JPH0820598B2 - Compact zoom lens - Google Patents

Compact zoom lens

Info

Publication number
JPH0820598B2
JPH0820598B2 JP61127336A JP12733686A JPH0820598B2 JP H0820598 B2 JPH0820598 B2 JP H0820598B2 JP 61127336 A JP61127336 A JP 61127336A JP 12733686 A JP12733686 A JP 12733686A JP H0820598 B2 JPH0820598 B2 JP H0820598B2
Authority
JP
Japan
Prior art keywords
lens
group
refractive index
wide
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61127336A
Other languages
Japanese (ja)
Other versions
JPS62284319A (en
Inventor
勝啓 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP61127336A priority Critical patent/JPH0820598B2/en
Publication of JPS62284319A publication Critical patent/JPS62284319A/en
Publication of JPH0820598B2 publication Critical patent/JPH0820598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、正の屈折力を有する第1群と負の屈折力を
有する第2群よりなり両群の間隔を変えて変倍を行なう
コンパクトなズームレンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention comprises a first group having a positive refracting power and a second group having a negative refracting power, and performs zooming by changing the distance between both groups. The present invention relates to a compact zoom lens.

〔従来の技術〕[Conventional technology]

従来より負の屈折力の第1群と正の屈折力の第2群よ
り構成され両群の間隔を変えて変倍を行なうタイプのズ
ームレンズが主として一眼レフカメラ用として知られて
いる。このタイプのレンズ系は、負,正の群構成である
ので主点位置が像側に接近し、そのためにバツクフオー
カスが長くなる。
2. Description of the Related Art Conventionally, a zoom lens of a type which is composed of a first lens unit having a negative refractive power and a second lens unit having a positive refractive power and performs zooming by changing the distance between the two lens units has been known mainly for single-lens reflex cameras. Since this type of lens system has a negative and positive lens group configuration, the principal point position is closer to the image side, which results in a longer back focus.

このような構成のレンズ系は、はね上げミラーのスペ
ースを確保し易いので一眼レフ用としては有利である
が、全長が長くなるためにレンズシヤツターカメラのよ
うにレンズのコンパクト性が要求されるもののレンズ系
としては適していない。
The lens system having such a configuration is advantageous for a single-lens reflex camera because it is easy to secure a space for the flip-up mirror, but since the overall length is long, compactness of the lens is required like a lens shutter camera. Not suitable as a lens system.

レンズシヤツターカメラに組込める程度にコンパクト
にしたズームレンズの例として、特開昭57−201213号公
報に記載されたものがある。これは正の屈折力の第1群
と負の屈折力の第2群とから構成され、両群の間隔を変
化させて変倍を行なうもので、いわゆる望遠タイプを採
用することによつて全長を短くすることに成功してい
る。しかしながら、最終レンズの外径が大きいためにレ
ンズを駆動する機構を含めるとカメラボデイ全体が大型
化しやすく好ましくない。また広角端において最終レン
ズ面と像面との間隔、いわゆるバツクフオーカスが余り
に短いために最終レンズ面の汚れが像面に投影されるこ
とによる画質の劣化が無視できなくなる等の欠点を有す
る。レンズ系の明るさを犠牲にせずにこれらの欠点を克
服することは極めて難しい。
An example of a zoom lens that is compact enough to be incorporated in a lens shutter camera is disclosed in JP-A-57-201213. This is composed of a first lens group having a positive refractive power and a second lens group having a negative refractive power, and performs zooming by changing the distance between the two lens groups. Has been successful in shortening. However, since the outer diameter of the final lens is large, if a mechanism for driving the lens is included, the entire camera body becomes large in size, which is not preferable. Further, at the wide-angle end, the distance between the final lens surface and the image surface, that is, the so-called back focus is too short, so that the deterioration of the image quality due to the projection of the dirt on the final lens surface onto the image surface cannot be ignored. It is extremely difficult to overcome these drawbacks without sacrificing the brightness of the lens system.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明が解決しようとする問題点は、レンズ系を暗く
することなしにバツクフオーカスを必要量確保し、更に
全長を短くレンズの外径を小さくしたコンパクトで性能
が良好なレンズシヤツターカメラに最適なズームレンズ
を提供することにある。
The problem to be solved by the present invention is to secure a required amount of back focus without making the lens system dark, and further to make the lens shutter camera compact and good in performance with a short overall length and a small lens outer diameter. It is to provide a zoom lens.

〔問題点を解決する手段〕[Means for solving problems]

本発明は、正の屈折力を有する第1群と負の屈折力を
有する第2群とよりなり、両群の間隔を変えることによ
つて変倍を行なうズームレンズであつて、前記の問題点
を解決するために構成要素中に光軸方向に屈折率匂配を
有する屈折率分布型レンズを少なくとも1枚配置したも
のである。
The present invention relates to a zoom lens that includes a first group having a positive refractive power and a second group having a negative refractive power, and performs zooming by changing the distance between the two groups. In order to solve the problem, at least one gradient index lens having a gradient index in the optical axis direction is arranged in the constituent elements.

正の第1群と負の第2群よりなるタイプのズームレン
ズにおいてはバツクフオーカスを長くし更にレンズ系の
全長を短くしレンズの外径を小にするためには、第2群
の負の屈折力を強くする必要がある。しかし単に第2群
の屈折力を強くしたのみでは第2群で発生する収差量が
大きくなり良好な収差補正をなし得ない。この問題を種
々検討した結果、第2群を物体側から順に像側に凸面を
向けた正のメニスカスレンズと負レンズとにて構成すれ
ばレンズ系の小型化と良好な収差補正とを両立させる上
でより有利であることが分つた。
In the zoom lens of the type composed of the positive first group and the negative second group, in order to lengthen the back focus and further shorten the overall length of the lens system to reduce the outer diameter of the lens, the negative refraction of the second group You need to be stronger. However, simply increasing the refracting power of the second lens unit will increase the amount of aberration generated in the second lens unit, and cannot perform satisfactory aberration correction. As a result of various studies on this problem, if the second lens group is composed of a positive meniscus lens having a convex surface facing the image side in order from the object side and a negative lens, the lens system can be downsized and good aberration correction can be achieved at the same time. It has been found to be more advantageous above.

しかしながらこのような構成にしてもなお、十分良好
に収差補正を行なおうとすると、特に望遠端での明るさ
をF/6.0より明るくすることが困難であり、又広角端で
の歪曲収差および広角端と望遠端での非点収差が悪化し
てしまう。
However, even with such a configuration, it is difficult to make the brightness brighter than F / 6.0, especially at the telephoto end, if distortion is satisfactorily corrected, and distortion and wide-angle at the wide-angle end. Astigmatism at the end and at the telephoto end becomes worse.

本発明では、前述のようにレンズの構成要素として光
軸方向に屈折率匂配を有する屈折率分布型レンズ(以下
アキシアルGRINレンズと呼ぶ)を用いることによつて、
望遠端での明るさをF/6.0より明るく保ちながら、レン
ズ系の小型化と良好な収差補正とを達成し得たものであ
る。
In the present invention, as described above, by using a gradient index lens (hereinafter referred to as an axial GRIN lens) having a refractive index gradient in the optical axis direction as a component of the lens,
While keeping the brightness at the telephoto end brighter than F / 6.0, we were able to achieve downsizing of the lens system and good aberration correction.

本発明のレンズ系は、第I群を正の成分,負の成分,
正の成分の配分としたもので、そのために第1群として
物体側から順に少なくとも1枚以上の正レンズと,少な
くとも1枚以上の負レンズと,少なくとも1枚以上の正
レンズとより構成し、又第2群として物体側から順に像
側に凸面を向けた正のメニスカスレンズと負レンズとよ
り構成し、これら構成要素のうち少なくとも一つの構成
要素としてアキシアルGRINレンズを配したものである。
In the lens system of the present invention, the first group includes a positive component, a negative component,
A positive component is distributed, and for that purpose, at least one or more positive lenses, at least one or more negative lenses, and at least one or more positive lenses are arranged in order from the object side as the first group, The second lens group is composed of a positive meniscus lens having a convex surface directed toward the image side from the object side and a negative lens, and an axial GRIN lens is arranged as at least one of these constituent elements.

レンズ系の高性能化を得る手法として従来からレンズ
の屈折面を非球面にする方法が考えられている。しかし
非球面は研磨による加工の場合はコストが高くなり又プ
レスによる加工では大口径化が困難である等の問題を有
している。
As a method for improving the performance of a lens system, a method of making the refracting surface of the lens aspheric has been conventionally considered. However, the aspherical surface has a problem that the cost becomes high in the case of processing by polishing and it is difficult to increase the diameter in the case of processing by pressing.

一方屈折率分布型レンズを用いてレンズ系の高性能化
を図つた例が近年報告されるようになつた。屈折率分布
型レンズを用いた場合には屈折面を平面又は球面に加工
するだけで十分であり、加工上は非球面に比べて有利で
ある。
On the other hand, in recent years, an example of improving the performance of a lens system using a gradient index lens has been reported. When a gradient index lens is used, it is sufficient to process the refracting surface into a flat surface or a spherical surface, which is advantageous in processing as compared with an aspherical surface.

使用される屈折率分布型レンズとしては、光軸から半
径方向に屈折率匂配を有する所謂ラジアルGRINレンズや
先に述べたアキシヤルGRINレンズがある。このうちラジ
アルGRINレンズは、現在の製法では大口径レンズを得る
ことが困難でありカメラ用レンズに使用することは難し
い。一方アキシヤルGRINレンズは、屈折率匂配の形成方
向からも大口径化が容易であり可能性が極めて高い。
Examples of the gradient index lens used include a so-called radial GRIN lens having a refractive index gradient in the radial direction from the optical axis and the axial GRIN lens described above. Among them, the radial GRIN lens is difficult to obtain a large-diameter lens by the current manufacturing method and is difficult to use as a camera lens. On the other hand, the axial GRIN lens is extremely likely to have a large aperture even from the direction of formation of the refractive index gradient.

本発明は、これらの観点から、アキシヤルGRINレンズ
を用いて実現性が高くしかも高性能なレンズ系を達成し
た。
From these viewpoints, the present invention has achieved a highly feasible and high-performance lens system by using an axial GRIN lens.

現在の製造技術では、GRINレンズを得るための母材は
硼珪酸系又は珪酸系ガラスやプラスチツクを用いること
が望ましく比較的低屈折率であり、分散もあまり大きく
はできない。しかもアキシヤルGRINレンズでは収差論か
らみて、ペツツバール和の補正能力がないために屈折率
匂配がついていない状態でペツツバール和が補正されて
いる必要がある。
In the current manufacturing technology, it is desirable to use borosilicate or silicate glass or plastic as the base material for obtaining the GRIN lens, which has a relatively low refractive index, and the dispersion cannot be so large. Moreover, from the viewpoint of aberrations, the axial GRIN lens does not have the ability to correct the Petzval sum, so it is necessary that the Petzval sum is corrected without the refractive index gradient.

本発明のレンズ系では、特に第1群の負レンズより像
側に位置する正レンズ又は第2群の正レンズとしてこの
アキシヤルGRINを用いてある。
In the lens system of the present invention, this axial GRIN is used particularly as a positive lens located closer to the image side than the negative lens of the first group or a positive lens of the second group.

以上の点を基本とした本発明のコンパクトなズームレ
ンズの更に詳細な内容を説明する。
More detailed contents of the compact zoom lens of the present invention based on the above points will be described.

前述の基本構成をもとにした本発明レンズ系として例
えば実施例1〜5のように第1群を物体側より順に物体
側に凸面を向けた正のメニスカスレンズと、両凹の負レ
ンズと、2枚の両凸の正レンズにて又第2群を物体側よ
り順に像側に凸面を向けた正のメニスカスレンズと、物
体側に屈折力の強い面を向けた負レンズにて構成し、第
1群の最も像側に位置する正レンズにアキシヤルGRINレ
ンズを用いたものがある。
As a lens system of the present invention based on the above-described basic configuration, for example, as in Examples 1 to 5, a positive meniscus lens having a convex surface facing the first group from the object side in order toward the object side, and a biconcave negative lens are provided. Two biconvex positive lenses, and the second group is composed of a positive meniscus lens with a convex surface facing the image side in order from the object side, and a negative lens with a strong refractive power surface facing the object side. , There is a type that uses an axial GRIN lens as the positive lens located closest to the image side in the first group.

そのうち実施例1,2のようにアキシヤルGRINレンズの
屈折率匂配を物体側から像側に向かうにしたがつて屈折
率が減少するようにつけることによつて主としてコマ収
差と非点収差の補正に寄与せしめ得る。又実施例3〜5
のように、球面収差、コマ収差は他の屈折面により補正
し、非点収差を負に出しておき、屈折率匂配を実施例1
とは逆につけることによつて正の非点収差と負の歪曲収
差を出すことによつて収差補正を行なうことも出来る。
Correction of coma and astigmatism mainly by adding the refractive index gradient of the axial GRIN lens such that the refractive index decreases as it goes from the object side to the image side as in Examples 1 and 2. Can contribute to. Examples 3 to 5
As described above, spherical aberration and coma are corrected by another refracting surface, and astigmatism is made negative, so that the refractive index gradient is determined in Example 1.
It is also possible to correct aberrations by producing a positive astigmatism and a negative distortion by attaching the opposite to the above.

以上のレンズ系は第1群の負レンズよりも像側に位置
する正レンズをアキシヤルGRINレンズを用いたものであ
る。
The above lens system uses an axial GRIN lens as the positive lens located closer to the image side than the negative lens of the first group.

又本発明の目的を達成し得るものとして実施例6〜8
のように基本構成は実施例1と同じであるが第2群の正
レンズにアキシヤルGRNIレンズを用いたレンズ系があ
る。このアキシヤルGRINレンズは物体側から像側へ向か
つて屈折率が減少するような屈折率匂配をつけたもので
ある。そしてこのような屈折率匂配によつて主として広
角端の歪曲収差を補正している。実施例1〜5のような
構成のものでは光線がGRINレンズの媒質内を伝播する際
に生ずる収差を利用してレンズ系の収差補正を行なつて
いるのに対してこの実施例6〜8のような構成のものの
場合は屈折率匂配と球面の屈折面とによつて光線の入射
高による屈折率変化で生ずる屈折の変化で収差補正を行
なつており、特に広角端では、軸外物点に対する光線が
物体の高さにしたがつて比較的分離された高さでGRINレ
ンズに入射するので補正効果を大きく出せる。
In addition, Examples 6 to 8 are provided as those capable of achieving the object of the present invention.
As described above, there is a lens system in which the basic configuration is the same as that of the first embodiment, but an axial GRNI lens is used as the positive lens of the second group. This axial GRIN lens has a refractive index gradient such that the refractive index decreases from the object side to the image side. With such a refractive index gradient, distortion aberration at the wide-angle end is mainly corrected. In the structures of Examples 1 to 5, the aberrations of the lens system are corrected by utilizing the aberrations generated when the light rays propagate in the medium of the GRIN lens, whereas in Examples 6 to 8 described above. In the case of such a configuration, the aberration is corrected by the change in the refraction caused by the change in the refraction index depending on the incident height of the light rays due to the refractive index gradient and the spherical refraction surface. The light ray to the object point is incident on the GRIN lens at a height that is relatively separated according to the height of the object, so that a large correction effect can be obtained.

以上のような本発明のレンズ系において一層良好に収
差補正をなし得るためには、次の条件を満足することが
望ましい。
In order to achieve better aberration correction in the lens system of the present invention as described above, it is desirable to satisfy the following conditions.

(1) 0.5<f1/fW<1.0 (2) −1.4<f2<fW<−0.6 (3) 0.2<ew/fW<0.75 (4) 0.1<Pw/fW<0.4 ただしf1,f2は夫々第1群,第2群の焦点距離、fW
広角端での全系の焦点距離、eWは広角端における第1群
と第2群の主点間隔、PWは広角端での射出位置から最終
面までの距離である。
(1) 0.5 <f 1 / f W <1.0 (2) −1.4 <f 2 <f W <−0.6 (3) 0.2 <ew / f W <0.75 (4) 0.1 <Pw / f W <0.4 where f 1 and f 2 are the focal lengths of the first and second lens groups, respectively, f W is the focal length of the entire system at the wide-angle end, e W is the principal point distance between the first and second lens groups at the wide-angle end, and P W Is the distance from the injection position at the wide-angle end to the final surface.

次に上記の各条件の意味について説明する。 Next, the meaning of each of the above conditions will be described.

条件(1)の上限を越えてf1が大になると全長が長く
なり本発明の目的にそぐわない。又条件(1)の下限を
越えてf1が小になるとコンパクト性にとつては有利であ
るが諸収差の発生が大になり特に広角端での歪曲収差が
補正しきれなくなる。
If f 1 becomes large beyond the upper limit of the condition (1), the total length becomes long, which is not suitable for the purpose of the present invention. Further, if f 1 becomes smaller than the lower limit of the condition (1), it is advantageous in terms of compactness, but various aberrations become large, and distortion aberrations at the wide-angle end cannot be completely corrected.

条件(2)の上限を越えるとペツツバール和がバラン
スを崩し像面わん曲が大になり下限を越えると射出瞳位
置が像面から遠ざかりレンズ系が大型になる。
If the upper limit of condition (2) is exceeded, the Petzval sum will be unbalanced and the image plane curvature will be large, and if the lower limit is exceeded, the exit pupil position will be moved away from the image plane and the lens system will become large.

条件(3)の上限を越えてeWが大きくなる場合も射出
瞳位置が像面から遠ざかりレンズ系が大型になる。又こ
の条件の下限を越えると所定の変倍比を確保するために
は第1群,第2群の屈折力が強くなり収差を良好に保て
なくなる。
Even when the upper limit of the condition (3) is exceeded and e W becomes large, the exit pupil position is moved away from the image plane, and the lens system becomes large. If the lower limit of this condition is exceeded, the refractive powers of the first and second lens groups will become too strong to maintain a desired zoom ratio, and it will not be possible to maintain good aberrations.

条件(4)は広角端での射出瞳位置に関する条件で、
この条件の上限を越えると射出瞳位置が像面から遠くな
りすぎて第2群のレンズ外径が大きくなりすぎる。又下
限を越えると第2群の屈折力が強くなりすぎて収差を良
好に保てない。
Condition (4) relates to the exit pupil position at the wide-angle end,
If the upper limit of this condition is exceeded, the exit pupil position becomes too far from the image plane, and the lens outer diameter of the second group becomes too large. On the other hand, when the value goes below the lower limit, the refracting power of the second lens unit becomes too strong, so that the aberration cannot be kept good.

〔実施例〕〔Example〕

次に本発明のコンパクトなズームレンズの各実施例を
示す。
Next, examples of the compact zoom lens of the present invention will be described.

実施例1 f=40.0〜60.0、F/4.0〜F/5.6 r1=20.385 d1=2.638 n1=1.78472 ν=25.7 r2=46.910 d2=4.667 r3=−22.385 d3=1.100 n2=1.80518 ν=25.4 r4=26.616 d4=1.050 r5=34.154 d5=5.314 n3=1.61700 ν=62.8 r6=−19.380 d6=0.501 r7=∞(絞り) d7=1.277 r8=37.187 d8=3.427(アキシヤルGRINレンズ) r9=−70.847 d9=11.756〜0.929 r10=−30.757 d10=2.748 n5=1.80518 ν=25.4 r11=−20.179 d11=4.109 r12=−15.403 d12=2.208 n6=1.69680 ν=55.5 r13=−151.550 (アキシヤルGRINレンズ) 基準媒質 n▲ ▼=1.53358 ν▲ ▼=51.6
n▲ ▼=1.54656 屈折率分布 nd=n▲ ▼−0.80969×10-2x ng=n▲ ▼−0.865×10-2x f1/fW=0.787,f2/fW=−1.032 eW/fW=0.566,PW/fW=−0.370 実施例2 f=40.0〜60.0、F/4.0〜F/5.6 r1=19.559 d1=2.201 n1=1.78470 ν=26.3 r2=41.606 d2=4.407 r3=−19.684 d3=1.100 n2=1.80518 ν=25.4 r4=38.843 d4=0.773 r5=87.040 d5=5.460 n3=1.61700 ν=62.8 r6=−17.035 d6=0.102 r7=34.656 d7=2.599(アキシヤルGRINレンズ) r8=−79.217 d8=0.500 r9=∞(絞り) d9=12.831〜1.650 r10=−29.791 d10=2.776 n5=1.80518 ν=25.4 r11=−21.441 d11=5.129 r12=−16.672 d12=2.208 n6=1.69680 ν=55.5 r13=−135.592 (アキシヤルGRINレンズ) 基準媒質 n▲ ▼=1.53353 ν▲ ▼=50.6
n▲ ▼=1.54681 屈折率分布 nd=n▲ ▼−0.80969×10-2x ng=n▲ ▼−0.865×10-2x f1/fW=0.793,f2/fW=−1.058 eW/fW=0.573,PW/fW=−0.357 実施例3 f=40.1〜60.2、F/4.0〜F/5.6 r1=23.680 d1=2.608 n1=1.78472 ν=25.7 r2=78.470 d2=4.440 r3=−20.182 d3=1.100 n2=1.80518 ν=25.4 r4=30.831 d4=1.156 r5=42.808 d5=5.473 n3=1.61700 ν=62.8 r6=−17.664 d6=0.501 r7=∞(絞り) d7=1.302 r8=37.694 d8=3.865(アキシヤルGRINレンズ) r9=−70.656 d9=11.044〜1.199 r10=−29.939 d10=2.579 n5=1.80518 ν=25.4 r11=−19.912 d11=4.109 r12=−15.146 d12=2.208 n6=1.69680 ν=55.5 r13=−176.861 (アキシヤルGRINレンズ) 基準媒質 n▲ ▼=1.50137 ν▲ ▼=56.4
n▲ ▼=1.51250 屈折率分布 nd=n▲ ▼+0.80969×10-2x ng=n▲ ▼+0.865×10-2x f1/fW=0.762,f2/fW=−0.966 eW/fW=0.532,PW/fW=−0.356 実施例4 f=40.6〜60.0、F/4.0〜F/5.6 r1=17.222 d1=2.720 n1=1.58144 ν=40.8 r2=39.544 d2=4.401 r3=−21.357 d3=1.100 n2=1.68893 ν=31.1 r4=16.968 d4=0.845 r5=20.861 d5=5.482 n3=1.62374 ν=47.1 r6=−19.954 d6=0.501 r7=1.925 r8=∞(絞り) d7=41.811 d8=3.946(アキシヤルGRINレンズ) r9=−67.996 d9=11.064〜1.199 r10=−30.506 d10=2.469 n5=1.78590 ν=44.2 r11=−20.079 d11=4.595 r12=−15.094 d12=2.208 n6=1.67790 ν=55.3 r13=−212.901 (アキシヤルGRINレンズ) 基準媒質 n▲ ▼=1.50274 ν▲ ▼=58.0
n▲ ▼=1.51351 屈折率分布 nd=n▲ ▼+0.1025×10-1x ng=n▲ ▼+0.1095×10-1x f1/fW=0.778,f2/fW=−0.966 eW/fW=0.563,PW/fW=−0.361 実施例5 f=40.6〜60.0、F/4.0〜F/5.6 r1=17.213 d1=2.721 n1=1.58144 ν=40.8 r2=39.328 d2=4.401 r3=−21.340 d3=1.100 n2=1.68893 ν=31.1 r4=17.022 d4=0.843 r5=20.767 d5=5.483 n3=1.62374 ν=47.1 r6=−20.037 d6=0.501 r7=∞(絞り) d7=1.928 r8=41.557 d8=3.944(アキシヤルGRINレンズ) r9=−68.036 d9=11.028〜1.199 r10=−30.494 d10=2.491 n5=1.78590 ν=44.2 r11=−20.234 d11=4.599 r12=−15.114 d12=2.208 n6=1.67790 ν=55.3 r13=−195.943 (アキシヤルGRINレンズ) 基準媒質 n▲ ▼=1.50278 ν▲ ▼=58.0
n▲ ▼=1.51355 屈折率分布 nd=n▲ ▼+0.1025×10-1x ng=n▲ ▼+0.1095×10-1x f1/fW=0.776,f2/fW=−0.965 eW/fW=0.560,PW/fW=−0.362 実施例6 f=41.2〜58.2、F/4.0〜F/5.6 r1=16.666 d1=3.483 n1=1.74400 ν=44.7 r2=62.275 d2=1.729 r3=−32.089 d3=1.200 n2=1.80518 ν=25.4 r4=20.834 d4=2.692 r5=114.702 d5=4.437 n3=1.59270 ν=35.3 r6=−37.500 d6=0.150 r7=58.020 d7=2.980 n4=1.62045 ν=38.1 r8=−25.840 d8=2.000 r9=∞(絞り) d9=10.952〜2.064 r10=−110.625 d10=2.800(アキシヤルGRINレンズ) r11=−21.344 d11=3.127 r12=−16.105 d12=1.600 n6=1.76200 ν=40.1 r13=−1659.945 (アキシヤルGRINレンズ) 基準媒質 n▲ ▼=1.53614 ν▲ ▼=50.1
n▲ ▼=1.54963 屈折率分布 nd=n▲ ▼−0.1×10-1x ng=n▲ ▼−0.1063×10-1x f1/fW=0.769,f2/fW=−0.960 eW/fW=0.547,PW/fW=−0.275 実施例7 f=41.2〜58.2、F/3.5〜F/4.8 r1=16.675 d1=3.412 n1=1.76200 ν=40.1 r2=61.328 d2=1.729 r3=−34.311 d3=1.200 n2=1.80518 ν=25.4 r4=16.549 d4=2.556 r5=32.373 d5=5.160 n3=1.59270 ν=35.3 r6=−42.493 d6=0.150 r7=166.927 d7=3.682 n4=1.60562 ν=43.7 r8=−22.192 d8=2.000 r9=∞(絞り) d9=10.427〜2.064 r10=−101.746 d10=2.800(アキシヤルGRINレンズ) r11=−21.767 d11=3.440 r12=−15.986 d12=1.600 n6=1.73520 ν=41.1 r13=534.652 (アキシヤルGRINレンズ) 基準媒質 n▲ ▼=1.53280 ν▲ ▼=50.7
n▲ ▼=1.54602 屈折率分布 nd=n▲ ▼−0.9047×10-2x ng=n▲ ▼−0.964×10-2x f1/fW=0.760,f2/fW=−0.913 eW/fW=0.541,PW/fW=−0.268 実施例8 f=41.2〜58.2、F/3.5〜F/4.5 r1=16.874 d1=3.412 n1=1.76200 ν=40.1 r2=60.901 d2=1.729 r3=−35.236 d3=1.200 n2=1.80518 ν=25.4 r4=17.170 d4=2.599 r5=34.941 d5=5.280 n3=1.59270 ν=35.3 r6=−42.231 d6=0.150 r7=104.359 d7=3.819 n4=1.60562 ν=43.7 r8=−23.262 d8=2.000 r9=∞(絞り) d9=10.416〜2.064 r10=−89.883 d10=2.800(アキシヤルGRINレンズ) r11=−20.869 d11=3.380 r12=−15.558 d12=1.600 n6=1.73520 ν=41.1 r13=1672.036 (アキシヤルGRINレンズ) 基準媒質 n▲ ▼=1.53280 ν▲ ▼=50.7
n▲ ▼=1.54602 屈折率分布 nd=n▲ ▼−0.9047×10-2x ng=n▲ ▼−0.964×10-2x f1/fW=0.759,f2/fW=−0.913 eW/fW=0.539,PW/fW=−0.268 ただしr1,r2,…,r13はレンズ各面の曲率半径、d1,d2,
…,d12は各レンズの肉厚およびレンズ間隔、n1,n2,…,n
6は各レンズの屈折率、ν12,…νは各レンズのア
ツベ数である。
Example 1 f = 40.0 to 60.0, F / 4.0 to F / 5.6 r1= 20.385 d1= 2.638 n1= 1.78472 ν1= 25.7 r2= 46.910 d2= 4.667 r3= -22.385 d3= 1.100 n2= 1.80518 ν2= 25.4 rFour= 26.616 dFour= 1.050 rFive= 34.154 dFive= 5.314 n3= 1.61700 νThree= 62.8 r6= -19.380 d6= 0.501 r7= ∞ (aperture) d7= 1.277 r8= 37.187 d8= 3.427 (Axial GRIN lens) r9= -70.847 d9= 11.756 to 0.929 rTen= -30.757 dTen= 2.748 nFive= 1.80518 ν5= 25.4 r11= -20.179 d11= 4.109 r12= -15.403 d12= 2.208 n6= 1.69680 ν6= 55.5 r13= -151.550 (Axial GRIN lens) Reference medium n ▲ d▼ = 1.53358 ν ▲ d▼ = 51.6
n ▲ g▼ = 1.54656 Refractive index distribution nd= N ▲ d▼ −0.80969 × 10-2x ng= N ▲ g▼ −0.865 × 10-2x f1/ fW= 0.787, f2/ fW= -1.032 eW/ fW= 0.566, PW/ fW= -0.370 Example 2 f = 40.0 to 60.0, F / 4.0 to F / 5.6 r1= 19.559 d1= 2.201 n1= 1.78470 ν1= 26.3 r2= 41.606 d2= 4.407 r3= -19.684 d3= 1.100 n2= 1.80518 ν2= 25.4 rFour= 38.843 dFour= 0.773 rFive= 87.040 dFive= 5.460 n3= 1.61700 νThree= 62.8 r6= -17.035 d6= 0.102 r7= 34.656 d7= 2.599 (Axial GRIN lens) r8= -79.217 d8= 0.500 r9= ∞ (aperture) d9= 12.831 to 1.650 rTen= -29.791 dTen= 2.776 nFive= 1.80518 ν5= 25.4 r11= -21.441 d11= 5.129 r12= -16.672 d12= 2.208 n6= 1.69680 ν6= 55.5 r13= -135.592 (Axial GRIN lens) Reference medium n ▲ d▼ = 1.53353 ν ▲ d▼ = 50.6
n ▲ g▼ = 1.54681 Refractive index distribution nd= N ▲ d▼ −0.80969 × 10-2x ng= N ▲ g▼ −0.865 × 10-2x f1/ fW= 0.793, f2/ fW= -1.058 eW/ fW= 0.573, PW/ fW= -0.357 Example 3 f = 40.1 to 60.2, F / 4.0 to F / 5.6 r1= 23.680 d1= 2.608 n1= 1.78472 ν1= 25.7 r2= 78.470 d2= 4.440 r3= -20.182 d3= 1.100 n2= 1.80518 ν2= 25.4 rFour= 30.831 dFour= 1.156 rFive= 42.808 dFive= 5.473 n3= 1.61700 νThree= 62.8 r6= -17.664 d6= 0.501 r7= ∞ (aperture) d7= 1.302 r8= 37.694 d8= 3.865 (axial GRIN lens) r9= -70.656 d9= 11.044 to 1.199 rTen= -29.939 dTen= 2.579 nFive= 1.80518 ν5= 25.4 r11= -19.912 d11= 4.109 r12= -15.146 d12= 2.208 n6= 1.69680 ν6= 55.5 r13= -176.861 (Axial GRIN lens) Reference medium n ▲ d▼ = 1.50137 ν ▲ d▼ = 56.4
n ▲ g▼ = 1.51250 Refractive index distribution nd= N ▲ d▼ + 0.80969 × 10-2x ng= N ▲ g▼ + 0.865 × 10-2x f1/ fW= 0.762, f2/ fW= -0.966 eW/ fW= 0.532, PW/ fW= -0.356 Example 4 f = 40.6 to 60.0, F / 4.0 to F / 5.6 r1= 17.222 d1= 2.720 n1= 1.58144 ν1= 40.8 r2= 39.544 d2= 4.401 r3= -21.357 d3= 1.100 n2= 1.68893 ν2= 31.1 rFour= 16.968 dFour= 0.845 rFive= 20.861 dFive= 5.482 n3= 1.62374 νThree= 47.1 r6= -19.954 d6= 0.501 r7= 1.925 r8= ∞ (aperture) d7= 41.811 d8= 3.946 (Axial GRIN lens) r9= -67.996 d9= 11.064 to 1.199 rTen= -30.506 dTen= 2.469 nFive= 1.78590 ν5= 44.2 r11= -20.079 d11= 4.595 r12= -15.094 d12= 2.208 n6= 1.67790 ν6= 55.3 r13= −212.901 (Axial GRIN lens) Reference medium n ▲ d▼ = 1.50274 ν ▲ d▼ = 58.0
n ▲ g▼ = 1.51351 Refractive index distribution nd= N ▲ d▼ + 0.1025 × 10-1x ng= N ▲ g▼ + 0.1095 × 10-1x f1/ fW= 0.778, f2/ fW= -0.966 eW/ fW= 0.563, PW/ fW= -0.361 Example 5 f = 40.6 to 60.0, F / 4.0 to F / 5.6 r1= 17.213 d1= 2.721 n1= 1.58144 ν1= 40.8 r2= 39.328 d2= 4.401 r3= -21.340 d3= 1.100 n2= 1.68893 ν2= 31.1 rFour= 17.022 dFour= 0.843 rFive= 20.767 dFive= 5.483 n3= 1.62374 νThree= 47.1 r6= −20.037 d6= 0.501 r7= ∞ (aperture) d7= 1.928 r8= 41.557 d8= 3.944 (Axial GRIN lens) r9= -68.036 d9= 11.028 to 1.199 rTen= -30.494 dTen= 2.491 nFive= 1.78590 ν5= 44.2 r11= -20.234 d11= 4.599 r12= -15.114 d12= 2.208 n6= 1.67790 ν6= 55.3 r13= -195.943 (Axial GRIN lens) Reference medium n ▲ d▼ = 1.50278 ν ▲ d▼ = 58.0
n ▲ g▼ = 1.51355 Refractive index distribution nd= N ▲ d▼ + 0.1025 × 10-1x ng= N ▲ g▼ + 0.1095 × 10-1x f1/ fW= 0.776, f2/ fW= -0.965 eW/ fW= 0.560, PW/ fW= -0.362 Example 6 f = 41.2 to 58.2, F / 4.0 to F / 5.6 r1= 16.666 d1= 3.483 n1= 1.74400 ν1= 44.7 r2= 62.275 d2= 1.729 r3= −32.089 d3= 1.200 n2= 1.80518 ν2= 25.4 rFour= 20.834 dFour= 2.692 rFive= 114.702 dFive= 4.437 n3= 1.59270 νThree= 35.3 r6= -37.500 d6= 0.150 r7= 58.020 d7= 2.980 nFour= 1.62045 νFour= 38.1 r8= -25.840 d8= 2.000 r9= ∞ (aperture) d9= 10.952 to 2.064 rTen= -110.625 dTen= 2.800 (Axial GRIN lens) r11= -21.344 d11= 3.127 r12= -16.105 d12= 1.600 n6= 1.76200 ν6= 40.1 r13= -1659.945 (Axial GRIN lens) Reference medium n ▲ d▼ = 1.53614 ν ▲ d▼ = 50.1
n ▲ g▼ = 1.54963 Refractive index distribution nd= N ▲ d▼ −0.1 × 10-1x ng= N ▲ g▼ −0.1063 × 10-1x f1/ fW= 0.769, f2/ fW= -0.960 eW/ fW= 0.547, PW/ fW= -0.275 Example 7 f = 41.2 to 58.2, F / 3.5 to F / 4.8 r1= 16.675 d1= 3.412 n1= 1.76200 ν1= 40.1 r2= 61.328 d2= 1.729 r3= −34.311 d3= 1.200 n2= 1.80518 ν2= 25.4 rFour= 16.549 dFour= 2.556 rFive= 32.373 dFive= 5.160 n3= 1.59270 νThree= 35.3 r6= -42.493 d6= 0.150 r7= 166.927 d7= 3.682 nFour= 1.60562 νFour= 43.7 r8= -22.192 d8= 2.000 r9= ∞ (aperture) d9= 10.427 to 2.064 rTen= −101.746 dTen= 2.800 (Axial GRIN lens) r11= -21.767 d11= 3.440 r12= -15.986 d12= 1.600 n6= 1.73520 ν6= 41.1 r13= 534.652 (Axial GRIN lens) Reference medium n ▲ d▼ = 1.53280 ν ▲ d▼ = 50.7
n ▲ g▼ = 1.54602 Refractive index distribution nd= N ▲ d▼ −0.9047 × 10-2x ng= N ▲ g▼ −0.964 × 10-2x f1/ fW= 0.760, f2/ fW= -0.913 eW/ fW= 0.541, PW/ fW= -0.268 Example 8 f = 41.2 to 58.2, F / 3.5 to F / 4.5 r1= 16.874 d1= 3.412 n1= 1.76200 ν1= 40.1 r2= 60.901 d2= 1.729 r3= -35.236 d3= 1.200 n2= 1.80518 ν2= 25.4 rFour= 17.170 dFour= 2.599 rFive= 34.941 dFive= 5.280 n3= 1.59270 νThree= 35.3 r6= −42.231 d6= 0.150 r7= 104.359 d7= 3.819 nFour= 1.60562 νFour= 43.7 r8= -23.262 d8= 2.000 r9= ∞ (aperture) d9= 10.416 to 2.064 rTen= −89.883 dTen= 2.800 (Axial GRIN lens) r11= −20.869 d11= 3.380 r12= -15.558 d12= 1.600 n6= 1.73520 ν6= 41.1 r13= 1672.036 (Axial GRIN lens) Reference medium n ▲ d▼ = 1.53280 ν ▲ d▼ = 50.7
n ▲ g▼ = 1.54602 Refractive index distribution nd= N ▲ d▼ −0.9047 × 10-2x ng= N ▲ g▼ −0.964 × 10-2x f1/ fW= 0.759, f2/ fW= -0.913 eW/ fW= 0.539, PW/ fW= −0.268 where r1, r2, ..., r13Is the radius of curvature of each surface of the lens, d1, d2,
…, D12Is the thickness of each lens and the lens spacing, n1, n2, ..., n
6Is the refractive index of each lens, ν1, ν2, ... ν6Is for each lens
It is a number.

尚アキシヤルGRINレンズの基準媒質,屈折率分布はデ
ーター中に示した通りであり、そのうち屈折率分布は次
式で表わされる。
The reference medium and the refractive index distribution of the axial GRIN lens are as shown in the data, and the refractive index distribution is expressed by the following equation.

n=n0+n1x ここでn0は基準媒質の屈折率、xは光軸方向の変位
量、n1は1次の分布係数、nは変位量xでの屈折率であ
る。
n = n 0 + n 1 x Here, n 0 is the refractive index of the reference medium, x is the displacement in the optical axis direction, n 1 is the first-order distribution coefficient, and n is the refractive index at the displacement x.

これら実施例においては実現性を考えて屈折率分布を
1次項のみにしたが、高次項を用いて分布をつければ有
利であることは言うまでもない。
In these examples, the refractive index distribution was set to only the first-order term in consideration of feasibility, but it goes without saying that it is advantageous to use the higher-order term to provide the distribution.

実施例のうち実施例1は第1図に示すレンズ構成で、
第1群の最も像側の正レンズがアキシヤルGRINレンズで
ある。この実施例の広角端、中間焦点距離、望遠端の収
差状況は夫々第4図,第5図,第6図に示す通りであ
る。
Example 1 of the examples has a lens configuration shown in FIG.
The most image-side positive lens in the first group is an axial GRIN lens. The aberration conditions at the wide-angle end, the intermediate focal length, and the telephoto end in this embodiment are as shown in FIGS. 4, 5, and 6, respectively.

実施例2は第2図に示すレンズ構成でこの実施例も第
1群の最も像側の正レンズがアキシヤルGRINレンズであ
る。この実施例の広角端、中間焦点距離、望遠端の収差
状況は夫々第7図,第8図,第9図に示す通りである。
The second embodiment has a lens configuration shown in FIG. 2, and in this embodiment also, the positive lens closest to the image side in the first group is an axial GRIN lens. Aberration conditions at the wide-angle end, the intermediate focal length, and the telephoto end in this embodiment are as shown in FIGS. 7, 8, and 9, respectively.

実施例3,実施例4,実施例5はいずれも実施例1と同様
の第1図に示すようなレンズ構成で、第1群の最も像側
の正レンズがアキシヤルGRINレンズである。
The third, fourth, and fifth embodiments all have the same lens configuration as that of the first embodiment, as shown in FIG. 1, and the positive lens closest to the image side in the first group is the axial GRIN lens.

これら実施例の広角端,中間焦点距離、望遠端の収差
状況は、実施例3が第10図,第11図,第12図に示す通り
であり、実施例4が第13図,第14図,第15図に示す通り
であり、実施例5が第16図,第17図,第18図に示す通り
である。
The aberration conditions at the wide-angle end, the intermediate focal length, and the telephoto end of these examples are as shown in FIGS. 10, 11 and 12 for Example 3, and FIG. 13 and FIG. 14 for Example 4. , As shown in FIG. 15, and Example 5 is as shown in FIGS. 16, 17, and 18.

実施例6,7,8はいずれも第3図に示すレンズ構成で、
第2群の正レンズがアキシヤルGRINレンズである。
Each of Examples 6, 7, and 8 has the lens configuration shown in FIG.
The positive lens in the second group is an axial GRIN lens.

これら実施例の広角端,中間焦点距離、望遠端の収差
状況は、実施例6が第19図,第20図,第21図に、実施例
7が第22図,第23図,第24図に、実施例8が第25図,第
26図,第27図に示す通りである。
Regarding the aberrations at the wide-angle end, the intermediate focal length, and the telephoto end of these examples, Example 6 is shown in FIGS. 19, 20, and 21, and Example 7 is shown in FIGS. 22, 23, and 24. Example 8 is shown in FIGS.
This is as shown in Fig. 26 and Fig. 27.

なお各収差曲線図は、最も使用頻度が高いと思われる
1/75倍程度の倍率時のものを示してある。
Each aberration curve diagram seems to be used most frequently
It is shown at a magnification of about 1/75.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したように又実施例から明らかなよう
に、本発明のズームレンズは、十分な明るさを得ながら
全長が短くレンズ径が小さく極めてコンパクトであつて
しかも優れた性能を有するもので、特にレンズシヤツタ
ーカメラに適したレンズ系である。
As described above in detail and as is clear from the examples, the zoom lens of the present invention has a short length, a small lens diameter and an extremely compact size while obtaining sufficient brightness, and has excellent performance. , A lens system particularly suitable for a lens shutter camera.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例1,3,4,5の断面図、第2図は本
発明の実施例2の断面図、第3図は本発明の実施例6,7,
8の断面図、第4図,第5図,第6図は実施例1の収差
曲線図、第7図,第8図,第9図は実施例2の収差曲線
図、第10図,第11図,第12図は実施例3の収差曲線図、
第13図,第14図,第15図は実施例4の収差曲線図、第16
図,第17図,第18図は実施例5の収差曲線図、第19図,
第20図,第21図は実施例6の収差曲線図、第22図,第23
図,第24図は実施例7の収差曲線図,第25図,第26図,
第27図は実施例8の収差曲線図である。
FIG. 1 is a sectional view of Embodiments 1, 3, 4, 5 of the present invention, FIG. 2 is a sectional view of Embodiment 2 of the present invention, and FIG. 3 is Embodiment 6, 7, of the present invention.
8 is a sectional view of FIG. 4, FIG. 5, FIG. 5, and FIG. 6 are aberration curve diagrams of Example 1, and FIGS. 7, 8, and 9 are aberration curve diagrams of Example 2, FIG. 10, FIG. 11 and 12 are aberration curve diagrams of Example 3,
FIGS. 13, 14, and 15 are aberration curve diagrams of Example 4, and FIG.
FIG. 17, FIG. 17 and FIG. 18 are aberration curve diagrams of Example 5, FIG.
20 and 21 are aberration curve diagrams of Example 6, FIGS. 22 and 23, respectively.
Fig. 24 is an aberration curve diagram of Example 7, Fig. 25, Fig. 26,
FIG. 27 is an aberration curve diagram for Example 8.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に、正の屈折力の第1群と、
負の屈折力の第2群とからなり、両群の間隔を変えて変
倍を行なうズームレンズにおいて、その構成要素として
光軸方向に屈折率匂配を有する屈折率分布型レンズを少
なくとも1枚含み、更に以下の条件を満足することを特
徴とするコンパクトなズームレンズ。 (1) 0.5<f1/fW<1.0 (2) −1.4<f2/fW<−0.6 (3) 0.2<eW/fW<0.75 (4) 0.1<PW/fW<0.4 ただし、f1,f2は夫々第1群,第2群の焦点距離、fW
広角端での全系の焦点距離、eWは広角端における第1群
と第2群の主点間隔、PWは広角端での射出瞳位置から最
終面までの距離である。
1. A first group having a positive refractive power in order from the object side,
At least one gradient index lens having a refractive index gradient in the optical axis direction as a constituent element thereof in a zoom lens composed of a second group having a negative refractive power and varying the distance between the two groups for zooming. A compact zoom lens that is characterized by including the following conditions. (1) 0.5 <f 1 / f W <1.0 (2) −1.4 <f 2 / f W <−0.6 (3) 0.2 <e W / f W <0.75 (4) 0.1 <P W / f W <0.4 Where f 1 and f 2 are the focal lengths of the first and second lens groups, respectively, f W is the focal length of the entire system at the wide-angle end, and e W is the principal point distance between the first and second lens groups at the wide-angle end. , P W is the distance from the exit pupil position at the wide-angle end to the final surface.
JP61127336A 1986-06-03 1986-06-03 Compact zoom lens Expired - Lifetime JPH0820598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61127336A JPH0820598B2 (en) 1986-06-03 1986-06-03 Compact zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61127336A JPH0820598B2 (en) 1986-06-03 1986-06-03 Compact zoom lens

Publications (2)

Publication Number Publication Date
JPS62284319A JPS62284319A (en) 1987-12-10
JPH0820598B2 true JPH0820598B2 (en) 1996-03-04

Family

ID=14957400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61127336A Expired - Lifetime JPH0820598B2 (en) 1986-06-03 1986-06-03 Compact zoom lens

Country Status (1)

Country Link
JP (1) JPH0820598B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026917A (en) * 1988-04-15 1990-01-11 Konica Corp Small-sized variable focal length lens
JP2682053B2 (en) * 1988-09-09 1997-11-26 株式会社ニコン Small zoom lens
JP2639983B2 (en) * 1988-10-11 1997-08-13 オリンパス光学工業株式会社 Refractive index distribution type lens
JP2581199B2 (en) * 1988-10-31 1997-02-12 キヤノン株式会社 Small zoom lens
JP3119403B2 (en) * 1993-03-30 2000-12-18 キヤノン株式会社 Small variable power lens
JP3087550B2 (en) * 1993-11-25 2000-09-11 キヤノン株式会社 Small zoom lens
JPH07306361A (en) * 1994-05-11 1995-11-21 Canon Inc Compact zoom lens
JP3161246B2 (en) * 1994-09-06 2001-04-25 キヤノン株式会社 camera
JP3402833B2 (en) * 1995-03-02 2003-05-06 キヤノン株式会社 Zoom lens
US6008953A (en) * 1996-07-26 1999-12-28 Canon Kabushiki Kaisha Zoom lens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201213A (en) * 1981-06-04 1982-12-09 Canon Inc Microminiature zoom lens
JPS59149312A (en) * 1983-02-16 1984-08-27 Asahi Optical Co Ltd Photographic lens of high aperture ratio
JPS61148414A (en) * 1984-12-21 1986-07-07 Canon Inc Compact zoom lens

Also Published As

Publication number Publication date
JPS62284319A (en) 1987-12-10

Similar Documents

Publication Publication Date Title
JP2538526B2 (en) Zoom lens
JP2817916B2 (en) Zoom lens for high zoom ratio compact camera
JP3584107B2 (en) Zoom lens
JP3081698B2 (en) 3-group zoom lens
JP2628633B2 (en) Compact zoom lens
JPH083580B2 (en) Compact high-magnification zoom lens
JP3035830B2 (en) Zoom lens
JPH1039210A (en) Zoom lens
JP3074026B2 (en) Super wide-angle zoom lens
JP2005055625A (en) Zoom lens, camera device and projector
JP3652179B2 (en) Zoom lens
JPH0784180A (en) Fish-eye lens in water
JP3028581B2 (en) High magnification zoom lens
JPH0634885A (en) Zoom lens
JPH0820598B2 (en) Compact zoom lens
JPH0660971B2 (en) Zoom lenses
JP2715385B2 (en) Compact zoom lens
JP3029148B2 (en) Rear focus zoom lens
JP3268824B2 (en) Small two-group zoom lens
JPH0727976A (en) Small-sized two-group zoom lens system
JPS61275809A (en) Bright wide-angle zoom lens
JP2901066B2 (en) Zoom lens
JP4817551B2 (en) Zoom lens
JPH06308383A (en) Intermediate telephoto lens for underwater camera
JP2676400B2 (en) High magnification compact zoom lens