JPH08207016A - Silica-impregnated wood and manufacture thereof - Google Patents

Silica-impregnated wood and manufacture thereof

Info

Publication number
JPH08207016A
JPH08207016A JP1536995A JP1536995A JPH08207016A JP H08207016 A JPH08207016 A JP H08207016A JP 1536995 A JP1536995 A JP 1536995A JP 1536995 A JP1536995 A JP 1536995A JP H08207016 A JPH08207016 A JP H08207016A
Authority
JP
Japan
Prior art keywords
wood
silica
boron compound
impregnated
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1536995A
Other languages
Japanese (ja)
Inventor
Akiko Kodama
安希子 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A G MEDICAL KK
Medical Kk AG
Original Assignee
A G MEDICAL KK
Medical Kk AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A G MEDICAL KK, Medical Kk AG filed Critical A G MEDICAL KK
Priority to JP1536995A priority Critical patent/JPH08207016A/en
Publication of JPH08207016A publication Critical patent/JPH08207016A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

PURPOSE: To obtain building wood, which has high strength and rotproofing-, mothproofing-, ant-proofing-, mildewproofing-properties and flame retardancy. CONSTITUTION: Dried woods 12a,...12d are bound with string 14 under the state being interposed by spacers 13 and put in an impregnating chamber 11 and sealed. By operating cocks 19 and 20, the impregnating chamber 11 is evacuated so as to evacuate the lumina of the wood texture of the wood 12. The wood 12 in the evacuated impregnating chamber 11 is immersed in impregnating solution 16 (or colloidal solution of silica particle blended with boron compound) stored in a container 15. After that, by bringing the pressure in the impregnating chamber 11 to the normal pressure, the impregnating solution is infiltrated in the wood texture. Then the wood 12 is taken out of the chamber and dried at the temperature not more than 60 deg.C. Since the impregnating solution is prepared by mixing boron compound with the colloidal solution of silica particle, the silica particle-impregnated wood consists of the wood 12, non-combustible and high strength silica and rotproofing-, mothproofing-, ant-proofing- and mildewoproofing-boron compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリカ含浸木材及び製
造方法に関し、より詳細には、木材内部にシリカ(二酸
化珪素)の微粒子およびホウ素化合物を付着・結合さ
せ、建築用材として好適なシリカ含浸木材及び製造方法
に関する(なお、ここで、付着・結合とは、物理的付
着、吸着、物理的封じ込め、化学結合等を意味するもの
とする)。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to silica-impregnated wood and a method for producing the same. More specifically, the present invention relates to silica-impregnated wood, in which fine particles of silica (silicon dioxide) and a boron compound are adhered and bonded to the interior of the wood to be suitable as a construction material. The present invention relates to wood and a manufacturing method (here, adhesion / bonding means physical adhesion, adsorption, physical containment, chemical bonding, etc.).

【0002】[0002]

【従来の技術】木材は、再生産可能な生物質源であり、
古くから人間の生活と密接にかかわりをもっており、建
築、家具、紙、パルプ、燃料等に使用されているが、生
活の高度化とともに消費量が増加する傾向を辿ってい
る。木材は、植物の木部細胞の集合体であり、木部細胞
の壁がセルロースを骨格としてヘミセルロースやリグニ
ンにより補強されているので軽くて強く、しかも、工作
し易いという特性をもっている。更に、木材は断熱性、
遮音性、電気絶縁性が優れ調湿作用を併せもっているの
で、特に、建築材料として不可欠である。一般の建築用
の木材としては、特に、工作し易いことが必要で、円柱
状の通直な幹を有し、同心円状に肥大生長する針葉樹材
が多く用いられている。
Wood is a reproducible source of biomaterials,
It has been closely related to human life since ancient times, and has been used for construction, furniture, paper, pulp, fuel, etc., but its consumption tends to increase with the sophistication of life. Wood is an assembly of xylem cells of a plant, and the walls of the xylem cells are reinforced with hemicellulose and lignin with cellulose as the skeleton, so they have the characteristics of being light and strong and easy to work with. Furthermore, wood has heat insulation,
It is particularly indispensable as a building material because it has excellent sound insulation and electrical insulation properties and also has a humidity control function. As wood for general construction, it is particularly necessary to make it easy to work, and coniferous wood that has a column-shaped straight trunk and grows concentrically in large numbers is often used.

【0003】[0003]

【発明が解決しようとする課題】建築用材としての木材
は、上述した多くの優れた特性をもっているが、反面、
住宅が建築された地盤面の表土が、例えば、水分の多い
畑地や水田から整地したものであったり、台所等の水ま
わりのように、長期間に亘り多湿状態を保たれている
と、木材は腐敗したり、カビが発生し、或いは、キクイ
ムシ、白蟻等の食害に逢い住宅の強度低下をもたらす。
更には、燃え易いので住宅に用いると火災に弱い等の課
題をもっている。
Wood as a building material has many of the above-mentioned excellent characteristics, but on the other hand,
If the topsoil on the ground surface where the house was built is, for example, one that has been prepared from a high-moisture field or paddy field, or around a water in a kitchen, etc. Will cause decay and mold, or cause damage to the beetle, termites, and other food damage, and reduce the strength of the house.
Furthermore, since it burns easily, it has a problem that it is vulnerable to fire when used in a house.

【0004】本発明は、このような実情に鑑みてなされ
たもので、建築用材として硬さ強度が高く、防虫、防
蟻、防腐、防カビ性があり、しかも燃え難い建築用材を
提供することを目的としてなされたものである。
The present invention has been made in view of the above circumstances, and provides a building material which has high hardness and strength as a building material, has insect repellent, ant-proof, antiseptic and antifungal properties and is hard to burn. It was made for the purpose.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために、(1)二酸化珪素微粒子のコロイド溶液
にホウ素化合物を混合したコロイド溶液を減圧気中或い
は加圧気中で木材内部に含浸後、該木材を乾燥して得ら
れた複合部材で、木材構成成分に、二酸化珪素微粒子
と、ホウ素化合物とが付着・結合していること、更に
は、(2)前記(1)において、前記二酸化珪素微粒子
の平均直径が2〜400nmであること、更には、
(3)前記(1)において、前記ホウ素化合物がホウ
酸、および/又は、ホウ酸ナトリウム、および/又は金
属ホウ素であること、更には、(4)前記(1)におい
て、前記二酸化珪素微粒子にホウ素化合物が付着・結合
していること、更には、(5)前記(1)乃至(4)の
何れかにおいて、前記二酸化珪素微粒子が含浸された木
材の乾燥温度が60℃以下であることを特徴としたもの
である。
In order to solve the above problems, the present invention provides (1) a colloidal solution of a boron compound mixed with a colloidal solution of silicon dioxide fine particles inside a wood under reduced pressure or under pressure. After impregnation, in the composite member obtained by drying the wood, the silicon dioxide fine particles and the boron compound are attached and bonded to the wood constituent components, and further, (2) in the above (1), The average diameter of the silicon dioxide fine particles is 2 to 400 nm, and further,
(3) In the above (1), the boron compound is boric acid and / or sodium borate and / or metallic boron, and (4) In the above (1), the silicon dioxide fine particles are added. That the boron compound is attached / bonded, and (5) in any one of (1) to (4) above, the drying temperature of the wood impregnated with the silicon dioxide fine particles is 60 ° C. or lower. It is a feature.

【0006】[0006]

【作用】木材の木部組織を構成する導管または仮導管等
の微小空洞内に、二酸化珪素(以後、シリカと記す)微
粒子のコロイド溶液に、ホウ素化合物を混合したコロイ
ド溶液を減圧含浸、加圧含浸等の含浸手段で含浸させて
から乾燥してコロイド溶液中の液相を取り除き、木材内
にホウ素化合物を含むシリカ層を形成して、不燃性のシ
リカのもつ特性を生かして難燃性部材とするとともに、
硬さ強度を増し、更には、ホウ素化合物による防虫性、
防蟻性、防腐性、防カビ性を向上させる。
[Function] A colloidal solution of fine particles of silicon dioxide (hereinafter referred to as silica) mixed with a boron compound is impregnated into a microcavity such as a conduit or a temporary conduit that constitutes the xylem of a timber under reduced pressure and pressurization. It is impregnated with impregnating means such as impregnation and then dried to remove the liquid phase in the colloidal solution to form a silica layer containing a boron compound in the wood, making use of the characteristics of noncombustible silica to make a flame-retardant member. And
Increases hardness strength, and further, insect repellent property by boron compound,
Improves anti-termite, antiseptic and antifungal properties.

【0007】[0007]

【実施例】まず、本発明のシリカ含浸木材を構成する構
成要素である、木材、コロイダルシリカ溶液、およびホ
ウ素化合物について説明する。まず、木材について述べ
る。木材は、樹木の通直な円柱体の幹部分から樹皮を取
り除いて取り出した部分であり、樹木では、根から吸収
された水分や養分を幹の内部を通って葉の部分に送り、
葉の部分では光合成物質の溶液を生産する。生産された
光合成物質は樹皮中を通って樹木各部に転流させて木材
を成長させる。通常、幹は円柱状で、同心円状に肥大生
長するので、木部組織は、幹軸方向に配列する細胞と、
中心軸である髄から放射状に配列する細胞から構成され
る。建築用材としては、マツ、スギ、ヒノキ等の針葉樹
が用いられるので、一例として、アカマツ材の細胞構成
を説明する。
EXAMPLES First, wood, a colloidal silica solution, and a boron compound, which are constituent elements of the silica-impregnated wood of the present invention, will be described. First, wood will be described. Wood is a part of the trunk of a straight columnar tree that is obtained by removing the bark from the trunk, and in the tree, water and nutrients absorbed from the roots are sent to the leaves through the interior of the trunk,
The leaves produce a photosynthetic solution. The produced photosynthetic material passes through the bark and is translocated to each part of the tree to grow the wood. Usually, the stem is columnar and grows concentrically, so the xylem tissue is composed of cells arranged in the stem axis direction.
It is composed of cells arranged radially from the central axis, the marrow. Since coniferous trees such as pine, cedar, and cypress are used as building materials, the cell composition of red pine wood will be described as an example.

【0008】図1は、アカマツ材の細胞構成の一例を説
明するための模式図であり、図中、Xは横断面、Tは接
線断面、Rは放射断面、1は早材仮造管、2は晩材仮造
管、3は年輪境界、4は軸方向樹脂道、5は軸方向柔細
胞、6は軸方向樹脂道、7は放射柔細胞、8は放射仮造
管である。
FIG. 1 is a schematic view for explaining an example of the cell constitution of Japanese red pine wood, in which X is a transverse cross section, T is a tangential cross section, R is a radial cross section, 1 is a temporary wood temporary pipe, Reference numeral 2 is a temporary material pipe, 3 is an annual ring boundary, 4 is an axial resin path, 5 is an axial parenchyma cell, 6 is an axial plastic path, 7 is a radial parenchyma cell, and 8 is a radial virtual tube.

【0009】図1に示したアカマツ材の横断面Xでは、
早材仮造管1からなる早材部と、晩材仮造管2からなる
晩材部分とを有し、早材部と晩材部との境界である年輪
境界3がみられ、内径40〜60μmの早材仮造管1と
内径8〜25μmの晩材仮造管2の断面が整然と並んで
おり、この中に大径な軸方向樹脂道4が配置されてい
る。また、放射断面R、接線断面Tに内径30〜55μ
mの放射状軟細胞7、放射仮造管8が並んで配置され
る。
At the cross section X of the red pine wood shown in FIG.
It has an early wood part consisting of an early wood temporary pipe 1 and an late wood part consisting of a late wood temporary pipe 2, and an annual ring boundary 3 which is a boundary between the early wood part and the late wood part is seen, and an inner diameter 40 The cross sections of the temporary material temporary pipe 1 having a diameter of -60 μm and the temporary material temporary pipe 2 having an inner diameter of 8 to 25 μm are lined up in order, and a large-diameter axial resin path 4 is arranged in this. Further, the radial cross section R and the tangential cross section T have an inner diameter of 30 to 55 μm.
The radial soft cells 7 of m and the temporary radiation tube 8 are arranged side by side.

【0010】このように、アカマツ材では、各々、直角
に交わる横断面X、接線断面T、放射断面Rの面に細胞
壁による中空の道管が形成され、軽量で圧縮強度の高い
特性をもっている。このような木材組織構成は、建築材
に用いられる他の針葉樹においても略同様である。
As described above, the red pine wood has the characteristics that it is lightweight and has high compressive strength because the hollow conduit formed by the cell wall is formed on the surface of the cross section X, the tangential cross section T, and the radial cross section R that intersect at right angles. Such a wood structure configuration is substantially the same in other coniferous trees used for building materials.

【0011】次に、シリカ微粒子について述べる。コロ
イダルシリカ溶液は、微小な球状シリカを水に分散させ
たコロイド溶液で、シリカ粒子表面にOH基が存在し、
OH基によりマイナスに荷電している。コロイド液は低
粘度で、且つ、ニュートン粘性を示し、比重は、シリカ
微粒子の量が多くなり濃度が大きくなるに従って大きく
なるが、例えば、シリカ微粒子の重量百分率30%での
比重は約1.2で、このときの粘度は3cp(at25
℃)以下である。また、乾燥加熱するとシリカ微粒子に
吸着された水が取り除かれ、更に加熱を継続すると、コ
ロイド溶液の付着面にシリカが強固に固着される。シリ
カは、地上に多量に存在する安定で、硬い無機化合物で
あり、不燃性で、しかも、シリカ微粒子が固着されるこ
とにより硬度も増す。
Next, the silica fine particles will be described. The colloidal silica solution is a colloidal solution in which fine spherical silica is dispersed in water, and OH groups are present on the surface of silica particles.
It is negatively charged by the OH group. The colloidal liquid has low viscosity and Newtonian viscosity, and the specific gravity increases as the amount of silica fine particles increases and the concentration increases. For example, the specific gravity of silica fine particles at a weight percentage of 30% is about 1.2. Then, the viscosity at this time is 3 cp (at 25
℃) or less. Further, when dried and heated, the water adsorbed on the silica fine particles is removed, and when the heating is further continued, the silica is firmly fixed to the surface of the colloidal solution. Silica is a stable, hard inorganic compound that exists in large amounts on the ground, is nonflammable, and increases in hardness due to the adhesion of silica fine particles.

【0012】次に、ホウ素化合物について述べる。ホウ
素化合物は、例えば、ホウ酸(硼酸)で、ホウ酸は、三
酸化二ホウ素(B23)が水化して生ずる酸素酸(オキ
シ酸)であり、オルトホウ酸(H3BO3)、メタホウ酸
(HBO3)、四ホウ酸(H247)などが含まれ、通
常、オルトホウ酸(H3BO3)を単にホウ酸と呼んでい
る。これらのホウ酸は木材の防虫性、防蟻性、防腐性、
防カビ性等の特性を有する。次に、これらの特性の具体
例を下記表1〜4で説明する。
Next, the boron compound will be described. The boron compound is, for example, boric acid (boric acid), and the boric acid is an oxygen acid (oxy acid) generated by hydration of diboron trioxide (B 2 O 3 ), orthoboric acid (H 3 BO 3 ), Metaboric acid (HBO 3 ), tetraboric acid (H 2 B 4 O 7 ) and the like are included, and orthoboric acid (H 3 BO 3 ) is simply called boric acid. These boric acids are used for the insect repellent, ant repellent and antiseptic properties of wood.
It has properties such as mold resistance. Next, specific examples of these characteristics will be described in Tables 1 to 4 below.

【0013】[0013]

【表1】 [Table 1]

【0014】表1は、ホウ素化合物による木材の防虫性
の試験結果の一例を説明するためのもので、このときの
ホウ素化合物はホウ酸系化合物であり、使用害虫は、ヒ
ラタキクイムシで、防虫効力試験は、木材の防虫効力試
験(日本木材保存協会規格8号、1979.)に基づ
き、ヒラタキクイムシは、同規格9号、1979.によ
り人工飼育されたもので、単位面積当りに濃度の異なる
ホウ酸を塗布して、幼虫の食穿孔、羽化脱出数および成
虫の発生数を試験した。表1の結果によれば、無処理の
ものに対してホウ酸換算濃度約7%以上で、幼虫の食穿
孔数、羽化脱出数および成虫発生数が激減し、上記規格
の(1)幼虫試験、(2)成虫試験を満足している。
Table 1 is for explaining an example of the insect repellent test results of wood using a boron compound, in which the boron compound is a boric acid compound, and the insect pest used is a flat beetle, the insect repellent effect. The test is based on the insect repellent efficacy test of wood (Japanese Wood Preservation Association Standard No. 8, 1979.), and the flat beetle, No. 9, 1979. Were artificially reared, and boric acid having different concentrations per unit area was applied to test the larvae for food perforation, emergence and emergence. According to the results in Table 1, the concentration of boric acid equivalent to the untreated one was about 7% or more, and the number of larvae for food perforation, emergence and emergence, and the number of adults were drastically reduced. (2) Satisfies the adult test.

【0015】[0015]

【表2】 [Table 2]

【0016】表2は、ホウ素化合物による木材の防蟻性
の試験結果の一例を説明するためのもので、ホウ素化合
物はホウ酸系化合物であり、使用シロアリはイエシロア
リ、ホウ酸系化合物はオルトホウ酸(H3BO3)で、土
壌中にホウ酸換算濃度7%,10%,20%を処理した
3種の処理土壌中で試験した試験の一つで、7%濃度で
も処理土壌中を穿孔貫通するが、貫通後の動作は鈍くな
り、食害能力を失い徐々に死亡することが確認された。
Table 2 is for explaining an example of the test result of the termite-proof property of the wood by the boron compound. The boron compound is a boric acid compound, the termites used are the termites, and the boric acid compound is the orthoboric acid. (H 3 BO 3 ) is one of the tests tested in three types of treated soils in which the boric acid equivalent concentrations of 7%, 10%, and 20% were treated in the soil. Although it penetrated, it was confirmed that the movement after the penetration became slow, the feeding ability was lost, and death gradually occurred.

【0017】[0017]

【表3】 [Table 3]

【0018】表3は、ホウ素化合物による木材の防腐性
試験結果の一例を説明するためのもので、ホウ素化合物
はオルトホウ酸H3BO3(単にホウ酸と記す)であり、
JAS−A9302〔木材防腐剤の防腐効力の試験方
法〕に準じて行われたもので、無処理の場合に比べてホ
ウ酸の濃度が1%であっても重量減少率が(1/4)以
下となり木材防腐効果が得られることが確認された。
Table 3 is for explaining one example of the results of the wood antiseptic test using a boron compound. The boron compound is orthoboric acid H 3 BO 3 (simply referred to as boric acid).
It was performed according to JAS-A9302 [Test method of preservative efficacy of wood preservatives], and the weight reduction rate is (1/4) even when the concentration of boric acid is 1% compared to the case of no treatment. It was confirmed below that the wood preservative effect could be obtained.

【0019】[0019]

【表4】 [Table 4]

【0020】表4は、ホウ素化合物による土壌殺菌性の
試験結果の一例を説明するためのもので、ホウ素化合物
はホウ酸であり、使用菌種は、ナミダタケFFPR10
703、ナミダタケHFP7802の2種で、各々のナ
ミダタケ菌を培養した菌培養土壌の上に、所定割合の鹿
沼土、エゾマツ木粉、市水の混合物100gにホウ酸を
加え、2ケ月間培養した結果で、無処理の場合に比べて
ホウ酸濃度1%でナミダタケ菌の生長を完全に抑えるこ
とが確認された。
Table 4 is for explaining an example of the soil bactericidal test results by the boron compound, the boron compound is boric acid, and the bacterial species used is Namitake FFPR10.
As a result of adding boric acid to 100 g of a mixture of Kanuma soil, spruce pine wood flour, and city water at a predetermined ratio, and culturing for 2 months, on the bacterial culture soil in which each of the Namidatake HFP7802 was cultivated with 703 and Namidatake HFP7802. Thus, it was confirmed that boric acid concentration of 1% completely suppressed the growth of Namitake mushrooms as compared with the case of no treatment.

【0021】[0021]

【表5】 [Table 5]

【0022】表5は、ホウ素化合物による防カビ性試験
の一例を説明するための図であり、ホウ素化合物はオル
トホウ酸H3BO3(B(OH)3:単にホウ酸と記す)
で、該ホウ酸の含有量はサンプル重量に対する重量百分
率であらわし、被試験菌は、培養液(ml(ミリリット
ル))に対する被試験菌の個数であらわしている。表5
による防カビ性試験結果によると、ホウ酸を加えない場
合、菌は増強するが、ホウ酸含有量が約10%では死滅
した。
Table 5 is a diagram for explaining an example of the fungicide-proof test with a boron compound, and the boron compound is orthoboric acid H 3 BO 3 (B (OH) 3 : simply referred to as boric acid).
The boric acid content is expressed as a weight percentage with respect to the sample weight, and the test bacteria are expressed as the number of test bacteria in the culture solution (ml (milliliter)). Table 5
According to the result of the fungicidal test according to No. 3, the fungus was enhanced when boric acid was not added, but it was killed when the boric acid content was about 10%.

【0023】上述した不燃性のシリカ微粒子および防
虫、防蟻、防腐、防カビ性を有するホウ素化合物を、木
材組織内の多数の導管、仮導管等の空洞内に固着させる
ことにより、建築材としての特長を生かし、且つ、無処
理木材が防虫、防蟻、防腐、防カビ性に劣り、燃え易い
という課題を解決することができる。本発明において
は、シリカ微粒子をコロイド溶液として微粒子間に斥力
を発生させて結合を防いで含浸させ、含浸後乾燥して木
材組織内にシリカ微粒子を定着することを可能とした。
By fixing the above-mentioned non-combustible silica fine particles and the boron compound having insect, ant, antiseptic and antifungal properties in a large number of conduits, temporary conduits and the like in the wood tissue, a building material is obtained. It is possible to solve the problem that untreated wood is inferior in insect control, ant control, antiseptic and antifungal properties and is easily burned. In the present invention, silica fine particles are used as a colloidal solution to generate a repulsive force between the fine particles to prevent the particles from binding to each other and impregnate the particles.

【0024】シリカ微粒子のコロイド溶液に、更に、ホ
ウ素化合物を混合してシリカ微粒子とホウ素化合物とか
らなるコロイド溶液とする。減圧気中もしくは加圧気中
で木材組織内に前記コロイド溶液を含浸させ(なお、本
明細書においては、減圧によって含浸させる例を示す
が、加圧によって含浸させてもよいことは容易に理解で
きよう)、含浸した木材を乾燥することにより、木材構
成成分に、シリカ、ホウ素化合物とが化学的に結合、又
は物理的に吸着され、更には、シリカ微粒子同志が結合
してゲル化することにより、ホウ素化合物が物理的に封
じ込められたシリカ含浸木材が得られる(請求項1に対
応)。
The colloidal solution of silica fine particles is further mixed with a boron compound to obtain a colloidal solution containing silica fine particles and a boron compound. The above-mentioned colloidal solution is impregnated into the wood tissue in a reduced pressure air or a pressurized air (in this specification, an example of impregnation by a reduced pressure is shown, but it can be easily understood that it may be impregnated by a pressure). ), By drying the impregnated wood, silica and boron compounds are chemically bound or physically adsorbed to the wood constituents, and further, silica fine particles are bound to each other to form a gel. A silica-impregnated wood in which a boron compound is physically contained is obtained (corresponding to claim 1).

【0025】このようにして得られたシリカ含浸木材
は、木材組織内に安定してホウ素化合物およびシリカを
含むので、従来の木材の特長を保持して、且つ、防虫、
防蟻、防腐、防カビ性を有し、難燃で、高硬度の建築木
材とすることができる。特に、土台や水まわりの木材と
して優れた特性が得られる。
Since the silica-impregnated wood thus obtained contains the boron compound and silica in the wood structure stably, it retains the features of conventional wood and is repellant-proof.
It has anti-termite, antiseptic and antifungal properties, is flame-retardant, and can be made into high-hardness construction wood. In particular, excellent properties can be obtained as a wood for the base or around water.

【0026】図2は、本発明によるシリカ含浸木材を作
るための装置一例を説明するための図であり、図中、1
0は含浸装置、11は含浸室、12は木材、13は介
物、14はひも、15は容器、16は含浸溶液(シリカ
微粒子のコロイド溶液にホウ素化合物を混合したコロイ
ド溶液)、17は液管、18は気管、19,20はコッ
クである。
FIG. 2 is a view for explaining an example of an apparatus for producing silica-impregnated wood according to the present invention, in which 1
0 is an impregnation device, 11 is an impregnation chamber, 12 is wood, 13 is an intermediate, 14 is a string, 15 is a container, 16 is an impregnation solution (a colloidal solution of a silica fine particle mixed with a boron compound), and 17 is a liquid. A tube, 18 is a trachea, and 19 and 20 are cocks.

【0027】含浸装置10は、扉11aで密閉される含
浸室11内に連通して含浸室11内を減圧する減圧手段
と、大気圧により加圧された含浸溶液16を減圧された
含浸室11内に導びく液管17と容器15とからなる輸
液手段とからなっている。液管17には二方切換のコッ
ク19が取り付けられ、コック19を開くことにより含
浸溶液16が含浸室11内に導入される。また、液管1
7には、三方切換のコック20が取り付けられ、コック
20には含浸室11内を減圧するための気管18が接続
され、さらに、気管18と真空ポンプ(図示せず)が接
続され、三方切換コック20を切換えて、含浸室11内
を真空にし、又は含浸室11内に含浸溶液16を注入す
ることができるようになっている。
The impregnation apparatus 10 includes a decompression means which communicates with the impregnation chamber 11 closed by a door 11a to decompress the inside of the impregnation chamber 11, and an impregnation chamber 11 in which the impregnation solution 16 pressurized by atmospheric pressure is decompressed. It is composed of a liquid pipe 17 leading into the interior and an infusion means composed of a container 15. A two-way switching cock 19 is attached to the liquid pipe 17, and the impregnation solution 16 is introduced into the impregnation chamber 11 by opening the cock 19. Also, the liquid pipe 1
A cock 20 for three-way switching is attached to 7, a trachea 18 for depressurizing the inside of the impregnation chamber 11 is connected to the cock 20, and a trachea 18 and a vacuum pump (not shown) are further connected to the cock 20. By changing the cock 20, the inside of the impregnation chamber 11 can be evacuated or the impregnation solution 16 can be injected into the impregnation chamber 11.

【0028】このときの含浸溶液16のシリカ微粒子の
平均粒径は、コロイド溶液を形成でき、かつシリカ微粒
子が木材12の木材組織の導管、仮導管等の内径8〜6
0μmの空洞内に入る大きさが必要であるから、シリカ
微粒子の平均直径は、前記内径より充分小さい2〜40
0nm(ナノメータ)であることが必要である(請求項
2に対応)。
At this time, the average particle diameter of the silica fine particles of the impregnation solution 16 is such that a colloidal solution can be formed and the silica fine particles have an inner diameter of 8 to 6 such as a conduit of a wood tissue of the wood 12 or a temporary conduit.
The average diameter of the silica fine particles is 2 to 40, which is sufficiently smaller than the inner diameter, because the size of the silica fine particles is required to be within the cavity of 0 μm.
It must be 0 nm (nanometer) (corresponding to claim 2).

【0029】また、シリカ微粒子のコロイド溶液に混合
されるホウ素化合物は、三酸化ニホウ素(B23:単に
酸化ホウ素と記す)が水化して生ずるオルトホウ酸(H
3BO3:B(OH)3)、メタホウ酸(HBO2)、四ホウ
酸(H247)の他に、ホウ酸塩(Na247)等の
ホウ酸ナトリウム、あるいは金属ホウ素(例えば、ホウ
酸亜鉛、ホウ酸銅、ホウ酸マンガン(II)等)で(請求
項3に対応)あっても、ホウ素化合物としての防腐、防
虫、防蟻、防カビ効果がある。
Further, the boron compound is mixed in a colloidal solution of silica fine particles trioxide bimodal element (B 2 O 3: simply referred to as boron oxide) is produced by hydration orthoboric acid (H
3 BO 3: B (OH) 3), in addition to, sodium borate, such as borate (Na 2 B 4 O 7) of metaboric acid (HBO 2), tetraborate (H 2 B 4 O 7) , Alternatively, even if metal boron (for example, zinc borate, copper borate, manganese (II) borate, etc.) (corresponding to claim 3) is used, it has antiseptic, insecticidal, ant, and antifungal effects as a boron compound. .

【0030】更に、また、シリカ微粒子のコロイド溶液
にホウ素化合物を混合したコロイド溶液を木材内に含浸
させて乾燥し、コロイド溶液中の水分を除去したとき、
シリカ微粒子とホウ素化合物が付着・結合している(請
求項4に対応)。
Further, when the wood is impregnated with a colloidal solution in which a boron compound is mixed with a colloidal solution of silica fine particles and dried to remove water in the colloidal solution,
The silica fine particles and the boron compound are attached and bonded (corresponding to claim 4).

【0031】なお、上述のホウ酸は、オルトホウ酸(H
3BO3)であるが、ホウ素化合物としては、酸化ホウ素
(B23)あるいはホウ酸ナトリウム(Na2
47)、その他のホウ酸化合物としてのメタホウ酸(H
BO2)、四ホウ酸(H247)の何れか、或いは、上
記ホウ素化合物を2つ以上組み合せたものでも同様の効
果が得られる(請求項5に対応)。
The above-mentioned boric acid is orthoboric acid (H
3 BO 3 ), but as the boron compound, boron oxide (B 2 O 3 ) or sodium borate (Na 2 B
4 O 7 ), metaboric acid (H
The same effect can be obtained by using either BO 2 ) or tetraboric acid (H 2 B 4 O 7 ), or a combination of two or more of the above boron compounds (corresponding to claim 5).

【0032】図2において、上述の物質からなる含浸溶
液16を、含浸装置10により木材12に含浸させる順
序としては、 (1)例えば、長さ4〜5mの四角柱状木材12の、木
材12a,12b,…,12dが互いに面接合すること
がないように介物13により分離しておき、ひも14で
束ねて含浸室11内に、挿入する。挿入後、扉11aを
閉じる。 (2)液管17が容器15側に通じないように、コック
19を閉じ、次に、コック20(三方切換コック)を操
作して、気管18に接合された真空ポンプ(図示せず)
と含浸室11とを連通する。 (3)含浸室11内の気体を抜き、内部を十分に減圧す
る。 (4)コック20を操作して気管18側を閉じ、次に、
コック19を開け、減圧された含浸室11に液管17か
ら含浸溶液16を導入して、木材12を含浸溶液16に
浸したまま一晩以上放置し、含浸溶液16を木材12組
織内に十分浸透させる。 (5)木材12を含浸室11内から取り出し、60℃以
下の温度で乾燥させる(請求項6に対応)。60℃以下の
温度では、シリカ微粒子を含浸した木材12を変形させ
ることなく乾燥させることができる。
In FIG. 2, the order of impregnating the wood 12 with the impregnation solution 16 made of the above substances is as follows: (1) For example, the wood 12a, which is a square pillar-shaped wood 12 having a length of 4 to 5 m, , 12d are separated by an interposer 13 so as not to be surface-bonded to each other, and are bundled by a string 14 and inserted into the impregnation chamber 11. After the insertion, the door 11a is closed. (2) The cock 19 is closed so that the liquid pipe 17 does not communicate with the container 15 side, and then the cock 20 (three-way switching cock) is operated to join the trachea 18 with a vacuum pump (not shown).
And the impregnation chamber 11 are communicated with each other. (3) The gas in the impregnation chamber 11 is evacuated, and the inside pressure is sufficiently reduced. (4) Operate the cock 20 to close the trachea 18 side, then
The cock 19 is opened, the impregnation solution 16 is introduced from the liquid pipe 17 into the pressure-reduced impregnation chamber 11, and the wood 12 is left immersed in the impregnation solution 16 for one night or longer, so that the impregnation solution 16 is sufficiently contained in the wood 12 tissue. Infiltrate. (5) The wood 12 is taken out from the impregnation chamber 11 and dried at a temperature of 60 ° C. or lower (corresponding to claim 6). At a temperature of 60 ° C. or lower, the wood 12 impregnated with silica fine particles can be dried without being deformed.

【0033】具体例 1.材料及び製法 (1)木材:ヒノキ、スギ、マツ材(縦10mm×横8
0mm×厚5mm) (2)コロイダルシリカ溶液:Cataloid SI-30(触媒
化成工業(株)製:(SiO2Wt%:30%、粒子径:1
1〜12nm:粘度3cp、比重:1.2) (3)ホウ素化合物:ホウ酸、金属ホウ素(ホウ酸亜
鉛、ホウ酸銅、ホウ酸マンガン(II)等) 2.製法 (1)ヒノキ(スギ、マツ)材を圧力約12mmHgの
減圧下で約30分間乾燥させる。 (2)Cataloid SI-30のコロイド溶液40mlに
対し、ホウ酸水溶液1ml(ミリリッタ)の割合(4
0:1)で混合したコロイド溶液を20ml用意し、そ
のうちの150mlを減圧下のヒノキ(スギ、マツ)材
に手早く滴下し、ヒノキ(スギ、マツ)材の全面が溶液と
接触して濡れるようによく振り混ぜ10〜15分間静置
する。 (3)15分経過後、更に、残りの50mlを一気に滴
下し、ヒノキ(スギ、マツ)材を常圧状態に戻す。 (4)木材を溶液に浸したまま12時間以上放置する。 (5)溶液から木材を取り出し温度60℃で48時間乾
燥させる。
Concrete Example 1. Material and manufacturing method (1) Wood: Japanese cypress, Japanese cedar, pine (10 mm long x 8 horizontal)
(0 mm x thickness 5 mm) (2) Colloidal silica solution: Cataloid SI-30 (manufactured by Catalysts & Chemicals Industry Co., Ltd .: (SiO 2 Wt%: 30%, particle size: 1
1-12 nm: viscosity 3 cp, specific gravity: 1.2) (3) Boron compound: boric acid, metallic boron (zinc borate, copper borate, manganese borate (II), etc.) 1. Manufacturing method (1) A cypress (cedar, pine) material is dried under a reduced pressure of about 12 mmHg for about 30 minutes. (2) Ratio of 1 ml of boric acid aqueous solution (milliliter) to 40 ml of colloidal solution of Cataloid SI-30 (4
Prepare 20 ml of the colloidal solution mixed with 0: 1), and quickly drop 150 ml of it into the cypress (Japanese cedar, pine) material under reduced pressure so that the entire surface of the cypress (Japanese cedar, pine) material may come into contact with the solution and get wet. Shake well and let stand for 10 to 15 minutes. (3) After 15 minutes have passed, the remaining 50 ml is dripped all at once to return the cypress (cedar, pine) material to the normal pressure state. (4) Leave the wood soaked in the solution for 12 hours or more. (5) The wood is taken out of the solution and dried at a temperature of 60 ° C. for 48 hours.

【0034】〔シリカ含浸木材内のシリカ及びホウ素化
合物含浸量〕表6は、上記2の製法によりヒノキ(ス
ギ、マツ)に含浸させたシリカ及びホウ素化合物の含浸
量を示すもので、含浸量は、木材組織により変化し、ス
ギ、ヒノキ、マツの順に小さくなるが、シリカに対する
ホウ素化合物の比は略一定で約20:1である。
[Impregnated amount of silica and boron compound in silica-impregnated wood] Table 6 shows the impregnated amount of silica and boron compound impregnated in cypress (cedar, pine) by the above-mentioned production method 2. The ratio of the boron compound to the silica is approximately constant and is about 20: 1, though it changes depending on the wood structure and becomes smaller in the order of cedar, cypress, and pine.

【0035】[0035]

【表6】 [Table 6]

【0036】〔シリカ含浸木材の試験結果〕 1.表面硬度試験 (1)試験機:ロックウエル硬さ試験機(鋼球径=6.3
50mm、スケールL) (2)試験方法:基本荷重10kgf→試験荷重60kgf→
基本荷重10kgf (3)硬さ試験結果:図3に示すように溶液を含浸しな
いヒノキ材の表面硬さが2.3(ロックウェル試験機、L
スケールの硬さ:HRL)であるのに対し、シリカ含浸
木材の表面硬さが平均44.3(HRL)で、約20倍の
硬さとなる。スギ材、マツ材でも、各々HRL:56お
よび40で非処理の場合に比べ20倍の硬さとなる。 2.難燃性試験 (1)加熱器:ガスバーナ (2)加熱方法:ガスバーナを一定の比較的弱い炎とな
るように調節し、この炎の中で試験材(スギ、マツの角
材)の角の部分を10秒間あぶる。10秒後試験材を炎
からはずし空気中に静置し炎が消えるまでの時間をスト
ップウォッチで測定する。 (3)難燃性試験結果:表7は難燃性評価試験結果をあ
らわすもので、未処理の木材は炎が大きく、未処理のス
ギ材は15秒で消炎したが、未処理のマツ材は炎が持続
したままである。これに対し、シリカ含浸材は未処理材
に比べて炎が丸く小さく、スギ材は直ちに消炎し、マツ
材は3秒間で消炎した。炎の色は、未処理材料に比べて
鮮やかな橙色を呈し、こげ部分は未処理木材は、木の皮
がむけるように表面と平行に雲母状に剥がれたが、シリ
カ含浸木材はサラサラした粉未状となった。
[Test Results of Silica Impregnated Wood] 1. Surface hardness test (1) Testing machine: Rockwell hardness tester (steel ball diameter = 6.3)
50mm, scale L) (2) Test method: Basic load 10kgf → Test load 60kgf →
Basic load 10kgf (3) Hardness test result: As shown in Fig. 3, the surface hardness of the hinoki material not impregnated with the solution is 2.3 (Rockwell tester, L
The hardness of the scale is HRL), whereas the surface hardness of the silica-impregnated wood is 44.3 (HRL) on average, which is about 20 times the hardness. The hardness of cedar wood and pine wood is HRL: 56 and 40, respectively, and the hardness is 20 times that of the untreated case. 2. Flame-retardant test (1) Heater: Gas burner (2) Heating method: Adjust the gas burner so that it has a constant and relatively weak flame, and in this flame, the corners of the test material (cedar, pine timber) For 10 seconds. After 10 seconds, the test material is removed from the flame, allowed to stand in the air, and the time until the flame disappears is measured with a stopwatch. (3) Results of flame retardancy test: Table 7 shows the results of flame retardancy evaluation test. Untreated wood had a large flame, untreated cedar wood extinguished in 15 seconds, but untreated pine wood. Keeps the flame going on. In contrast, the silica-impregnated material had a rounder and smaller flame than the untreated material, the cedar wood immediately extinguished, and the pine wood extinguished in 3 seconds. The color of the flame was a brighter orange color than the untreated material, and the untreated wood in the burnt part peeled off in a mica-like shape parallel to the surface so that the bark of the tree could be peeled, but the silica-impregnated wood was a smooth powder. I was in a state of distress.

【0037】[0037]

【表7】 [Table 7]

【0038】3.残留シリカ率の変化試験 (1)シリカ含浸木材:シリカ含浸木材の製法は、上記
減圧含浸法によるものであるが、ホウ素化合物に対する
シリカ含有率を(1:40),(1:60),(1:8
0)の3種類にして、含浸した木材を20日間室温で乾
燥(風乾)したものである。例えば、シリカ含有率
(1:40)は、Cataloid SI−30のコロイド溶液
原液40mlに対して40%ホウ酸水溶液(B(OH)3)
1mlの割合で混合したコロイド溶液である。 (2)試験方法 風乾した上記シリカ含浸木材をイオン交換水4l(リッ
タ)中に沈めて8時間撹拌する耐候操作と、耐候操作後
のシリカ含浸木材を60℃で、16時間乾燥する加温乾
燥とを1溶脱サイクルとして、前記耐候操作と加温乾燥
とを10回繰返した試験結果を求めたものである。 (3)試験結果 図4は、木材内の残留シリカ率の変化試験結果の一例を
示す図であり、横軸に溶脱回数(回)、縦軸にシリカ残
留率(%)を示し、ホウ素化合物に対するシリカ含有率
をパラメータにしてある。図4によると、シリカ含有率
(40:1),(60:1),(80:1)のシリカ含浸木
材を、イオン交換水中で行った10回の溶脱回数に対
し、溶脱回数が増加しても、木材中のシリカ微粒子は、
木材から殆んど溶脱しないことを示し、シリカ微粒子は
安定して木材組織に固定していることが証明された。
3. Change test of residual silica rate (1) Silica-impregnated wood: The method for producing silica-impregnated wood is based on the above-mentioned reduced pressure impregnation method, but the silica content relative to the boron compound is (1:40), (1:60), ( 1: 8
The wood impregnated into three types (0) is dried (air dried) at room temperature for 20 days. For example, the silica content ratio (1:40) is 40% boric acid aqueous solution (B (OH) 3 ) based on 40 ml of the stock solution of the colloidal solution of Cataloid SI-30.
This is a colloidal solution mixed at a ratio of 1 ml. (2) Test method Weather-resistant operation of submerging the air-dried silica-impregnated wood in 4 l (liter) of ion-exchanged water and stirring for 8 hours, and heating-drying of drying the silica-impregnated wood after weathering operation at 60 ° C. for 16 hours. The test results were obtained by repeating the weathering operation and heating and drying 10 times, with 1 and 1 as the leaching cycle. (3) Test Result FIG. 4 is a diagram showing an example of a change test result of the residual silica rate in wood, wherein the horizontal axis shows the number of times of leaching (times) and the vertical axis shows the residual silica rate (%). The silica content with respect to is used as a parameter. According to FIG. 4, silica content
(40: 1), (60: 1), (80: 1) silica-impregnated wood in the ion-exchanged water, compared to 10 times leaching times, even if the leaching number increases, silica fine particles in the wood Is
It was shown that almost no leaching occurred from the wood, and it was proved that the silica fine particles were stably fixed to the wood structure.

【0039】[0039]

【発明の効果】以上の説明から明らかなように、本発明
によると、以下の効果がある。 (1)請求項1に対応する効果:減圧雰囲気中に木材を
置き減圧した木材組織の空洞内に無機材で不燃のシリカ
微粒子と防腐、防虫、防蟻、防カビの特性のあるホウ素
化合物を混合して化学的結合、物理的吸着あるいは物理
的に封じ込め固着したので、各々が安定した化学的特性
をもち強度があり、有機化合物が含まれず安全で防腐
性、防虫性、防蟻性、防カビ性を備えた土台用材、水ま
わり用材として優れた効果がある。 (2)請求項2に対応する効果:シリカ微粒子の平均直
径を2〜400nmとしたので、平均内径8〜60μm
の木材組織空洞と比べて充分小さくシリカ微粒子は空洞
内に均一に安定して固着され、強度及び不燃性を保つこ
とができる。 (3)請求項3に対応する効果:ホウ素化合物をホウ
酸、ホウ酸ナトリウム、金属ホウ素としたので、防虫、
防腐、防蟻、防カビ性のシリカ含浸木材が得られる。 (4)請求項4に対応する効果:請求項1と同様の効果
が得られる。 (5)請求項5に対応する効果:請求項3の効果を有す
るホウ素化合物の範囲をより広くすることができる。 (6)請求項6に対応する効果:シリカ微粒子のコロイ
ド溶液にホウ素化合物を混合したコロイド溶液を含浸し
た木材を熱変形させることなく木材組織内に安定してシ
リカ微粒子およびホウ素化合物を固着させることができ
る。
As is apparent from the above description, the present invention has the following effects. (1) Effect corresponding to claim 1: In a cavity of a depressurized wood structure where wood is placed in a depressurized atmosphere, fine particles of non-combustible silica, which is an inorganic material, and a boron compound having antiseptic, insect, ant, and fungicidal properties are used. As they are mixed and chemically bonded, physically adsorbed or physically encapsulated and fixed, each has stable chemical properties and strength, is free of organic compounds and is safe, antiseptic, insect repellent, termite repellent, It has an excellent effect as a mold base material and a water supply material. (2) Effect corresponding to claim 2: Since the average diameter of the silica fine particles is set to 2 to 400 nm, the average inner diameter is 8 to 60 μm.
The silica fine particles are sufficiently smaller than the wood structure cavities of (1) and are uniformly and stably fixed in the cavities, and strength and noncombustibility can be maintained. (3) Effect corresponding to claim 3: Since the boron compound is boric acid, sodium borate, or metallic boron, insect repellent,
A silica-impregnated wood which is antiseptic, ant-proof and mildew-proof is obtained. (4) Effect corresponding to claim 4: The same effect as claim 1 can be obtained. (5) Effect corresponding to claim 5: The range of the boron compound having the effect of claim 3 can be broadened. (6) Effect corresponding to claim 6: Stable fixation of silica fine particles and a boron compound in a wood tissue without thermally deforming wood impregnated with a colloidal solution of a silica fine particle mixed with a boron compound. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】 アカマツ材の細胞構成の一例を説明するため
の模式図である。
FIG. 1 is a schematic diagram for explaining an example of cell constitution of Japanese red pine wood.

【図2】 本発明によるシリカ含浸木材を作るための装
置一例を説明するための図である。
FIG. 2 is a view for explaining an example of an apparatus for producing silica-impregnated wood according to the present invention.

【図3】 本発明によるシリカ含浸木材および未処理木
材のロックウェル硬度計のLスケールによる硬度比較図
である。
FIG. 3 is a L-scale hardness comparison diagram of a Rockwell hardness meter for silica-impregnated wood and untreated wood according to the present invention.

【図4】 本発明によるシリカ含浸木材の残留シリカ変
化率を説明するための図である。
FIG. 4 is a diagram for explaining the residual silica change rate of silica-impregnated wood according to the present invention.

【符号の説明】[Explanation of symbols]

X…横断面、T…接線断面、R…放射断面、1…早材仮
造管、2…晩材仮造管、3…年輪境界、4…軸方向樹脂
造、5…軸方向柔細胞、6…軸方向樹脂造、7…放射柔
細胞、8…放射仮造管、10…含浸装置、11…含浸
室、12…木材、13…介物、14…ひも、15…容
器、16…含浸溶液(シリカ微粒子のコロイド溶液にホ
ウ素化合物を混合したコロイド溶液)、17…液管、1
8…気管、19,20…コック。
X ... transverse section, T ... tangential section, R ... radial section, 1 ... early material temporary tube, 2 ... late material temporary tube, 3 ... annual ring boundary, 4 ... axial resin, 5 ... axial soft cell, 6 ... Axial resin construction, 7 ... Radial flexible cell, 8 ... Radiation temporary tube, 10 ... Impregnation device, 11 ... Impregnation chamber, 12 ... Wood, 13 ... Inclusion, 14 ... String, 15 ... Container, 16 ... Impregnation Solution (colloidal solution of boron compound mixed with colloidal solution of silica fine particles), 17 ... Liquid tube, 1
8 ... trachea, 19,20 ... cock.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 二酸化珪素微粒子のコロイド溶液にホウ
素化合物を混合したコロイド溶液を減圧気中或いは加圧
気中で木材内部に含浸後、該木材を乾燥して得られた複
合部材で、木材構成成分に、二酸化珪素微粒子と、ホウ
素化合物とが付着・結合していることを特徴とするシリ
カ含浸木材。
1. A composite member obtained by impregnating the interior of wood with a colloidal solution of a boron compound mixed with a colloidal solution of fine particles of silicon dioxide in reduced pressure or pressurized air, and drying the wood. In addition, silica-impregnated wood, characterized in that fine particles of silicon dioxide and a boron compound are attached and bonded.
【請求項2】 前記二酸化珪素微粒子の平均直径が2〜
400nmであることを特徴とする請求項1に記載のシ
リカ含浸木材。
2. The average diameter of the silicon dioxide fine particles is 2 to
The silica-impregnated wood according to claim 1, which is 400 nm.
【請求項3】 前記ホウ素化合物がホウ酸、および/又
は、ホウ酸ナトリウム、および/又は金属ホウ素である
ことを特徴とする請求項1に記載のシリカ含浸木材。
3. Silica-impregnated wood according to claim 1, characterized in that the boron compound is boric acid and / or sodium borate and / or metallic boron.
【請求項4】 前記二酸化珪素微粒子にホウ素化合物が
付着・結合していることを特徴とする請求項1に記載の
シリカ含浸木材。
4. The silica-impregnated wood according to claim 1, wherein a boron compound is attached and bonded to the silicon dioxide fine particles.
【請求項5】 前記二酸化珪素微粒子が含浸された木材
の乾燥温度が60℃以下であることを特徴とする請求項
1乃至4項の何れかに記載のシリカ含浸木材の製造方
法。
5. The method for producing silica-impregnated wood according to claim 1, wherein the wood impregnated with the silicon dioxide fine particles has a drying temperature of 60 ° C. or lower.
JP1536995A 1995-02-01 1995-02-01 Silica-impregnated wood and manufacture thereof Pending JPH08207016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1536995A JPH08207016A (en) 1995-02-01 1995-02-01 Silica-impregnated wood and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1536995A JPH08207016A (en) 1995-02-01 1995-02-01 Silica-impregnated wood and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08207016A true JPH08207016A (en) 1996-08-13

Family

ID=11886880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1536995A Pending JPH08207016A (en) 1995-02-01 1995-02-01 Silica-impregnated wood and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08207016A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002086413A (en) * 2000-09-12 2002-03-26 National Institute Of Advanced Industrial & Technology Wood material of which moisture absorptive capacity is improved and its manufacturing method
JP2011152773A (en) * 2010-01-28 2011-08-11 Michio Kashima Method of manufacturing modified wood
RU2561213C1 (en) * 2014-06-17 2015-08-27 Александр Николаевич Крутин Method of impregnation of porous materials and device for its implementation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002086413A (en) * 2000-09-12 2002-03-26 National Institute Of Advanced Industrial & Technology Wood material of which moisture absorptive capacity is improved and its manufacturing method
JP2011152773A (en) * 2010-01-28 2011-08-11 Michio Kashima Method of manufacturing modified wood
RU2561213C1 (en) * 2014-06-17 2015-08-27 Александр Николаевич Крутин Method of impregnation of porous materials and device for its implementation

Similar Documents

Publication Publication Date Title
Ostrofsky et al. Changes in cation concentrations in red spruce wood decayed by brown rot and white rot fungi
Yamaguchi Silicic acid: boric acid complexes as wood preservatives: ability of treated wood to resist termites and combustion
CN105881683A (en) Mildew preventive for environment-friendly wood composite material and preparing method of mildew preventive
CN102046526A (en) Ferric phosphate based composition, the preparation and use thereof
Uyup et al. Resistance improvement of rubberwood treated with zinc oxide nanoparticles and phenolic resin against white-rot fungi, Pycnoporus sanguineus
JPH08207016A (en) Silica-impregnated wood and manufacture thereof
Petersen et al. Understanding the deterioration of paintings by microorganisms and insects
Weng et al. Synergistic effect of luffa seed oil and microwave treatment on the physicochemical properties of bamboo slices
CN114981052A (en) Green process for modifying wood
Papadopoulos Natural durability and performance of hornbeam cement bonded particleboard
CN103358371A (en) Method for generating mesoporous molecular sieves through self-assembling in wood
AU2005272988A1 (en) Wood preservative composition
JPH10272610A (en) Wood having capability for sterilizing wood-rotting fungus and manufacture thereof
KR102502103B1 (en) Inorganic paint for final finishing material with natural texture
Rabbi et al. Wood preservation: Improvement of mechanical properties by vacuum pressure process
CN110303563A (en) A kind of Recombined bamboo and its manufacturing method with antibacterial and mouldproof performance
Palanti et al. A wood preservative based on commercial silica nanodispersions and boric acid against fungal decay through laboratory and field tests
Tajrishi et al. Biodegradation and microscale treatability pattern of loblolly pine heartwood bioincised by Bacillus subtilis and Physisporinus vitreus
Morrell et al. The effect of pH on decomposition of Mylone®(dazomet) and Tridipam to fungitoxic methylisothiocyanate in wood
Vignali Wood treatments with siloxane materials and metal complexes for preservation purposes
Giroux et al. Comparison of perlite and peat: perlite rooting media for rooting softwood stem cuttings in a subirrigation system with minimal mist
Pokorny Available water and root development within the micropores of pine bark particles
Mohamad-Nasir et al. Durability of selected malaysian wood treated with disodium octaborate tetrahydrate used under hazard class 2 condition
Kobetičová et al. Influence of Selected Storage Temperatures on Wood Properties and its Biological Resistance After the Use of Methylxanthines.
CN110509375A (en) A kind of Scrimber and preparation method thereof with antibacterial and mouldproof performance