens component and weaken the refractive power, so that it is possible to design with a margin and improve the optical performance. You can

【0090】非球面の形状としては、光軸方向をx軸
に、光軸に垂直な方向をy軸に採り、その面の光軸近傍
での曲率半径(基準球面の半径)をrk とした時、次の
式にて示されるものである。
As the shape of the aspherical surface, the optical axis direction is taken as the x-axis and the direction perpendicular to the optical axis is taken as the y-axis, and the radius of curvature (radius of the reference spherical surface) of the surface near the optical axis is r k . Then, it is expressed by the following equation.

【0091】ただしAk ,Bk ,Ck ,Dk は非球面係
数でkは非球面がk番目の面であることを示す。
However, A k , B k , C k , and D k are aspherical surface coefficients, and k indicates that the aspherical surface is the k-th surface.

【0092】[0092]

【発明の効果】本発明は、正,正,負の3群構成で、各
レンズ群がズーミング時に移動するようにして、小型化
と高変倍率化を可能にし、さらに最適な厚肉レンズ構成
によって広角端から望遠端まで極めて良好な光学性能を
有するズームレンズを実現しえたものである。又第2レ
ンズ群の構成に特色を持たせて更に小型となし、広角端
の画角が76°程度のレンズ系や逆に望遠端の画角が1
8°程度のレンズ系を実現し得たものである。
The present invention has a positive, positive, and negative three-group structure, in which each lens group moves during zooming, thereby enabling downsizing and high zoom ratio, and an optimal thick lens structure. Thus, a zoom lens having excellent optical performance from the wide-angle end to the telephoto end can be realized. In addition, the second lens group has a feature to make it even smaller, and has a lens system with a wide-angle end angle of view of about 76 °, or conversely with a telephoto end angle of view of 1
It is possible to realize a lens system of about 8 °.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1乃至実施例6の断面図FIG. 1 is a sectional view of Embodiments 1 to 6 of the present invention.

【図2】本発明の実施例7の断面図FIG. 2 is a sectional view of a seventh embodiment of the present invention.

【図3】本発明の実施例8乃至実施例11の断面図FIG. 3 is a sectional view of Embodiments 8 to 11 of the present invention.

【図4】本発明の基本構成と各群の移動状況を示す図FIG. 4 is a diagram showing the basic configuration of the present invention and the movement status of each group.

【図5】実施例1の広角端における収差曲線図FIG. 5 is an aberration curve diagram at the wide-angle end in Example 1.

【図6】実施例1の中間焦点距離における収差曲線図FIG. 6 is an aberration curve diagram at the intermediate focal length of Example 1.

【図7】実施例1の望遠端における収差曲線図7 is an aberration curve diagram of Example 1 at the telephoto end. FIG.

【図8】実施例2の広角端における収差曲線図FIG. 8 is an aberration curve diagram at the wide-angle end in Example 2.

【図9】実施例2の中間焦点距離における収差曲線図FIG. 9 is an aberration curve diagram at the intermediate focal length of Example 2.

【図10】実施例2の望遠端における収差曲線図FIG. 10 is an aberration curve diagram for Example 2 at the telephoto end.

【図11】実施例3の広角端における収差曲線図FIG. 11 is an aberration curve diagram of Example 3 at the wide-angle end.

【図12】実施例3の中間焦点距離における収差曲線図FIG. 12 is an aberration curve diagram for Example 3 at the intermediate focal length.

【図13】実施例3の望遠端における収差曲線図FIG. 13 is an aberration curve diagram for Example 3 at the telephoto end.

【図14】実施例4の広角端における収差曲線図FIG. 14 is an aberration curve diagram of Example 4 at the wide-angle end.

【図15】実施例4の中間焦点距離における収差曲線図FIG. 15 is an aberration curve diagram for Example 4 at the intermediate focal length.

【図16】実施例4の望遠端における収差曲線図FIG. 16 is an aberration curve diagram for Example 4 at the telephoto end.

【図17】実施例5の広角端における収差曲線図FIG. 17 is an aberration curve diagram of Example 5 at the wide-angle end.

【図18】実施例5の中間焦点距離における収差曲線図FIG. 18 is an aberration curve diagram for Example 5 at the intermediate focal length.

【図19】実施例5の望遠端における収差曲線図FIG. 19 is an aberration curve diagram for Example 5 at the telephoto end.

【図20】実施例6の広角端における収差曲線図FIG. 20 is an aberration curve diagram for Example 6 at the wide-angle end.

【図21】実施例6の中間焦点距離における収差曲線図FIG. 21 is an aberration curve diagram for Example 6 at the intermediate focal length.

【図22】実施例6の望遠端における収差曲線図22 is an aberration curve diagram for Example 6 at the telephoto end. FIG.

【図23】実施例7の広角端における収差曲線図FIG. 23 is an aberration curve diagram for Example 7 at the wide-angle end.

【図24】実施例7の中間焦点距離における収差曲線図FIG. 24 is an aberration curve diagram for Example 7 at the intermediate focal length.

【図25】実施例7の望遠端における収差曲線図FIG. 25 is an aberration curve diagram for Example 7 at the telephoto end.

【図26】実施例8の広角端における収差曲線図FIG. 26 is an aberration curve diagram for Example 8 at the wide-angle end.

【図27】実施例8の中間焦点距離における収差曲線図FIG. 27 is an aberration curve diagram for Example 8 at the intermediate focal length.

【図28】実施例8の望遠端における収差曲線図FIG. 28 is an aberration curve diagram for Example 8 at the telephoto end.

【図29】実施例9の広角端における収差曲線図FIG. 29 is an aberration curve diagram for Example 9 at the wide-angle end.

【図30】実施例9の中間焦点距離における収差曲線図FIG. 30 is an aberration curve diagram for Example 9 at the intermediate focal length.

【図31】実施例9の望遠端における収差曲線図FIG. 31 is an aberration curve diagram for Example 9 at the telephoto end.

【図32】実施例10の広角端における収差曲線図FIG. 32 is an aberration curve diagram for Example 10 at the wide-angle end.

【図33】実施例10の中間焦点距離における収差曲線
FIG. 33 is an aberration curve diagram for Example 10 at the intermediate focal length.

【図34】実施例10の望遠端における収差曲線図FIG. 34 is an aberration curve diagram for Example 10 at the telephoto end.

【図35】実施例11の広角端における収差曲線図FIG. 35 is an aberration curve diagram for Example 11 at the wide-angle end.

【図36】実施例11の中間焦点距離における収差曲線
FIG. 36 is an aberration curve diagram for Example 11 at the intermediate focal length.

【図37】実施例11の望遠端における収差曲線図FIG. 37 is an aberration curve diagram for Example 11 at the telephoto end.

【図38】従来の4群ズームレンズの構成と各群の動き
を示す図
FIG. 38 is a diagram showing the configuration of a conventional four-group zoom lens and the movement of each group.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に正の屈折力の第1レンズ群
と、正の屈折力の第2レンズ群と、負の屈折力の第3レ
ンズ群とより構成され、各レンズ群間の各々の光軸上の
間隔を変化させることによって変倍を行なうレンズ系
で、前記第2レンズ群は負の屈折力を持つ前群と正の屈
折力を持つ後群とより構成され次の条件を満足すること
を特徴とするコンパクトな高変倍率ズームレンズ。 (1) 0.05<φ1 /φW <0.9 (2) 1.0<φ12W /φW <2.0 (3) 2.0<β3T<5.0 (4) 5<e’2 <20 ただし、φ1 は第1レンズ群の屈折力、φ12W は広角端
における第1レンズ群と第2レンズ群の合成の屈折力、
φW は広角端における全系の屈折力、β3Tは望遠端にお
ける第3レンズ群の横倍率、e’2 は前群と後群の主点
間隔である。
1. A first lens group having a positive refracting power, a second lens group having a positive refracting power, and a third lens group having a negative refracting power, which are arranged in this order from the object side. The second lens group is composed of a front group having a negative refracting power and a rear group having a positive refracting power, and the following conditions are satisfied. Compact high-magnification zoom lens characterized by satisfying. (1) 0.05 <φ 1 / φ W <0.9 (2) 1.0 <φ 12 W / φ W <2.0 (3) 2.0 <β 3T <5.0 (4) 5 < e ′ 2 <20 where φ 1 is the refractive power of the first lens group, φ 12W is the combined refractive power of the first lens group and the second lens group at the wide-angle end,
φ W is the refractive power of the entire system at the wide-angle end, β 3T is the lateral magnification of the third lens unit at the telephoto end, and e ′ 2 is the distance between the principal points of the front and rear groups.
JP7315793A 1995-11-10 1995-11-10 Compact high-magnification zoom lens Expired - Fee Related JP3032955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7315793A JP3032955B2 (en) 1995-11-10 1995-11-10 Compact high-magnification zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7315793A JP3032955B2 (en) 1995-11-10 1995-11-10 Compact high-magnification zoom lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63287806A Division JP2903473B2 (en) 1988-11-16 1988-11-16 Compact high-magnification zoom lens

Publications (2)

Publication Number Publication Date
JPH08211289A true JPH08211289A (en) 1996-08-20
JP3032955B2 JP3032955B2 (en) 2000-04-17

Family

ID=18069627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7315793A Expired - Fee Related JP3032955B2 (en) 1995-11-10 1995-11-10 Compact high-magnification zoom lens

Country Status (1)

Country Link
JP (1) JP3032955B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180682B1 (en) * 2005-09-15 2007-02-20 Konica Minolta Photo Imaging, Inc. Variable-magnification optical system and image taking apparatus
JP2014059466A (en) * 2012-09-18 2014-04-03 Ricoh Co Ltd Imaging lens, image capturing device, and information device
CN104122659A (en) * 2013-04-23 2014-10-29 张梅 Zooming optical system, endoscope objective lens system, and electronic endoscope
JP2016218486A (en) * 2016-09-26 2016-12-22 株式会社リコー Imaging lens, image capturing device, and information device
WO2022137820A1 (en) * 2020-12-22 2022-06-30 株式会社ニコン Variable-magnification optical system, optical instrument, and method for manufacturing variable-magnification optical system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161423A (en) * 1986-12-25 1988-07-05 Olympus Optical Co Ltd Compact zoom lens with high variable power rate
JPH01252916A (en) * 1988-03-31 1989-10-09 Minolta Camera Co Ltd Compact high-variable magnification zoom lens system
JPH01252917A (en) * 1988-03-31 1989-10-09 Minolta Camera Co Ltd Compact high-variable magnification zoom lens system
JPH01314218A (en) * 1988-06-14 1989-12-19 Minolta Camera Co Ltd Compact zoom lens system having high variable power rate
JPH0216516A (en) * 1988-07-05 1990-01-19 Minolta Camera Co Ltd Compact zoom lens system with high variable magnification
JPH0216515A (en) * 1988-07-05 1990-01-19 Minolta Camera Co Ltd Compact zoom lens system with high variable magnification
JPH0273211A (en) * 1988-09-08 1990-03-13 Asahi Optical Co Ltd High variable power zoom lens for compact camera
JPH02135312A (en) * 1988-11-16 1990-05-24 Olympus Optical Co Ltd Compact zoom lens of high variable magnification

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161423A (en) * 1986-12-25 1988-07-05 Olympus Optical Co Ltd Compact zoom lens with high variable power rate
JPH01252916A (en) * 1988-03-31 1989-10-09 Minolta Camera Co Ltd Compact high-variable magnification zoom lens system
JPH01252917A (en) * 1988-03-31 1989-10-09 Minolta Camera Co Ltd Compact high-variable magnification zoom lens system
JPH01314218A (en) * 1988-06-14 1989-12-19 Minolta Camera Co Ltd Compact zoom lens system having high variable power rate
JPH0216516A (en) * 1988-07-05 1990-01-19 Minolta Camera Co Ltd Compact zoom lens system with high variable magnification
JPH0216515A (en) * 1988-07-05 1990-01-19 Minolta Camera Co Ltd Compact zoom lens system with high variable magnification
JPH0273211A (en) * 1988-09-08 1990-03-13 Asahi Optical Co Ltd High variable power zoom lens for compact camera
JPH02135312A (en) * 1988-11-16 1990-05-24 Olympus Optical Co Ltd Compact zoom lens of high variable magnification

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180682B1 (en) * 2005-09-15 2007-02-20 Konica Minolta Photo Imaging, Inc. Variable-magnification optical system and image taking apparatus
JP2014059466A (en) * 2012-09-18 2014-04-03 Ricoh Co Ltd Imaging lens, image capturing device, and information device
CN104122659A (en) * 2013-04-23 2014-10-29 张梅 Zooming optical system, endoscope objective lens system, and electronic endoscope
JP2016218486A (en) * 2016-09-26 2016-12-22 株式会社リコー Imaging lens, image capturing device, and information device
WO2022137820A1 (en) * 2020-12-22 2022-06-30 株式会社ニコン Variable-magnification optical system, optical instrument, and method for manufacturing variable-magnification optical system

Also Published As

Publication number Publication date
JP3032955B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
JP3253405B2 (en) Two-group zoom lens
US4772106A (en) Compact zoom lens system
US5574599A (en) Zoom lens and zooming method
JP3173277B2 (en) Zoom lens
US5623371A (en) Macro lens system
US5270866A (en) Compact zoom lens
JP4101992B2 (en) Compact high-magnification wide-angle zoom lens
US4822152A (en) Compact high-vari-focal ratio zoom lens system
JPH0634885A (en) Zoom lens
JPH0527166A (en) Two-group zoom lens
JP2000275523A (en) Zoom lens system
JP2903473B2 (en) Compact high-magnification zoom lens
JPH0830783B2 (en) High magnification zoom lens for compact cameras
US5055868A (en) Variable magnification finder of real image type
JP3519815B2 (en) Zoom lens with long back focus
JP3038350B2 (en) Wide-angle zoom lens
JP3432050B2 (en) High zoom 3 group zoom lens
JP2676400B2 (en) High magnification compact zoom lens
JPH0850245A (en) Zoom lens
JPH05346542A (en) Small-sized two-group zoom lens
JPH08211289A (en) Compact high variable magnifying power zoom lens
JP4068765B2 (en) Zoom lens
JP2000214380A (en) Photographing lens
JP3346622B2 (en) Zoom lens
JP2629940B2 (en) Rear focus zoom lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000118

LAPS Cancellation because of no payment of annual fees