JPH08208318A - Production of alumina-silicon carbide composite - Google Patents
Production of alumina-silicon carbide compositeInfo
- Publication number
- JPH08208318A JPH08208318A JP7037719A JP3771995A JPH08208318A JP H08208318 A JPH08208318 A JP H08208318A JP 7037719 A JP7037719 A JP 7037719A JP 3771995 A JP3771995 A JP 3771995A JP H08208318 A JPH08208318 A JP H08208318A
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- powder
- silicon carbide
- gas
- carbide composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 27
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 45
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 24
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000002245 particle Substances 0.000 claims abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 12
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 10
- 239000011812 mixed powder Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 15
- 238000005245 sintering Methods 0.000 abstract description 11
- 239000000203 mixture Substances 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 33
- 230000000052 comparative effect Effects 0.000 description 8
- 238000005452 bending Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910021431 alpha silicon carbide Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、アルミナ−炭化けい素
複合体の製造方法に関し、特にガス圧焼結によってアル
ミナ−炭化けい素複合体を製造する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alumina-silicon carbide composite, and more particularly to a method for producing an alumina-silicon carbide composite by gas pressure sintering.
【0002】[0002]
【従来の技術】アルミナセラミックスは、耐熱性、耐酸
化性、耐薬品性、電気絶縁性などに優れ、製造コストも
安価なことから種々の用途に使われている。しかし、こ
のアルミナセラミックスは、破壊靱性や耐熱衝撃性など
に劣る弱点があり、この弱点を改善するため、炭化けい
素(SiC)を添加して複合化する方法が研究されてい
る。2. Description of the Related Art Alumina ceramics are used for various purposes because they are excellent in heat resistance, oxidation resistance, chemical resistance, electrical insulation, and the like, and the manufacturing cost is low. However, this alumina ceramic has weaknesses that are inferior in fracture toughness and thermal shock resistance, and in order to improve this weakness, a method of adding silicon carbide (SiC) to form a composite has been studied.
【0003】このSiCを含む複合体は、アルミナとS
iCの反応によってCOガスなどを発生してアルミナの
緻密化を阻害するため、焼結が難しく、そのため、その
焼結は、ガスが発生しても高い圧力で緻密に焼結させて
しまうホットプレス(HP)法、もしくはカプセルを用
いた熱間静水圧(HIP)法により行われていた。This SiC-containing composite is composed of alumina and S.
Since hot gas is generated by the reaction of iC and inhibits the densification of alumina, it is difficult to sinter. Therefore, the sintering is a hot press in which even if gas is generated, it is densely sintered at a high pressure. (HP) method or hot isostatic pressing (HIP) method using capsules.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記H
P法では複雑な形状品を焼結するのが難しく、平板や円
筒、円柱等の単純な形状の焼結に限られ、また、HIP
法では複雑な形状品を焼結することはできるものの、大
型品を焼結するのが難しいなど、工業的に有効な方法で
はなかった。However, the above-mentioned H
With the P method, it is difficult to sinter a complicated shape product, and it is limited to sintering of a simple shape such as a flat plate, a cylinder, and a cylinder.
Although it is possible to sinter complicated shaped products by the method, it is not an industrially effective method because it is difficult to sinter large products.
【0005】本発明は、上述した従来のアルミナ−炭化
けい素複合体の製造方法が有する課題に鑑みなされたも
のであって、その目的は、複雑な形状品や大型品が得ら
れるガス圧焼結法でも緻密に焼結できるアルミナ−炭化
けい素複合体の製造方法を提供することにある。The present invention has been made in view of the problems that the above-described conventional method for producing an alumina-silicon carbide composite has, and the purpose thereof is gas pressure firing for obtaining complicated shaped products and large-sized products. An object of the present invention is to provide a method for producing an alumina-silicon carbide composite body which can be densely sintered even by a binding method.
【0006】[0006]
【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、アルミナ粉末にSi
C粉末を含んだ混合粉末を成形した成形体の周囲に、ア
ルミナ及び/又はシリカとカーボンの粉末を雰囲気粉末
として配置して焼結すれば、常圧又は加圧したArもし
くはN2ガスのガス圧焼結でも、ガスの発生を抑えて緻
密なアルミナ−炭化けい素複合体を焼結できるとの知見
を得て本発明を完成した。Means for Solving the Problems The inventors of the present invention have earnestly studied in order to achieve the above-mentioned object, and as a result, the alumina powder has Si
If a powder of alumina and / or silica and carbon is arranged as an atmosphere powder around a compact formed by molding a mixed powder containing C powder and sintered, atmospheric pressure or pressurized Ar or N 2 gas gas is obtained. The present invention has been completed based on the finding that it is possible to sinter a dense alumina-silicon carbide composite material by suppressing gas generation even by pressure sintering.
【0007】アルミナ−炭化けい素複合体からのガスの
発生は、SiC中のCとAl2O3中のOと反応すること
によりCOガスが発生し、同時に、Cを失ったSiもA
l2O3中のOと反応することによってSiO、Al2O
のガスが発生し、さらに、発生したAl2OガスがSi
Cにより還元されてAlのガスを発生するものと思わ
れ、即ち、SiCとAl2O3とが反応することによっ
て、これらのガスを発生するものと思われる。The gas generated from the alumina-silicon carbide composite reacts with C in SiC and O in Al 2 O 3 to generate CO gas, and at the same time, Si that has lost C also has A
SiO, Al 2 O by reacting with O in l 2 O 3
Gas is generated, and the generated Al 2 O gas is Si
It seems that C is reduced to generate Al gas, that is, SiC and Al 2 O 3 react with each other to generate these gases.
【0008】上記ガスの発生が抑えられる理由は、周囲
に配置した雰囲気粉末中のアルミナがカーボンにより還
元されCO、Al2O、Alガスが、あるいは粉末中の
シリカが同様に還元されCO、SiOガスが発生し、そ
れらのガスの蒸気圧が大きくなることによって、アルミ
ナ−炭化けい素複合体に含まれているSiCとAl2O3
との反応が抑制されてガスの発生が抑えられるものと思
われ、その結果、緻密に焼結できるものと思われる。こ
のように雰囲気粉末中には還元材が必要なのでカーボン
粉末は必ず必要であるが、アルミナとシリカ粉末は単独
でもよい。しかし、併用した方が効果は大きいので、併
用した方がより好ましい。The reason why the above-mentioned generation of gas is suppressed is that the alumina in the atmosphere powder arranged around is reduced by carbon to reduce CO, Al 2 O, Al gas, or the silica in the powder is reduced in the same manner. As gases are generated and the vapor pressures of those gases increase, SiC and Al 2 O 3 contained in the alumina-silicon carbide composite are generated.
It is considered that the reaction with the is suppressed and the generation of gas is suppressed, and as a result, it is possible to perform the dense sintering. As described above, the carbon powder is always necessary because the reducing agent is necessary in the atmosphere powder, but the alumina powder and the silica powder may be used alone. However, the combined use is more effective, and thus the combined use is more preferable.
【0009】また、成形体の周囲に配置する雰囲気粉末
に代えて、ガスの発生を抑えるAr又はN2ガスを別に
用意してそのガスを使ってガス圧焼結してもよい。その
ガスは、加熱容器に充填したアルミナ及び/又はシリカ
とカーボンの雰囲気粉末を1000℃以上加熱してその
容器にAr又はN2ガスを通せば得られる。Further, instead of the atmosphere powder arranged around the compact, an Ar or N 2 gas for suppressing gas generation may be separately prepared and gas pressure sintering may be performed using the gas. The gas can be obtained by heating an atmosphere powder of alumina and / or silica and carbon filled in a heating container at 1000 ° C. or higher and passing Ar or N 2 gas through the container.
【0010】上記アルミナ粉末に含まれるSiCの量
は、0.1〜30vol%とした(請求項1)。0.1
vol%より少ないと破壊靱性などを改善するSiC添
加の効果が得られず、30vol%より多いと均一に分
散され難く逆に効果がなくなってしまう。The amount of SiC contained in the alumina powder is 0.1 to 30 vol% (claim 1). 0.1
If it is less than 30% by volume, the effect of adding SiC for improving fracture toughness and the like cannot be obtained, and if it is more than 30% by volume, it is difficult to disperse it uniformly, and conversely the effect is lost.
【0011】また、上記雰囲気粉末の細かさとしては、
アルミナが平均粒径で3.0μm以下とし、シリカが平
均粒径で5.0μm以下とした(請求項2)。アルミナ
が平均粒径で3.0μmより粗いと、焼成温度がアルミ
ナ−炭化けい素複合体の焼結が開始される温度以上にな
っても、カーボン粉末による雰囲気粉末中のアルミナ粉
末の還元反応が十分起らず、その結果、複合体中のAl
2O3とSiCとが反応してしまうので、ガスの発生を抑
制する効果がなくなる。同様にシリカも平均粒径で5.
0μmより粗いとガス発生の抑制効果がなくなる。Further, as the fineness of the atmosphere powder,
Alumina had an average particle size of 3.0 μm or less, and silica had an average particle size of 5.0 μm or less (claim 2). If the average particle diameter of alumina is less than 3.0 μm, the reduction reaction of the alumina powder in the atmosphere powder due to the carbon powder will occur even if the firing temperature is equal to or higher than the temperature at which the sintering of the alumina-silicon carbide composite is started. Does not occur sufficiently, resulting in Al in the composite
Since 2 O 3 reacts with SiC, the effect of suppressing gas generation is lost. Similarly, silica has an average particle size of 5.
If it is coarser than 0 μm, the effect of suppressing gas generation is lost.
【0012】以下、本発明をさらに詳細に述べると、先
ずアルミナ粉末に粒子状あるいは繊維状の炭化けい素粉
末を所要量加えた原料粉末を慣用の方法、例えばボール
ミル、アトリッション型ミル等で湿式混合した後、乾燥
して慣用の方法、例えばCIP成形、射出成形、押出成
形法等により成形する。成形した成形体を、アルミナ及
び/又はシリカとカーボンの雰囲気粉末を配置したカー
ボン製等のルツボに入れ、常圧又は加圧したArまたは
N2ガス中でガス圧焼結する。雰囲気粉末として用いる
粉末は、平気粒径で3.0μm以下のアルミナ粉と平均
粒径で5.0μm以下のシリカ粉末に、さらにカーボン
粉末として市販のカーボンブラックなどを加えてボール
ミル、アトリッション型ミル等で混合後、乾燥して得ら
れる。The present invention will be described in more detail below. First, a raw material powder obtained by adding a required amount of particulate or fibrous silicon carbide powder to alumina powder is wet mixed by a conventional method such as a ball mill or an attrition type mill. After that, it is dried and molded by a conventional method such as CIP molding, injection molding or extrusion molding. The formed compact is placed in a crucible made of carbon or the like in which an atmosphere powder of alumina and / or silica and carbon is arranged, and gas pressure sintering is performed in normal pressure or pressurized Ar or N 2 gas. The powder used as the atmosphere powder is a ball mill, an attrition mill, etc. by adding commercially available carbon black as carbon powder to alumina powder having an average particle size of 3.0 μm or less and silica powder having an average particle size of 5.0 μm or less. It is obtained by mixing with and drying.
【0013】以上の方法でアルミナ−炭化けい素複合体
を製造すれば、複雑な形状のもの、あるいは大型のもの
でも緻密に製造することができる。When the alumina-silicon carbide composite is manufactured by the above method, it is possible to precisely manufacture a complex-shaped or large-sized one.
【0014】[0014]
【実施例】以下、本発明の実施例を比較例と共に挙げ、
本発明をより詳細に説明する。EXAMPLES Examples of the present invention will be given below together with comparative examples.
The present invention will be described in more detail.
【0015】(実施例1〜9) (1)アルミナ−炭化けい素成形体の作製 原料として純度が99.5%以上で、平均粒径が0.5
μmのα−Al2O3粉末と純度が99.5%以上で、平
均粒径が0.5μmのα−SiC粉末を用い、α−Al
2O3粉末にα−SiC粉末を表1に示す量だけ加え、樹
脂ボールを充填した樹脂製ボールミルでエチルアルコー
ルを溶媒として8時間混合し、乾燥した後、乳鉢で解砕
した。解砕した粉末を金型で縦50mm×横35mm×
厚さ10mmの大きさにプレス成形した後、1.5to
n/cm2の圧力でCIP成形した。(Examples 1 to 9) (1) Preparation of Alumina-Silicon Carbide Formed Body A raw material having a purity of 99.5% or more and an average particle size of 0.5.
In μm of α-Al 2 O 3 powder having a purity of 99.5% or higher, mean particle size using the alpha-SiC powder 0.5 [mu] m, alpha-Al
An amount of α-SiC powder shown in Table 1 was added to 2 O 3 powder, and the mixture was mixed for 8 hours with ethyl alcohol as a solvent in a resin ball mill filled with resin balls, dried, and then crushed in a mortar. 50 mm x 35 mm x width of crushed powder
After press molding to a thickness of 10 mm, 1.5 to
CIP molding was performed at a pressure of n / cm 2 .
【0016】(2)雰囲気粉末の作製 原料として平均粒径が表1に示すα−Al2O3粉末とS
iO2粉末及び平均粒径が0.02μmのカーボンブラ
ックを用い、それらを表1に示す組み合わせで等量ずつ
配合して樹脂ボールを充填した樹脂製ボールミルで混合
後、乾燥した。(2) Preparation of Atmosphere Powder As raw materials, α-Al 2 O 3 powder having an average particle size shown in Table 1 and S
Using an iO 2 powder and carbon black having an average particle size of 0.02 μm, the combinations shown in Table 1 were mixed in equal amounts and mixed in a resin ball mill filled with resin balls, followed by drying.
【0017】(3)アルミナ−炭化けい素複合体の作製 乾燥した雰囲気粉末をカーボン製のルツボ内に配置し、
そのルツボに作製した成形体を入れて表1に示す圧力の
雰囲気中で表1に示す焼成温度で2時間保持して焼結し
た。(3) Preparation of Alumina-Silicon Carbide Composite Dry atmosphere powder was placed in a carbon crucible,
The formed body was placed in the crucible and sintered in an atmosphere having a pressure shown in Table 1 at a firing temperature shown in Table 1 for 2 hours.
【0018】(4)評価 得られた焼結体よりJIS曲げ試験片を切り出し、アル
キメデス法により嵩密度を測定して相対密度を求め、曲
げ試験機により3点曲げ強度を測定して曲げ強度を求め
た。それらの結果を表1に示す。(4) Evaluation JIS bending test pieces were cut out from the obtained sintered body, the bulk density was measured by the Archimedes method to obtain the relative density, and the three-point bending strength was measured by a bending tester to determine the bending strength. I asked. The results are shown in Table 1.
【0019】(実施例10)実施例1に示す雰囲気粉末
を1200℃に加熱した炉内に入れ、その炉内に通した
Arガスを使用して、実施例1に示す成形体から実施例
1と同様に複合体を作製した。得られた複合体を実施例
1と同じく評価した。その結果を表1に示す。(Example 10) The atmosphere powder shown in Example 1 was placed in a furnace heated to 1200 ° C, and Ar gas passed through the furnace was used. A composite was prepared in the same manner as in. The obtained composite was evaluated in the same manner as in Example 1. Table 1 shows the results.
【0020】(比較例1〜4)比較のために、実施例と
同じ原料を用い、SiCを表1に示す量だけ添加して成
形体を作製し、表1に示す細かさの雰囲気粉末を作製し
て、その雰囲気粉末を用いて常圧のAr雰囲気中で18
00℃の温度で2時間保持して複合体を作製した後、そ
の複合体を実施例と同じく評価した(比較例1、2、
3)。また、比較例4では雰囲気粉末を用いないで常圧
のAr雰囲気中で1800℃の温度で2時間保持して複
合体を作製し、その複合体を同様評価した。それらの結
果を表1に示す。(Comparative Examples 1 to 4) For comparison, using the same raw material as in the example, SiC was added in an amount shown in Table 1 to prepare a compact, and an atmosphere powder having the fineness shown in Table 1 was prepared. It is produced and the powder of the atmosphere is used for 18 in an Ar atmosphere at normal pressure.
After holding at a temperature of 00 ° C. for 2 hours to prepare a composite, the composite was evaluated in the same manner as in Examples (Comparative Examples 1, 2,
3). Further, in Comparative Example 4, a composite was prepared by holding the powder at a temperature of 1800 ° C. for 2 hours in an Ar atmosphere at atmospheric pressure without using the atmospheric powder, and the composite was evaluated in the same manner. The results are shown in Table 1.
【0021】[0021]
【表1】 [Table 1]
【0022】表1から明らかなように、実施例1〜9に
おいては、密度が高い緻密な焼結体となっており、その
曲げ強度もHP法やHIP法と同程度の強度が得られて
いる。また、雰囲気粉末を使わないで代わりにガスの発
生を抑えたArガスを用いた実施例10も、同様の結果
が得られている。As is clear from Table 1, in Examples 1 to 9, the sintered bodies were dense and dense, and the bending strength thereof was similar to that of the HP method and the HIP method. There is. In addition, similar results were obtained in Example 10 in which the atmosphere gas was not used and Ar gas in which gas generation was suppressed was used instead.
【0023】これに対して雰囲気粉末の細かさが本発明
の範囲外にあるため、比較例1、2では、ある程度緻密
な焼結体が得られたが、曲げ強度が実施例に比べて大き
く低下している複合体となっており、また、比較例3で
は、密度が低く、緻密な焼結体が得られず曲げ強度も測
定できないほど低かった。雰囲気粉末を使ってない比較
例4でも、比較例3と同様であった。On the other hand, since the fineness of the atmosphere powder is out of the range of the present invention, Comparative Examples 1 and 2 produced sintered bodies having a certain degree of fineness, but the bending strength was larger than that of the Examples. In addition, the composite body had decreased, and in Comparative Example 3, the density was low, a dense sintered body could not be obtained, and the bending strength was too low to be measured. Comparative Example 4 using no atmosphere powder was similar to Comparative Example 3.
【0024】[0024]
【発明の効果】本発明の方法でアルミナ−炭化けい素複
合体を製造することにより、曲げ強度が高い緻密な複合
体を得ることができた。これにより、プレス成形法、鋳
込み成形法、射出成形法などで成形したアルミナ−炭化
けい素複合体の複雑形状品や大型品もガス圧焼結法で緻
密に焼結することができるようになった。By producing the alumina-silicon carbide composite according to the method of the present invention, a dense composite having a high bending strength can be obtained. As a result, it becomes possible to densely sinter a complex-shaped product or a large-sized product of an alumina-silicon carbide composite molded by a press molding method, a casting molding method, an injection molding method or the like by the gas pressure sintering method. It was
Claims (2)
0vol%含む混合粉末を成形し、その成形体の周囲に
アルミナ及び/又はシリカとカーボンの雰囲気粉末を配
置した後、その成形体を常圧又は加圧したArもしくは
N2ガス中で焼結することを特徴とするアルミナ−炭化
けい素複合体の製造方法。1. Alumina powder containing 0.1 to 3 SiC powder.
A mixed powder containing 0 vol% is molded, and an atmosphere powder of alumina and / or silica and carbon is arranged around the molded body, and then the molded body is sintered in atmospheric pressure or pressurized Ar or N 2 gas. A method for producing an alumina-silicon carbide composite, comprising:
雰囲気粉末中に含まれているアルミナの細かさが、平均
粒径で3.0μm以下であり、シリカの細かさが、平均
粒径で5.0μm以下であることを特徴とする請求項1
記載のアルミナ−炭化けい素複合体の製造方法。2. The fineness of alumina contained in the atmosphere powder of alumina and / or silica and carbon is 3.0 μm or less in average particle diameter, and the fineness of silica is 5. 2. The thickness is 0 μm or less.
A method for producing the described alumina-silicon carbide composite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7037719A JPH08208318A (en) | 1995-02-03 | 1995-02-03 | Production of alumina-silicon carbide composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7037719A JPH08208318A (en) | 1995-02-03 | 1995-02-03 | Production of alumina-silicon carbide composite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08208318A true JPH08208318A (en) | 1996-08-13 |
Family
ID=12505326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7037719A Pending JPH08208318A (en) | 1995-02-03 | 1995-02-03 | Production of alumina-silicon carbide composite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08208318A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003032367A3 (en) * | 2001-06-15 | 2003-07-10 | Harvest Prec Components Inc | Fabrication of an electrically conductive silicon carbide article |
-
1995
- 1995-02-03 JP JP7037719A patent/JPH08208318A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003032367A3 (en) * | 2001-06-15 | 2003-07-10 | Harvest Prec Components Inc | Fabrication of an electrically conductive silicon carbide article |
US6616890B2 (en) | 2001-06-15 | 2003-09-09 | Harvest Precision Components, Inc. | Fabrication of an electrically conductive silicon carbide article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4351787A (en) | Process for sintering reaction bonded silicon nitride | |
US2752258A (en) | Silicon nitride-bonded silicon carbide refractories | |
CA1272581A (en) | Nitriding silicon powder articles using high temperature and pressure dwells | |
EP0153000B1 (en) | Refractories of silicon carbide and related materials having a modified silicon nitride bonding phase | |
EP0322174B1 (en) | Process for making silicon nitride articles | |
US4919868A (en) | Production and sintering of reaction bonded silicon nitride composites containing silicon carbide whiskers or silicon nitride powders | |
EP0397520B1 (en) | Method of manufacturing a ceramic composite | |
Semen et al. | Structural ceramics derived from a preceramic polymer | |
JPH08208318A (en) | Production of alumina-silicon carbide composite | |
EP0648717A2 (en) | Reaction sintered ceramics and method of producing the same | |
US5545362A (en) | Production method of sintered silicon nitride | |
US5746969A (en) | Process for the production of dense silicon nitride materials | |
Tuan et al. | Preparation of Al2O3–AlN–Ni Composites | |
JP2696734B2 (en) | Manufacturing method of silicon nitride sintered body | |
JP3570676B2 (en) | Porous ceramic body and method for producing the same | |
JPH08319168A (en) | Production of sialon ceramic | |
JPH0146472B2 (en) | ||
JPH01219062A (en) | Production of silicon nitride sintered body | |
JP3567001B2 (en) | Method for producing composite sintered body of silicon carbide and silicon nitride | |
JPH08175874A (en) | Production of composite sintered compact composed of silicon carbide and silicon nitride | |
JP2699697B2 (en) | Method for producing silicon carbide / silicon nitride composite sintered body | |
JPH0867569A (en) | Thermal shock-resistant silicon nitride sintered compact and production thereof | |
JPH0517210A (en) | Production of alumina-based composite sintered body and the sintered body | |
JPS62113769A (en) | Manufacture of silicon nitride sintered body | |
JP2706304B2 (en) | Method for producing silicon nitride sintered body |