JPH08208359A - Metal-ceramic laminated substrate - Google Patents

Metal-ceramic laminated substrate

Info

Publication number
JPH08208359A
JPH08208359A JP2726295A JP2726295A JPH08208359A JP H08208359 A JPH08208359 A JP H08208359A JP 2726295 A JP2726295 A JP 2726295A JP 2726295 A JP2726295 A JP 2726295A JP H08208359 A JPH08208359 A JP H08208359A
Authority
JP
Japan
Prior art keywords
substrate
metal
ceramic
copper
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2726295A
Other languages
Japanese (ja)
Other versions
JP3430348B2 (en
Inventor
Giyousan Nei
暁山 寧
Masami Kimura
正美 木村
Masami Sakuraba
正美 桜庭
Choju Nagata
長寿 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP02726295A priority Critical patent/JP3430348B2/en
Publication of JPH08208359A publication Critical patent/JPH08208359A/en
Application granted granted Critical
Publication of JP3430348B2 publication Critical patent/JP3430348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE: To obtain a metal-ceramic laminated substrate for an electrical motorcar having such performance as resistance to heat cycles repeated >=3,000 times by directly solidifying molten Al on a ceramic substrate. CONSTITUTION: When a metal part for ensuring electric conduction and mounting electronic parts is formed on at least one principal face of a ceramic substrate to obtain a metal-ceramic laminated substrate, molten Al is directly solidified on the ceramic substrate and joined to the substrate. A prescribed circuit is formed by etching a metallic sheet on the resultant laminated substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パワーモジュール等の
大電力電子部品の実装に好適な金属−セラミックス複合
基板に関し、更に詳しくは特に優れた耐ヒートサイクル
特性が要求される自動車用電子部品の実装に好適な複合
基板を提供することを目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-ceramic composite substrate suitable for mounting high-power electronic components such as power modules, and more particularly to an automobile electronic component which requires particularly excellent heat cycle resistance. It is an object to provide a composite substrate suitable for mounting.

【0002】[0002]

【従来の技術】従来、パワーモジュールのような大電力
電子部品の実装に使用する基板として、セラミックス基
板の表面に銅板を接合して作製された銅張りセラミック
ス複合基板が使用されている。この複合基板は更に、使
用するセラミックス基板の種類やその製造法によって、
銅/アルミナ直接接合基板、銅/窒化アルミニウム直接
接合基板、銅/アルミナろう接基板、及び銅/窒化アル
ミニウムろう接基板に分けられている。
2. Description of the Related Art Conventionally, a copper-clad ceramics composite substrate manufactured by bonding a copper plate to a surface of a ceramics substrate has been used as a substrate used for mounting a high power electronic component such as a power module. Depending on the type of ceramic substrate used and its manufacturing method, this composite substrate
It is divided into a copper / alumina direct bonding substrate, a copper / aluminum nitride direct bonding substrate, a copper / alumina brazing substrate, and a copper / aluminum nitride brazing substrate.

【0003】このうち、銅/アルミナ直接接合基板は、
特開昭52−37914号公報に開示されるように、酸
素を含有する銅板を使用するか、無酸素銅板を使用して
酸化性雰囲気中で加熱することによって無酸素銅板の表
面に酸化銅を発生させてから、銅板とアルミナ基板を重
ねて不活性雰囲気中で加熱し、銅板とアルミナ基板との
界面に銅とアルミニウムとの複合酸化物を生成させ銅板
とアルミナ基板とを接合するものである。
Of these, the copper / alumina direct bonding substrate is
As disclosed in Japanese Patent Application Laid-Open No. 52-37914, a copper plate containing oxygen is used, or an oxygen-free copper plate is used for heating in an oxidizing atmosphere so that the surface of the oxygen-free copper plate is exposed to copper oxide. After being generated, the copper plate and the alumina substrate are overlapped and heated in an inert atmosphere to form a composite oxide of copper and aluminum at the interface between the copper plate and the alumina substrate to bond the copper plate and the alumina substrate. .

【0004】一方、銅/窒化アルミニウム直接接合基板
の場合には、予め窒化アルミニウム基板の表面に酸化物
を形成する必要がある。例えば特開平3−93687号
公報に開示するように、予め空気中において、約100
0℃の温度で窒化アルミニウム基板を処理し、表面に酸
化物を生成させてから、この酸化物層を介して上述の方
法により銅板と窒化アルミニウム基板とを接合してい
る。
On the other hand, in the case of a copper / aluminum nitride direct bonding substrate, it is necessary to previously form an oxide on the surface of the aluminum nitride substrate. For example, as disclosed in JP-A-3-93687, about 100
The aluminum nitride substrate is treated at a temperature of 0 ° C. to generate an oxide on the surface, and then the copper plate and the aluminum nitride substrate are bonded via the oxide layer by the above method.

【0005】また銅/アルミナろう接基板及び銅/窒化
アルミニウムろう接基板は、銅板とセラミックス基板と
の間に低触点のろう材を用いて接合するが、この場合、
使用するろう材に銅の他、融点を下げる為の合金元素及
びセラミックスとの濡れを良くする為の合金元素が添加
され、一例としてAg−Cu−Ti系のような活性金属
ろう材はよく使用されている。
The copper / alumina brazing substrate and the copper / aluminum nitride brazing substrate are joined together by using a brazing material having a low contact point between the copper plate and the ceramic substrate.
In addition to copper, an alloying element for lowering the melting point and an alloying element for improving wetting with ceramics are added to the brazing material used. For example, an active metal brazing material such as Ag-Cu-Ti system is often used. Has been done.

【0006】上述のように銅/セラミックス複合基板は
広く使用されるにもかかわらず、製造中及び実用上幾つ
かの問題点がある。その中で最も重大な問題点は、電子
部品の実装及び使用中にセラミックス基板の内部にクラ
ックが形成し、基板の表裏間を電気的に導通することに
よる故障である。
Although the copper / ceramic composite substrate is widely used as described above, there are some problems during manufacturing and practical use. The most serious problem among them is a failure due to the formation of cracks inside the ceramic substrate during the mounting and use of electronic components, and electrical conduction between the front and back of the substrate.

【0007】これは銅の熱膨張係数がセラミックスの係
数より約一桁大きいことに起因する。接合する場合、セ
ラミックス基板と銅が1000℃近くまで加熱され、接
合温度から室温に冷却する時に、熱膨張係数の違いによ
り複合基板の内部に多大の熱応力が発生する。
This is because the coefficient of thermal expansion of copper is larger than that of ceramics by about an order of magnitude. In the case of bonding, the ceramics substrate and copper are heated to near 1000 ° C., and when cooling from the bonding temperature to room temperature, a large thermal stress is generated inside the composite substrate due to the difference in thermal expansion coefficient.

【0008】また、パワーモジュール等の電子部品を実
装するときに、銅・セラミックス複合基板は400℃近
くまで加熱されるため、さらに使用環境や使用中の発熱
により、同複合基板の温度が常に変化し、同複合基板に
変動熱応力が掛けられる。これらの熱応力によってセラ
ミックス基板にクラックが発生する。
Further, when mounting an electronic component such as a power module, since the copper / ceramics composite substrate is heated to nearly 400 ° C., the temperature of the composite substrate is constantly changed due to the use environment and heat generated during use. Then, a varying thermal stress is applied to the composite substrate. These thermal stresses cause cracks in the ceramic substrate.

【0009】上記複合基板の重要な評価項目の一つに耐
ヒートサイクル特性がある。これは基板を−40℃から
125℃まで繰り返し、加熱・冷却する際の熱応力によ
って基板にクラックが発生するまでの循環回数で示して
いるが、直接接合法で作製した銅・セラミックス複合基
板は約50回で、ろう接法で作製した同複合基板のこの
特性値は50回以下である。
Heat cycle resistance is one of the important evaluation items of the composite substrate. This is indicated by the number of cycles until the substrate is cracked due to thermal stress during heating / cooling by repeating the substrate from -40 ° C to 125 ° C. The copper / ceramic composite substrate produced by the direct bonding method is About 50 times, the characteristic value of the composite substrate produced by the brazing method is 50 times or less.

【0010】しかもこのような特性を得るために、セラ
ミックス基板の厚さを両主表面に接合された銅板の厚さ
の合計により厚くするという制限条件が有り、セラミッ
クス基板の厚さを基板本来の電気絶縁性を保つために必
要な厚さより倍以上に厚くしなければならないという問
題があった。逆に、上記複合基板にとってもう一つ重要
な特性である熱伝導性の方は犠牲にされているのが現状
である。
Further, in order to obtain such characteristics, there is a restriction condition that the thickness of the ceramic substrate is made thicker by the total thickness of the copper plates joined to both main surfaces. There has been a problem that the thickness must be more than double the thickness required to maintain electrical insulation. On the contrary, the thermal conductivity, which is another important characteristic for the composite substrate, is currently sacrificed.

【0011】近年、電気自動車用パワーモジュールの開
発により、耐ヒートサイクル特性の優れた複合基板への
要望が特に高まっており、例えば電気自動車の様に温度
変化が激しく、振動が大きい使用条件の場合、複合基板
の耐ヒートサイクル特性が3000回以上必要であると
言われているが現在使用されている銅・セラミックス複
合基板では、このような要望に対応できない。
In recent years, due to the development of power modules for electric vehicles, the demand for composite substrates having excellent heat cycle resistance has been particularly increased. For example, in the case of use conditions such as electric vehicles where the temperature change is severe and vibration is large. Although it is said that the heat resistance of the composite substrate must be 3000 times or more, the copper / ceramic composite substrate currently used cannot meet such a demand.

【0012】銅と同じような優れた電気と熱伝導性を有
するアルミニウムを導電回路材料として使う構想は以前
からあり、例えば特開昭59−121890号にこのよ
うな構想が記述されている。アルミニウムとセラミック
スとの接合にろう接法は使用され、特開平3−1254
63号、特開平4−12554号及び特開平4−187
46号にろう接法で作製したアルミニウム−セラミック
ス基板を開示している。これによると、作製したアルミ
ニウム−セラミックス基板の耐ヒートサイクル特性は約
200回であり、上述のように高い耐ヒートサイクル特
性が要求される用途には、依然として充分対応できない
ものであった。
The concept of using aluminum as a conductive circuit material, which has excellent electric and thermal conductivity similar to that of copper, has been used for a long time. For example, such a concept is described in Japanese Patent Laid-Open No. 59-121890. A brazing method is used for joining aluminum and ceramics, and is disclosed in JP-A-3-1254.
No. 63, JP-A-4-12554 and JP-A-4-187
No. 46 discloses an aluminum-ceramic substrate manufactured by a brazing method. According to this, the heat cycle resistance of the produced aluminum-ceramic substrate was about 200 times, and it was still not sufficiently applicable to the applications requiring high heat cycle resistance as described above.

【0013】しかも、この方法の場合、接合は真空中で
行わなければならないし、また非酸化物セラミックスの
場合、あらかじめ予備処理を施し、セラミックスの表面
に酸化物を形成しなければならない、製造コストおよび
熱伝導性の面においても満足できないところがあった。
Moreover, in the case of this method, the joining must be carried out in a vacuum, and in the case of non-oxide ceramics, pretreatment must be carried out in advance to form an oxide on the surface of the ceramics. Also, there were some points that were not satisfactory in terms of thermal conductivity.

【0014】[0014]

【発明が解決しようとする課題】上述のように従来製造
された銅/セラミックス直接基板やアルミニウムろう接
基板は耐ヒートサイクル特性の面からは、電気自動車向
けの基板としては向かなかった。本発明は電気自動車向
けの耐ヒートサイクル特性として3000回以上の性能
を有する新規な基板を提供することを目的とするもので
ある。
The copper / ceramics direct substrate and the aluminum brazing substrate which are conventionally manufactured as described above are not suitable for electric vehicles in terms of heat cycle resistance. An object of the present invention is to provide a novel substrate having heat cycle resistance of 3000 times or more for electric vehicles.

【0015】[0015]

【課題を解決するための手段】本発明者らは、ろう接に
使用されるろう材は接合する金属より硬いとの事実に着
眼した。硬いろう材の使用により、金属自身が持つ応力
緩和機能が阻害され、基板中に比較的に大きい熱応力が
発生し、耐ヒートサイクル特性などは低下する。熱応力
が低く、耐ヒートサイクル特性の優れた基板を開発する
ために本発明者らは発明者の一人の以前の発明(特願平
4−355211号)をさらに改良し、アルミニウム−
セラミックス直接接合基板を作製した。これらの基板を
評価する所、優れた耐ヒートサイクル特性が確認され、
本発明を提出することができた。
The present inventors have noticed that the brazing material used for brazing is harder than the metal to be joined. The use of the hard brazing filler metal impairs the stress relaxation function of the metal itself, relatively large thermal stress is generated in the substrate, and the heat cycle resistance is deteriorated. In order to develop a substrate having low heat stress and excellent heat cycle resistance, the present inventors further improved the previous invention (Japanese Patent Application No. 4-355211) of one of the inventors, and
A ceramic direct bonding substrate was produced. When evaluating these substrates, excellent heat cycle resistance was confirmed,
The present invention could be submitted.

【0016】すなわち本発明において、第1の発明は、
セラミックス基板の少なくとも一主面に電気導通及び電
子部品搭載のための金属部分を形成した金属−セラミッ
クス複合基板において、アルミニウム溶湯をセラミック
ス基板上に直接凝固させて接合せしめたことを特徴とす
る金属−セラミックス複合基板であり、第2の発明は、
セラミックス基板の少なくとも一主面に電気導通及び電
子部品搭載のための金属部分を形成した金属−セラミッ
クス複合基板において、アルミニウム溶湯をセラミック
ス基板上に直接凝固させて接合せしめた複合基板上の金
属板をエッチング処理することによって所定の回路を形
成して成ることを特徴とする金属−セラミックス複合基
板に関するものである。
That is, in the present invention, the first invention is
In a metal-ceramics composite substrate in which a metal portion for electrical conduction and electronic component mounting is formed on at least one main surface of the ceramics substrate, a metal characterized in that molten aluminum is directly solidified and joined onto the ceramics substrate. A second aspect of the present invention is a ceramic composite substrate.
In a metal-ceramic composite substrate in which at least one main surface of the ceramic substrate is provided with a metal portion for electrical conduction and electronic component mounting, a metal plate on the composite substrate obtained by directly solidifying and joining molten aluminum on the ceramic substrate is used. The present invention relates to a metal-ceramic composite substrate characterized in that a predetermined circuit is formed by etching.

【0017】[0017]

【作用】本発明において使用する基板としては、アルミ
ナ、窒化アルミニウム、炭化硅素、ジルコニア等のセラ
ミックス基板やガラス等であり、この場合、高強度の素
材であればなおさらに好ましい。
The substrate used in the present invention is a ceramic substrate made of alumina, aluminum nitride, silicon carbide, zirconia or the like, glass or the like. In this case, a material having high strength is even more preferable.

【0018】また本発明で用いる金属はアルミニウムの
純金属であるが、これにより導電性が向上し、且つ、軟
らかさを得るものである。この場合、純度が高い程導電
性が向上するが、逆に価格が高くなるため、本発明では
99.9%(3N)の純アルミニウムを使用した。
Further, the metal used in the present invention is a pure metal of aluminum, which improves conductivity and obtains softness. In this case, the higher the purity, the higher the conductivity, but on the contrary, the price becomes higher. Therefore, in the present invention, 99.9% (3N) of pure aluminum was used.

【0019】この金属とセラミックス基板との接合は溶
湯接合法で行ない、これにより高い接合強度と未接欠陥
の少ない複合基板が得られる。また、接合雰囲気として
窒素雰囲気下で行うことができるため、従来法のように
真空下で行う必要がなく製造コストが安くなり、さらに
窒化アルミニウム基板にも、表面改質することなく直接
に接合することができる。
The metal and the ceramics substrate are joined by the melt joining method, whereby a composite substrate having high joining strength and few non-contact defects can be obtained. In addition, since the bonding atmosphere can be performed in a nitrogen atmosphere, it is not necessary to perform it in a vacuum as in the conventional method, and the manufacturing cost is low. Further, it is directly bonded to an aluminum nitride substrate without surface modification. be able to.

【0020】セラミックス基板の厚さとアルミニウム金
属の厚さとの関係においては、従来の銅張りのセラミッ
クス複合基板に比べ、金属の厚さをさらに厚くする一
方、セラミックス基板の厚さを逆に薄くすることができ
るため、金属/セラミックスの厚さの比は従来品よりさ
らに大きくすることができる。この結果、本発明複合基
板の放熱性及び流れる電流の量は増大することが容易に
考えられる。
Regarding the relationship between the thickness of the ceramic substrate and the thickness of the aluminum metal, the thickness of the metal should be further increased, while the thickness of the ceramic substrate should be reduced, as compared with the conventional copper-clad ceramic composite substrate. Therefore, the thickness ratio of metal / ceramics can be further increased as compared with the conventional product. As a result, it is easily conceivable that the heat dissipation of the composite substrate of the present invention and the amount of flowing current increase.

【0021】以下図面を参照して本発明複合基板(以下
アルミニウム−セラミックス直接接合基板とする)につ
いて詳細に説明する。
The composite substrate of the present invention (hereinafter referred to as an aluminum-ceramics direct bonding substrate) will be described in detail below with reference to the drawings.

【0022】[0022]

【実施例】【Example】

【0023】(実施例1)(Example 1)

【0024】図7は本発明のアルミニウム−セラミック
ス直接接合基板を製造するための設備の原理図である。
純度99.9%のアルミニウムをルツボ10にセットし
てから蓋13をしめて、ケース12の内部に窒素ガスを
充填する。ヒーター11で750℃に加熱し、アルミニ
ウムを溶化してから、ルツボ10内に設けたガイド一体
型ダイス14の左側入口からセラミックス基板1として
36mm×52mm×0.635mmのアルミナ基板を
順番に挿入した。ルツボ10内に入った該アルミナ基板
にアルミニウム溶湯を接触させ、次いで出口側において
凝固させることによって、厚さ0.5mmのアルミニウ
ム板が両面に接合されたアルミニウム−アルミナ直接接
合基板を得た。
FIG. 7 is a principle view of equipment for manufacturing the aluminum-ceramics direct bonding substrate of the present invention.
Aluminum having a purity of 99.9% is set in the crucible 10, the lid 13 is closed, and the inside of the case 12 is filled with nitrogen gas. After heating to 750 ° C. with the heater 11 to melt aluminum, an alumina substrate of 36 mm × 52 mm × 0.635 mm was sequentially inserted as the ceramic substrate 1 from the left inlet of the guide-integrated die 14 provided in the crucible 10. . A molten aluminum was brought into contact with the alumina substrate contained in the crucible 10 and then solidified on the outlet side to obtain an aluminum-alumina direct bonding substrate having aluminum plates of 0.5 mm thickness bonded on both sides.

【0025】次いで該複合基板上のアルミニウム部に、
エッチングレジストを加熱圧着し、遮光、現像処理を行
って所望のパターンを形成した後、塩化第2鉄溶液にて
エッチングを行って回路を形成した。さらに回路表面を
Zn置換してNiめっき処理を施して、図1に示すよう
な形状のアルミニウム−セラミックス直接接合基板を得
た。
Then, on the aluminum portion on the composite substrate,
The etching resist was heat-pressed, light-shielded and developed to form a desired pattern, and then etched with a ferric chloride solution to form a circuit. Further, the circuit surface was replaced with Zn and subjected to Ni plating treatment to obtain an aluminum-ceramics direct bonding substrate having a shape as shown in FIG.

【0026】該複合基板の諸特性を測定したところ、以
下の結果を得た。
When the various properties of the composite substrate were measured, the following results were obtained.

【0027】ピール特性>30kg/cm(アルミニウ
ムが切れる)
Peel characteristics> 30 kg / cm (aluminum is cut)

【0028】ヒートサイクル>3000回(クラックな
し)
Heat cycle> 3000 times (no crack)

【0029】抗折強度:69kg/mm2 Bending strength: 69 kg / mm 2

【0030】たわみ:286μm(図5参照)Deflection: 286 μm (see FIG. 5)

【0031】(比較例1)(Comparative Example 1)

【0032】厚さ0.3mmの銅板7を36mm×52
mm×0.635mmのアルミナ基板6の上下面に直接
接合し、図2に示す形状の銅−アルミナ直接接合基板を
得た。なお、3は酸化物(Al−Cu−Si−O)であ
る。
A copper plate 7 having a thickness of 0.3 mm is set to 36 mm × 52
Directly bonded to the upper and lower surfaces of the alumina substrate 6 of mm × 0.635 mm to obtain a copper-alumina direct bonded substrate having the shape shown in FIG. In addition, 3 is an oxide (Al-Cu-Si-O).

【0033】実施例1に示す諸特性を同様に求めたとこ
ろ、
When various characteristics shown in Example 1 were similarly obtained,

【0034】ピール特性>10kg/cm(アルミナと
Cuとの界面で切れる)
Peel characteristics> 10 kg / cm (cut at the interface between alumina and Cu)

【0035】ヒートサイクル:50回でクラックが発生
し、600回で銅板が剥離
Heat cycle: cracks occur after 50 cycles, and copper plates peel after 600 cycles

【0036】抗折強度:49kg/mm2 Bending strength: 49 kg / mm 2

【0037】たわみ:172μmであった。The deflection was 172 μm.

【0038】(実施例2)(Example 2)

【0039】セラミックス基板1としてアルミナに代え
て窒化アルミニウム板(36mm×52mm×0.63
5mm)を用いた他は、実施例1と同様の手段でアルミ
ニウム−窒化アルミニウム直接接合基板を得た。
An aluminum nitride plate (36 mm × 52 mm × 0.63) was used as the ceramic substrate 1 instead of alumina.
5 mm) was used, and an aluminum-aluminum nitride direct bonding substrate was obtained by the same means as in Example 1.

【0040】この複合基板の特性は、The characteristics of this composite substrate are as follows:

【0041】ピール特性>20kg/cmPeel characteristics> 20 kg / cm

【0042】ヒートサイクル>3000回Heat cycle> 3000 times

【0043】抗折強度:53kg/mm2 Bending strength: 53 kg / mm 2

【0044】たわみ:230μmDeflection: 230 μm

【0045】であるように耐ヒートサイクル特性が自動
車向けとして好ましいものであった。
As described above, the heat cycle resistance was preferable for automobiles.

【0046】(比較例2)(Comparative Example 2)

【0047】図4に示すように金属板9として厚さ0.
3mmの銅板を活性金属ろう材(Ag−Cu−Ti)5
を介して窒化アルミニウム板8に接合して得た銅−窒化
アルミニウムろう接基板を用いて、実施例2と同様に特
性を測定したところ、
As shown in FIG. 4, the metal plate 9 has a thickness of 0.
3mm copper plate with active metal brazing material (Ag-Cu-Ti) 5
When the characteristics were measured in the same manner as in Example 2 using a copper-aluminum nitride brazing substrate obtained by bonding to the aluminum nitride plate 8 via

【0048】ピール特性>30kg/cmPeel characteristics> 30 kg / cm

【0049】ヒートサイクル:40回でクラックが発生
し、500回で銅板剥離
Heat cycle: cracks occur after 40 cycles and peeling of copper plate after 500 cycles

【0050】抗折強度:42kg/mm2 Bending strength: 42 kg / mm 2

【0051】たわみ:140μmDeflection: 140 μm

【0052】であり、ピール特性は優れているものの目
的とする耐ヒートサイクル特性は要求にほど遠いもので
あった。
Although the peel characteristics were excellent, the desired heat cycle resistance characteristics were far from the requirements.

【0053】(実施例3)(Example 3)

【0054】実施例1で用いた厚さ0.635mmのア
ルミナ基板の片面に厚さ0.5mmのアルミニウム層を
形成し、360℃に加熱された連続加熱炉に通炉したも
ののソリ量を図5に示すように測定し、同様な操作を繰
り返し行って該基板のソリ量を回数毎にまとめ図6に示
した。尚、加熱炉内の雰囲気はH2 :N2 =1:4であ
った。
The amount of warp of the aluminum substrate having a thickness of 0.535 mm formed on one surface of the alumina substrate having a thickness of 0.635 mm used in Example 1 and passed through a continuous heating furnace heated to 360 ° C. is shown in FIG. 5, the same operation was repeated, and the warpage amount of the substrate was summarized for each number of times and shown in FIG. The atmosphere in the heating furnace was H 2 : N 2 = 1: 4.

【0055】(比較例3)(Comparative Example 3)

【0056】アルミニウムに代えて厚さ0.3mmの銅
板を用いて直接接合させた銅張りアルミナ基板以外は、
実施例3に示す手段でソリ量を測定し、その結果を図6
に併せて示した。
Except for the copper-clad alumina substrate directly bonded using a copper plate having a thickness of 0.3 mm instead of aluminum,
The amount of warpage was measured by the means shown in Example 3, and the result is shown in FIG.
Are also shown.

【0057】この結果、比較例3の銅張りアルミナ基板
に比べ、本発明に係るアルミニウム/アルミナ基板のソ
リ量は約1/3であった。このソリ量は基板内部の応力
の増大に伴って増加するため、アルミニウム/アルミナ
基板内部の応力は銅張りアルミナ基板と比べてはるかに
小さいことがわかった。
As a result, the amount of warpage of the aluminum / alumina substrate according to the present invention was about 1/3 of that of the copper-clad alumina substrate of Comparative Example 3. It was found that the amount of warp increases as the stress inside the substrate increases, so the stress inside the aluminum / alumina substrate is much smaller than that in the copper-clad alumina substrate.

【0058】[0058]

【発明の効果】上述のように本発明に係るアルミニウム
/セラミックス直接接合基板は、従来の複合基板では得
られなかった耐ヒートサイクル特性に富み、電気自動車
向けパワーモジュール基板として好ましいものである。
As described above, the aluminum / ceramics direct bonding substrate according to the present invention is excellent in heat cycle resistance which cannot be obtained by the conventional composite substrate, and is preferable as a power module substrate for electric vehicles.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るアルミニウム/セラミックス直接
接合基板の模式図である。
FIG. 1 is a schematic view of an aluminum / ceramics direct bonding substrate according to the present invention.

【図2】従来の銅/アルミナ直接接合基板の模式図であ
る。
FIG. 2 is a schematic view of a conventional copper / alumina direct bonding substrate.

【図3】従来の銅/窒化アルニウム直接接合基板の模式
図である。
FIG. 3 is a schematic view of a conventional copper / aluminum nitride direct bonding substrate.

【図4】従来の金属/セラミックスろう接基板の模式図
である。
FIG. 4 is a schematic view of a conventional metal / ceramics brazing substrate.

【図5】実施例3におけるソリ量測定の模式図である。FIG. 5 is a schematic diagram of measuring the amount of warpage in Example 3.

【図6】実施例3、比較例3における通炉回数に対する
ソリ量を求めた線図である。
FIG. 6 is a diagram in which a warp amount with respect to the number of times of passing a furnace is obtained in Example 3 and Comparative example 3.

【図7】本発明複合基板の製造装置の原理図である。FIG. 7 is a principle view of an apparatus for manufacturing a composite substrate of the present invention.

【符号の説明】[Explanation of symbols]

1 セラミックス基板 2 アルミニウム 3 酸化物(Al−Cu−Si−O) 4 窒化アルミニウム表面の酸化物 5 金属ろう材 6 アルミナ基板 7 銅板 8 窒化アルミニウム板 9 金属板 10 ルツボ 11 ヒーター 12 ケース 13 蓋 14 ガイド一体型ダイス 1 Ceramics Substrate 2 Aluminum 3 Oxide (Al-Cu-Si-O) 4 Oxide of Aluminum Nitride Surface 5 Metal Brazing Material 6 Alumina Substrate 7 Copper Plate 8 Aluminum Nitride Plate 9 Metal Plate 10 Crucible 11 Heater 12 Case 13 Lid 14 Guide Integrated die

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年6月15日[Submission date] June 15, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

フロントページの続き (72)発明者 永田 長寿 東京都千代田区丸の内一丁目8番2号 同 和鉱業株式会社内Front page continued (72) Inventor Nagatoshi Nagata 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス基板の少なくとも一主面に
電気導通及び電子部品搭載のための金属部分を形成した
金属−セラミックス複合基板において、アルミニウム溶
湯をセラミックス基板上に直接凝固させて接合せしめた
ことを特徴とする金属−セラミックス複合基板。
1. In a metal-ceramic composite substrate in which a metal portion for electrical conduction and electronic component mounting is formed on at least one main surface of the ceramic substrate, molten aluminum is directly solidified on the ceramic substrate and joined. A characteristic metal-ceramic composite substrate.
【請求項2】 セラミックス基板の少なくとも一主面に
電気導通及び電子部品搭載のための金属部分を形成した
金属−セラミックス複合基板において、アルミニウム溶
湯をセラミックス基板上に直接凝固させて接合せしめた
複合基板上の金属板をエッチング処理することによって
所定の回路を形成して成ることを特徴とする金属−セラ
ミックス複合基板。
2. A metal-ceramic composite substrate in which a metal portion for electrical conduction and electronic component mounting is formed on at least one main surface of the ceramic substrate, and the composite substrate is obtained by directly solidifying and joining molten aluminum on the ceramic substrate. A metal-ceramic composite substrate, characterized in that a predetermined circuit is formed by etching the upper metal plate.
JP02726295A 1995-01-24 1995-01-24 Metal-ceramic composite substrate Expired - Fee Related JP3430348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02726295A JP3430348B2 (en) 1995-01-24 1995-01-24 Metal-ceramic composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02726295A JP3430348B2 (en) 1995-01-24 1995-01-24 Metal-ceramic composite substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000275057A Division JP3613759B2 (en) 2000-09-11 2000-09-11 Metal-ceramic composite substrate

Publications (2)

Publication Number Publication Date
JPH08208359A true JPH08208359A (en) 1996-08-13
JP3430348B2 JP3430348B2 (en) 2003-07-28

Family

ID=12216170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02726295A Expired - Fee Related JP3430348B2 (en) 1995-01-24 1995-01-24 Metal-ceramic composite substrate

Country Status (1)

Country Link
JP (1) JP3430348B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135499A1 (en) 2017-01-17 2018-07-26 国立大学法人信州大学 Method for manufacturing ceramic circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135499A1 (en) 2017-01-17 2018-07-26 国立大学法人信州大学 Method for manufacturing ceramic circuit board

Also Published As

Publication number Publication date
JP3430348B2 (en) 2003-07-28

Similar Documents

Publication Publication Date Title
JP4756200B2 (en) Metal ceramic circuit board
EP3632879B1 (en) Ceramic circuit board and method of production
EP1345480B1 (en) Ceramic circuit board
EP1450401B1 (en) Module comprising a ceramic circuit board
US6485816B2 (en) Laminated radiation member, power semiconductor apparatus, and method for producing the same
EP1631132B1 (en) Aluminium/ceramic bonding substrate
KR100374379B1 (en) Substrate
EP1518847B1 (en) Aluminum/ceramic bonding substrate and method for producing same
JPH09234826A (en) Metal-ceramic composite base plate and manufacture thereof
JP4360847B2 (en) Ceramic circuit board, heat dissipation module, and semiconductor device
JP2642574B2 (en) Manufacturing method of ceramic electronic circuit board
JP3613759B2 (en) Metal-ceramic composite substrate
JP4124497B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JP3430348B2 (en) Metal-ceramic composite substrate
JP3383892B2 (en) Method for manufacturing semiconductor mounting structure
JP4427154B2 (en) Ceramic circuit board
JP2001203299A (en) Aluminium board and ceramics circuit board using the same
JP4543275B2 (en) Aluminum-ceramic bonding substrate and manufacturing method thereof
JPH107480A (en) Composite metal-ceramic substrate and its production
JP3890540B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JP3392594B2 (en) Method for etching aluminum-ceramic composite substrate and etchant
JPH08274423A (en) Ceramic circuit board
JPH09315875A (en) Aluminum-ceramic composite substrate and its production
US20220033317A1 (en) Aluminum/ceramic bonding substrate and method for producing same
JPH09286681A (en) Metal-ceramic composite substrate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080523

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees