JPH0820343B2 - Method and apparatus for measuring elastic modulus of solid material by impact sound - Google Patents

Method and apparatus for measuring elastic modulus of solid material by impact sound

Info

Publication number
JPH0820343B2
JPH0820343B2 JP2038306A JP3830690A JPH0820343B2 JP H0820343 B2 JPH0820343 B2 JP H0820343B2 JP 2038306 A JP2038306 A JP 2038306A JP 3830690 A JP3830690 A JP 3830690A JP H0820343 B2 JPH0820343 B2 JP H0820343B2
Authority
JP
Japan
Prior art keywords
test piece
impact sound
temperature
impact
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2038306A
Other languages
Japanese (ja)
Other versions
JPH03243845A (en
Inventor
勝 坂田
Original Assignee
勝 坂田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 勝 坂田 filed Critical 勝 坂田
Priority to JP2038306A priority Critical patent/JPH0820343B2/en
Publication of JPH03243845A publication Critical patent/JPH03243845A/en
Publication of JPH0820343B2 publication Critical patent/JPH0820343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高温中又は低温中における材料の弾性係
数を材料から発する衝撃音により計測する方法及びその
装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method and an apparatus for measuring an elastic coefficient of a material in a high temperature or a low temperature by an impact sound generated from the material.

〔従来の技術〕[Conventional technology]

従来の技術における高温中又は低温中における材料の
弾性係数計測方法には、試験片を2本の吊り糸で吊り下
げ、一方の吊り糸の上端を駆動器に結合して加振し、他
方の吊り糸を検出器に結合して試験片の曲げ振動又は捩
じり振動の共振振動数を測定する共振法、並びに縦波用
振動子及び横波用振動子を用いて高い周波数の超音波パ
ルスを励起し、超音波パルスが試験片中を伝播するとき
の音速を正確に計測する超音波パルス法がある。
In the conventional method of measuring the elastic coefficient of a material in high temperature or low temperature, the test piece is hung by two hanging threads, and the upper end of one hanging thread is connected to a driver to vibrate, and the other A resonance method in which a hanging thread is connected to a detector to measure the resonance frequency of bending vibration or torsional vibration of a test piece, and ultrasonic pulses of high frequency are generated using a longitudinal wave transducer and a transverse wave transducer. There is an ultrasonic pulse method that accurately measures the speed of sound when excited and an ultrasonic pulse propagates in a test piece.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、上記の共振法では、吊り糸のコンプライアン
スのために駆動器よりの振動が試験片に十分に伝わら
ず、延いては試験片の振動が検出器に十分に伝わらない
ことになる。
However, in the above resonance method, the vibration from the driver is not sufficiently transmitted to the test piece due to the compliance of the hanging thread, and thus the vibration of the test piece is not sufficiently transmitted to the detector.

又、上記の超音波パルス法では、振動子を直接試験片
に接着ると、高温・低温中において測定することが困難
であり、それを解消するために、試験片と振動子との間
に導波棒を接着介在させると、超音波速度の測定に十分
な精度が得られない。
Further, in the above ultrasonic pulse method, if the vibrator is directly bonded to the test piece, it is difficult to measure at high temperature and low temperature. If the waveguide rod is bonded and interposed, sufficient accuracy cannot be obtained for measuring the ultrasonic velocity.

そこで、この発明は、高温・低温においての材料の弾
性係数を高精度に測定しようとするものである。
Therefore, the present invention is intended to measure the elastic modulus of a material at high and low temperatures with high accuracy.

〔課題を解決するための手段〕[Means for solving the problem]

この発明による衝撃音による固体材料の弾性係数計測
方法は、高温加熱炉中又は低温冷却器中において被測定
材料の試験片を耐熱性糸又は耐寒性糸で吊り下げ、所定
温度に維持し、高温加熱炉又は低温冷却器の外部より内
部へ入れた球体を試験片に向って落下させ、試験片に衝
突させて衝撃音を発生させ、衝撃音検出口を通して高温
加熱炉又は低音冷却器の外部に出る衝撃音を検出し、そ
の衝撃音の放射音圧の原波形を高速フーリエ変換を用い
てフーリエスペクトルを求めることにより試験片の曲げ
振動及び捩り振動の高次モードまでの固有振動数を検出
し、その固有振動数に基づいて被測定材料の弾性係数を
演算計測する。
The method for measuring the elastic coefficient of a solid material by impact sound according to the present invention is to suspend a test piece of the material to be measured with a heat resistant thread or a cold resistant thread in a high temperature heating furnace or a low temperature cooler and maintain it at a predetermined temperature. A sphere inserted from the outside of the heating furnace or low-temperature cooler is dropped toward the test piece, collides with the test piece to generate an impact sound, and is output to the outside of the high-temperature heating furnace or low-temperature cooler through the impact sound detection port. The natural frequency of bending vibration and torsional vibration of the test piece up to the higher order modes is detected by detecting the impact sound generated and detecting the Fourier spectrum of the original waveform of the radiated sound pressure of the impact sound using the fast Fourier transform. , The elastic coefficient of the material to be measured is calculated and measured based on the natural frequency.

この発明による衝撃音による固定材料の弾性係数計測
装置は、衝撃音検出口及び衝撃用球体落下口を有する高
温加熱炉又は低音冷却器、高温加熱炉の炉室内又は低温
冷却器の冷却質内に間隔をあけて垂下げられた被測定材
料試験片吊下用の2本の耐熱性又は耐寒性糸、試験片に
向って落下される球体、試験片に対する球体の衝撃音を
高温加熱炉又は低音冷却器に形勢された衝撃音検出口を
通して検出する手段、前記衝突音の放射音圧の原波形を
高速フーリエ変換法による周波数分析により試験片の曲
げ振動及び捩り振動の高次モードまでの固有振動数を検
出する分析器及びその固有振動数に基づいて被測定材料
の弾性係数を算出する演算装置から構成されている。
According to the present invention, an apparatus for measuring an elastic coefficient of an immobilization material by an impact sound is provided in a cooling chamber of a high temperature heating furnace or a low temperature cooler, a furnace chamber of a high temperature heating furnace or a low temperature cooler having an impact sound detecting port and an impact ball dropping port. Two heat-resistant or cold-resistant yarns for suspending the test piece of the material to be measured hung at intervals, a sphere dropped toward the test piece, and the impact sound of the sphere on the test piece to a high-temperature heating furnace or low-pitched sound. Means for detecting through impact sound detection port formed in the cooler, natural vibration up to higher modes of bending vibration and torsional vibration of the test piece by frequency analysis of the original waveform of radiated sound pressure of the collision sound by fast Fourier transform method It is composed of an analyzer for detecting the number and an arithmetic unit for calculating the elastic coefficient of the material to be measured based on its natural frequency.

〔作用〕[Action]

上記の測定装置において、試験片の両端を夫々耐熱性
糸(耐寒性糸)により高温加熱炉(低温冷却器)内に吊
り下げる。
In the above measuring device, both ends of the test piece are suspended in a high temperature heating furnace (low temperature cooler) by heat resistant yarn (cold resistant yarn).

そうして、試験片の温度を測定しながら、高温加熱炉
(低温冷却器)を制御手段により加熱(冷却)作動す
る。すると、高温加熱炉(低温冷却器)中の試験片は所
定温度に加熱(冷却)維持される。
Then, the high temperature heating furnace (low temperature cooler) is heated (cooled) by the control means while measuring the temperature of the test piece. Then, the test piece in the high temperature heating furnace (low temperature cooler) is heated (cooled) and maintained at a predetermined temperature.

その状態において、球体を衝撃用球体落下口から高温
加熱炉の炉室内又は低温冷却器の冷却室内に入れて試験
片に向って落下させ、試験片に球体を衝突させて、その
結果生じる衝撃音を検出し、その衝撃音の放射音圧の原
波形を高速フーリエ変換を用いてフーリエスペクトルを
求めることにより試験片の曲げ及びねじり振動の高次モ
ードまでの固有振動数を検出し、演算装置によりその固
有振動数に基づいて被測定材料の前記所定温度における
弾性係数、即ち縦弾性係数、横弾性係数、ポアソン比を
同時に演算装置により演算するのである。
In that state, put the sphere into the furnace chamber of the high-temperature heating furnace or the cooling chamber of the low-temperature cooler from the impact sphere drop port, drop it toward the test piece, and collide the sphere with the test piece. By detecting the original waveform of the radiated sound pressure of the impact sound using a fast Fourier transform to obtain the Fourier spectrum, the natural frequency up to the higher modes of bending and torsional vibration of the test piece is detected, and Based on the natural frequency, the elastic modulus of the material to be measured at the predetermined temperature, that is, the longitudinal elastic modulus, the lateral elastic modulus, and the Poisson's ratio are simultaneously calculated by the arithmetic unit.

〔実施例〕〔Example〕

この発明の実施例を図面に従って説明する。 Embodiments of the present invention will be described with reference to the drawings.

第1図は、この発明の方法を実施するこの発明による
装置の概要を示す。
FIG. 1 shows an overview of the device according to the invention for carrying out the method of the invention.

先ず、高温中における材料の弾性係数計測用の装置の
場合について述べる。
First, the case of a device for measuring the elastic coefficient of a material at high temperature will be described.

赤外線イメージ炉1には、中空の炉室2が形成され、
炉室2の上下は夫々上側断熱板3及び下側断熱板4によ
り遮蔽されている。上側断熱板3には、棒状の試験片T
(例えばセラミックス試験片)が通過し得る長孔5が穿
設され、長孔5の中央には更に衝撃体、例えば鋼球6が
通過し得る円孔7が穿設されされている。下側断熱板4
には、温度・衝撃音検出孔8が穿設されされている。
A hollow furnace chamber 2 is formed in the infrared image furnace 1,
The upper and lower sides of the furnace chamber 2 are shielded by an upper heat insulating plate 3 and a lower heat insulating plate 4, respectively. The upper heat insulating plate 3 has a rod-shaped test piece T.
A long hole 5 through which (for example, a ceramics test piece) can pass is formed, and a circular hole 7 through which an impact body, for example, a steel ball 6 can pass is formed in the center of the long hole 5. Lower heat insulating plate 4
A temperature / impact sound detection hole 8 is formed in the.

赤外線イメージ炉1の上方は、間隔をあけて固定され
た断熱性の基板9で覆われ、基板9には、上側断熱板3
の長孔5・円孔7に対応する開孔10が穿設されている。
The upper part of the infrared image furnace 1 is covered with a heat insulating substrate 9 fixed at intervals, and the upper heat insulating plate 3 is attached to the substrate 9.
Opening holes 10 corresponding to the long holes 5 and the circular holes 7 are formed.

基板9上には、支柱11,11とそれに支承された案内杆1
2,12とから成る門型スタンド及び別の支柱13が設けら
れ、案内杆12,12には、滑動ブロック14,14が独立して水
平方向に位置調整自在に取付けられ、更に各滑動ブロッ
ク14には、吊下げ棒15が上下方向に位置調整自在に取付
けられている。
On the substrate 9, the columns 11, 11 and the guide rods 1 supported by them are provided.
A gate-shaped stand composed of 2 and 12 and another column 13 are provided. Sliding blocks 14 and 14 are independently mounted on the guide rods 12 and 12 so that their horizontal positions can be adjusted. A suspension rod 15 is attached to the above so that the position thereof can be adjusted in the vertical direction.

吊下げ棒15,15の下端には、セラミックス繊維製の
糸、又は金属線、即ち耐熱性糸16,16が結合され、各耐
熱性糸16の下端部には、上下に適宜の近距離をあけて試
験片支承輪が形成され、上側試験片支承輪には試験片T
の両端乃至両端付近、好ましくは、試験片Tの1次曲げ
振動の節位置が支承され、下側試験片支承輪には試験片
Tと同一の温度検出用の副試験片Taが試験片Tと同様に
支承される。副試験片Taには、熱電対18の一端が固定さ
れている。
Ceramic fiber threads or metal wires, that is, heat resistant threads 16 and 16 are coupled to the lower ends of the hanging bars 15 and 15, and a proper short distance vertically is provided at the lower end of each heat resistant thread 16. A test piece bearing ring is formed by opening the test piece T on the upper test piece bearing ring.
Of the test piece T is supported at both ends or in the vicinity of both ends of the test piece T, and the lower test piece bearing ring is provided with a sub-test piece Ta for temperature detection which is the same as the test piece T. Is supported in the same manner as. One end of the thermocouple 18 is fixed to the sub test piece Ta.

又、支柱12には、鋼球案内管17が傾斜を付けて取付け
られ、鋼球案内管17の下端は、基板9の開孔10の真上で
上側断熱板3の円孔7に対応した位置に位置している。
炉室2外には温度・衝撃音検出孔8に近接して衝撃音検
出用のマイクロホーン19が設けられている。
A steel ball guide tube 17 is attached to the support column 12 with an inclination, and the lower end of the steel ball guide tube 17 corresponds to the circular hole 7 of the upper heat insulating plate 3 just above the opening 10 of the substrate 9. Located in position.
A microphone 19 for impact noise detection is provided outside the furnace chamber 2 close to the temperature / impact noise detection hole 8.

第2図に示すように、熱電対18、温度計20及び温度制
御器21が順次接続され、同じくマイクロホーン19、計測
増幅器22、オシロスコープ23、フィルタ24及びスペクト
ル分析器25が順次接続され、温度制御器21及びスペクト
ル分析器25は、夫々マイクロコンピュータ26に接続され
ている。
As shown in FIG. 2, the thermocouple 18, the thermometer 20, and the temperature controller 21 are sequentially connected, and the microphone 19, the measurement amplifier 22, the oscilloscope 23, the filter 24, and the spectrum analyzer 25 are sequentially connected, and the temperature The controller 21 and the spectrum analyzer 25 are connected to a microcomputer 26, respectively.

そして炉室温度(冷却室温度)は温度制御器21により
制御されるようになっている。
The furnace chamber temperature (cooling chamber temperature) is controlled by the temperature controller 21.

低温中における材料の弾性係数計測用の装置の場合に
は、上記の装置において、炉室2を持つ赤外線イメージ
炉1及び耐熱性糸16に替えて冷却室102を持つ低温冷却
器101及び耐寒性糸116を用いる。
In the case of the device for measuring the elastic modulus of a material at low temperature, in the above device, the infrared image furnace 1 having the furnace chamber 2 and the low temperature cooler 101 having the cooling chamber 102 in place of the heat resistant yarn 16 and the cold resistance are used. Thread 116 is used.

又、上記の実施例は、試験片Tに対し横衝撃を加える
形式であるが、縦衝撃を加える形式であってもよい。
Further, in the above embodiment, the lateral impact is applied to the test piece T, but the longitudinal impact may be applied.

この場合は、鋼球6を耐熱性糸16,16(耐寒性糸116,1
16)をもって炉室2(冷却室102)内に吊るして、振子
運動の鋼球6を試験片Tの一端面に衝突させるようにす
る。
In this case, the steel ball 6 is replaced with heat-resistant yarn 16,16 (cold-resistant yarn 116,1
16) is suspended in the furnace chamber 2 (cooling chamber 102) so that the steel ball 6 having a pendulum motion collides with one end surface of the test piece T.

この発明の実施例における衝撃音による固体の弾性係
数計測方法について述べる。
A method of measuring the elastic coefficient of a solid by impact sound in the embodiment of the present invention will be described.

上記の測定装置において、先ず、滑動ブロック14,14
を位置調整して、耐熱性糸16,16(耐寒性糸116,116)の
間隔が試験片T及び副試験片Taの長さに対応し、試験片
T及び副試験片Taの吊下げ位置が上側断熱板3の長孔5
に対応し、好ましくは、試験片の重心から多少ずれた位
置が鋼球案内管17の下端の直下に位置するようにする。
In the above measuring device, first, the sliding blocks 14,14
By adjusting the position of the heat-resistant yarns 16 and 16 (cold-resistant yarns 116 and 116) to correspond to the lengths of the test piece T and the sub-test piece Ta, and the hanging position of the test piece T and the sub-test piece Ta is on the upper side. Long hole 5 of heat insulating plate 3
Therefore, it is preferable that the position slightly deviated from the center of gravity of the test piece is located immediately below the lower end of the steel ball guide tube 17.

次に、試験片Tの両端乃至両端付近、好ましくは、試
験片Tの1次曲げ振動の節位置を夫々耐熱性糸16,16
(耐寒性糸116,116)の上側試験片支承輪に、副試験片T
aの両端を夫々耐熱性糸16,16(耐寒性糸116,116)の下
側試験片支承輪に支承させ、試験片T及び副試験片Taを
基板9の開孔10及びを通過させて炉室2(冷却室102)
内に水平に吊り下げる。その際、試験片T及び副試験片
Taが炉室2(冷却室102)中央部に位置するように吊下
げ棒15,15を位置調整しておく。
Next, the heat-resistant yarns 16 and 16 are respectively set at both ends of the test piece T or in the vicinity of both ends thereof, preferably at the node positions of the primary bending vibration of the test piece T, respectively.
On the upper test piece bearing ring of (cold resistant thread 116,116), the sub test piece T
Both ends of a are supported by lower test piece bearing wheels of heat-resistant threads 16 and 16 (cold-resistant threads 116 and 116), respectively, and the test piece T and the sub-test piece Ta are passed through the openings 10 and in the substrate 9 and the furnace chamber. 2 (cooling room 102)
Suspend horizontally inside. At that time, the test piece T and the sub-test piece
The positions of the suspension rods 15 and 15 are adjusted so that Ta is located at the center of the furnace chamber 2 (cooling chamber 102).

試験片T及び副試験片Taの両端を夫々耐熱性糸の支承
輪に支承させる代りに、耐熱性糸に結び付けてもよい。
Both ends of the test piece T and the sub-test piece Ta may be tied to the heat resistant thread instead of being supported by the bearing wheels of the heat resistant thread.

副試験片Taに固定された温度検出用の熱電対18は、下
側断熱板4の温度・衝撃音検出孔8を通して炉室2(冷
却室102)内から引出され、温度計20に接続される。
The temperature detecting thermocouple 18 fixed to the sub test piece Ta is drawn out from the furnace chamber 2 (cooling chamber 102) through the temperature / impact sound detecting hole 8 of the lower heat insulating plate 4 and connected to the thermometer 20. It

そうして、赤外線イメージ炉1(低温冷却器101)の
炉室2(冷却室102)中を図示しない加熱(冷却)手段
により加熱(冷却)する。すると、炉室2(冷却室10
2)中の試験片T及び副試験片Taも加熱(冷却)され
る。
Then, the furnace chamber 2 (cooling chamber 102) of the infrared image furnace 1 (low temperature cooler 101) is heated (cooled) by a heating (cooling) means (not shown). Then, the furnace chamber 2 (cooling chamber 10
The test piece T and the sub-test piece Ta in 2) are also heated (cooled).

その際、副試験片Taの温度は、熱電対18を介して温度
計20により検出される。正確な自由振動数を得るべく、
試験片Tの振動を拘束することを避けるけるように、熱
電対18は試験片Tでなく副試験片Taに取付られ、副試験
片Taの温度が検出されるが、上記の装置においては、試
験片Tと副試験片Taとが同一温度になること及び副試験
片Taの存在により試験片Tの固有振動数が影響されない
ことは、予備実験により確認されている。従って、副試
験片Taの温度は、試験片Tの温度である。
At that time, the temperature of the sub test piece Ta is detected by the thermometer 20 via the thermocouple 18. To get an accurate free frequency,
In order to avoid restraining the vibration of the test piece T, the thermocouple 18 is attached to the sub-test piece Ta instead of the test piece T, and the temperature of the sub-test piece Ta is detected. It has been confirmed by preliminary experiments that the test piece T and the sub-test piece Ta have the same temperature and that the presence of the sub-test piece Ta does not affect the natural frequency of the test piece T. Therefore, the temperature of the sub test piece Ta is the temperature of the test piece T.

そこで、温度計20における検出温度が温度制御器21に
入力され、それが所望高温(低温)の設定温度に維持さ
れるように温度制御器21により図示しない加熱(冷却)
手段の加熱(冷却)作動は制御される。
Therefore, the temperature detected by the thermometer 20 is input to the temperature controller 21, and the temperature controller 21 heats (cools) not shown so that the temperature is maintained at a desired high temperature (low temperature).
The heating (cooling) operation of the means is controlled.

かくして、試験片T及び副試験片Taは、設定温度に維
持され、高温(低温)の設定温度下の試験片Tの弾性定
数が求められ得ることになる。そして、その計測設定温
度はマイクロコンピュータ26に入力されて記憶される。
Thus, the test piece T and the sub-test piece Ta are maintained at the set temperature, and the elastic constant of the test piece T under the set temperature of high temperature (low temperature) can be obtained. Then, the measured set temperature is input to and stored in the microcomputer 26.

その状態において、鋼球案内管17の上端開口から鋼球
6を落すと、鋼球6は、鋼球案内管17内を転がり落ち、
更にその下端から基板9の開孔10及び上側断熱板3の円
孔7を通過して炉室2(冷却室102)内に落下し、試験
片Tに当たり衝撃力を加える。
In that state, when the steel ball 6 is dropped from the upper end opening of the steel ball guide tube 17, the steel ball 6 rolls down in the steel ball guide tube 17,
Further, from the lower end thereof, it passes through the opening 10 of the substrate 9 and the circular hole 7 of the upper heat insulating plate 3 and falls into the furnace chamber 2 (cooling chamber 102), and hits the test piece T to exert an impact force.

その際、生じる衝撃音は、マイクロホーン19によって
検出され、衝撃音の放射音圧信号は計測増幅器22で増幅
された上、オシロスコープ23に入力され原波形(第3図
参照)が検出表示されると共に、原波形信号は、計測に
雑音となる低周波域と高周波域とがフィルタ24により除
去されてからスペクトル分析器25に入力される。スペク
トル分析器25においては、第4図に示すようなフーリエ
スペクトルが得られ、更に高速フーリエ変換法により材
料の1次、2次、3次・・・の曲げモードの固有振動数
ω1,ω2,ω3・・・及び1次、2次、3次・・・の捩
じりモードの固有振動数ωT1,ωT2,ωT3・・・が得ら
れる。
At that time, the generated impact sound is detected by the microphone 19, the radiated sound pressure signal of the impact sound is amplified by the measurement amplifier 22, and then input to the oscilloscope 23 to detect and display the original waveform (see FIG. 3). At the same time, the original waveform signal is input to the spectrum analyzer 25 after the low frequency region and the high frequency region that become noise in measurement are removed by the filter 24. In the spectrum analyzer 25, a Fourier spectrum as shown in FIG. 4 is obtained, and the natural frequencies ω 1 , ω of the bending modes of the first, second, third, ... 2 , ω 3 ... And natural frequencies ω T1 , ω T2 , ω T3 ... Of the torsion modes of the first, second, third, ...

このようにして得られたそれらの固有振動数ω1
ω2,ω3・・・;ωT1,ωT2,ωT3・・・に基づいて下
記のようにして縦弾性定数E、横弾性定数G、ポアソン
比νがマイクロコンピュータ26において演算され、記憶
されている設定温度における試験片の材料の縦弾性定数
E、横弾性定数G、ポアソン比νが同時に求められる。
Their natural frequencies ω 1 , obtained in this way,
Based on ω 2 , ω 3 ...; ω T1 , ω T2 , ω T3 ..., the longitudinal elastic constant E, the transverse elastic constant G, and the Poisson's ratio ν are calculated in the microcomputer 26 and stored as follows. The longitudinal elastic constant E, the lateral elastic constant G, and the Poisson's ratio ν of the material of the test piece at the set temperature are determined at the same time.

一般に、上記の試験片のような両端自由支持梁の場合
の曲げ固有振動数は、Timoshenko梁の理論を用いて解析
すると、下式のようになる。
In general, the bending natural frequency in the case of a beam with both ends freely supported such as the above-mentioned test piece is as follows when analyzed using the theory of Timoshenko beam.

ここで、E:縦弾性定数 G:横弾性定数 ρ:密度 A:断面積 I:断面二次モーメント λn:Euler梁の振動方程式の固有値 (λ1=4.730,λ2=7.835,λ =10.966) κ′:試験片断面形状による剪断応力の効果を表わす係
数(長方形の場合は、κ′=2/3)である。
Where E: longitudinal elastic constant G: lateral elastic constant ρ: density A: cross-sectional area I: second moment of area λn: Euler beam eigenvalue (λ1= 4.730, λ2= 7.835, λ = 10.966) κ ′: A factor indicating the effect of shear stress due to the cross-sectional shape of the test piece
It is a number (κ ′ = 2/3 for a rectangle).

又、 である。or, Is.

ここで、hn(x)はEuler−Bernoulli梁の両端自由振
動のモード関数であり、「″」はxによる2階微分を、
lは梁の長さを夫々表わす。
Here, h n (x) is a mode function of free vibration at both ends of the Euler-Bernoulli beam, and “″” is the second derivative with respect to x,
l represents the length of each beam.

hn(x)=cosλn・sinλn(x/l) −coshλn・sinλn(x/l) +cosλn・sinhλn(x/l) −coshλn・sinhλn(x/l) −sinλn・cosλn(x/l) +sinhλn・cosλn(x/l) −sinλn・coshλn(x/l) +sinhλn・coshλn(x/l) 又は、一般に、上記の試験片のような両端自由支持梁
の場合の捩じり固有振動数は、長方形断面を有する棒の
捩じり振動についてのSaint−Venantのの理論を用いて
解析すると、下式のようになる。
h n (x) = cosλ n · sinλ n (x / l) -coshλ n · sinλ n (x / l) + cosλ n · sinhλ n (x / l) -coshλ n · sinhλ n (x / l) -sinλ n · cosλ n (x / l ) + sinhλ n · cosλ n (x / l) -sinλ n · coshλ n (x / l) + sinhλ n · coshλ n (x / l) or, in general, as in the above test piece The natural frequency of torsion in the case of a free-supporting beam with both ends is as shown in the following equation when analyzed using Saint-Venant's theory of torsional vibration of a rod having a rectangular cross section.

ここで、 a:断面幅 b:断面高 又、G=E/{2(1+ν)} 従って、上式からポアソン比νが算出される。 here, a: cross section width b: cross section height G = E / {2 (1 + ν)} Therefore, the Poisson's ratio ν is calculated from the above equation.

材料が異方性材料である場合には、3方向より採取し
た3個の角棒状試験片を用いれば、異方性弾性係数を求
めることができる。
When the material is an anisotropic material, the anisotropic elastic modulus can be obtained by using three rectangular rod-shaped test pieces taken from three directions.

〔発明の効果〕〔The invention's effect〕

この発明によれば、簡単な方法及び装置により高温又
は低温においての材料ま弾性係数、即ち縦弾性係数、横
弾性係数及びポアソン比を1回の衝撃試験において同時
に且つ高精度に測定し得る。
According to the present invention, the elastic modulus of a material at a high temperature or a low temperature, that is, the longitudinal elastic modulus, the lateral elastic modulus, and the Poisson's ratio can be simultaneously and accurately measured in one impact test by a simple method and apparatus.

特に、衝撃対が落下球体であることにより、試験片の
被衝撃面に対して常に球面接触による衝撃が与えられる
ので、発生音圧レベル、スペクトルの安定した計測を行
うことができると共に、衝撃は、加熱炉・冷却器外部よ
りの球体の落下によるので、衝撃手段としては、環境的
にも空間的にも制約がある炉室・冷却室内に特別の装置
を設ける必要がなく、極めて簡単な手段である。
In particular, since the impact pair is a falling sphere, the impact surface of the test piece is always impacted by the spherical contact, so that the generated sound pressure level and spectrum can be measured stably, and the impact Since the sphere falls from the outside of the heating furnace / cooler, there is no need to install a special device in the furnace / cooling chamber, which is environmentally and spatially restricted, as an impact means, and it is an extremely simple means. Is.

そして、、衝撃音検出口が形成されていることによ
り、炉室・冷却室内のような環境的に厳しい場所に設け
ることが現実には困難である衝撃音検出用マイクロホー
ンを加熱炉・冷却器の外部に設置することが可能とな
り、高温・低温の試験片から発生する衝撃音をマイクロ
ホーンをで測定することができる。
Further, since the impact sound detection port is formed, it is actually difficult to install the impact sound detection microphone in an environmentally severe place such as a furnace chamber / cooling chamber. Since it can be installed outside, the impact sound generated from high and low temperature test pieces can be measured with a microphone.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の実施例における弾性係数計測装置
の主要部の部分断面斜視図、 第2図は、この発明の実施例における弾性係数計測装置
の構成ブロック図、 第3図は、この発明の実施例において得られる衝撃音の
放射音圧の原波形図、 第4図は、第3図の衝撃音の放射音圧の原波形から得ら
れるフーリエスペクトル図である。 1:赤外線イメージ炉、101:低温冷却器、2:炉室 102:冷却室、3:上側断熱板、4:下側断熱板 5:長孔、6:鋼球、7:円孔 8:温度・衝撃音検出孔、9:基板、10:開孔 11,13:支柱、12:案内杆、14:滑動ブロック 15:吊下げ棒、16:耐熱性糸、116:耐寒性糸 17:鋼球案内管、18:熱電対 19:マイクロホーン、20:温度計 21:温度制御器、22:計測増幅器、24:フィルタ 25:スペクトル分析器、26:マイクロコンピュータ T:試験片、Ta:副試験片
FIG. 1 is a partial cross-sectional perspective view of a main part of an elastic coefficient measuring device according to an embodiment of the present invention, FIG. 2 is a block diagram of the elastic coefficient measuring device according to an embodiment of the present invention, and FIG. FIG. 4 is an original waveform diagram of radiated sound pressure of impact sound obtained in the embodiment of the invention, and FIG. 4 is a Fourier spectrum diagram obtained from the original waveform of radiated sound pressure of impact sound of FIG. 1: Infrared image furnace, 101: Low temperature cooler, 2: Furnace chamber 102: Cooling chamber, 3: Upper heat insulating plate, 4: Lower heat insulating plate 5: Long hole, 6: Steel ball, 7: Circular hole 8: Temperature・ Impact sound detection hole, 9: substrate, 10: hole 11, 13: strut, 12: guide rod, 14: sliding block 15: suspension rod, 16: heat resistant thread, 116: cold resistant thread 17: steel ball Guide tube, 18: Thermocouple, 19: Microphone, 20: Thermometer, 21: Temperature controller, 22: Measurement amplifier, 24: Filter 25: Spectrum analyzer, 26: Microcomputer T: Test piece, Ta: Sub-test piece

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高温加熱炉中又は低温冷却器中において被
測定材料の試験片を耐熱性糸又は耐寒性糸で吊り下げ、
所定温度に維持し、高温加熱炉又は低温冷却器の外部よ
り内部へ入れた球体を試験片に向って落下させ、試験片
に衝突させて衝撃音を発生させ、衝撃音検出口を通して
高温加熱炉又は低音冷却器の外部に出る衝撃音を検出
し、その衝撃音の放射音圧の原波形を高速フーリエ変換
を用いてフーリエスペクトルを求めることにより試験片
の曲げ振動及び捩り振動の高次モードまでの固有振動数
を検出し、その固有振動数に基づいて被測定材料の弾性
係数を演算計測する衝撃音による固定材料の弾性係数計
測方法。
1. A test piece of a material to be measured is hung with a heat resistant thread or a cold resistant thread in a high temperature heating furnace or a low temperature cooler,
A sphere kept inside a high-temperature heating furnace or low-temperature cooler, which is maintained at a predetermined temperature, drops toward the test piece and collides with the test piece to generate an impact sound. Or, by detecting the impact sound that comes out of the low-frequency cooler and determining the Fourier spectrum of the original waveform of the radiated sound pressure of the impact sound by using the fast Fourier transform, the bending vibration and the torsional vibration of the test piece up to the higher modes A method for measuring the elastic coefficient of a fixed material by impact sound, in which the natural frequency of the material is detected and the elastic coefficient of the material to be measured is calculated and measured based on the natural frequency.
【請求項2】衝撃音検出口及び衝撃用球体落下口を有す
る高温加熱炉又は低音冷却器、高温加熱炉の炉室内又は
低温冷却器の冷却室内に間隔をあけて垂下げられた被測
定材料試験片吊下用の2本の耐熱性又は耐寒性糸、試験
片に向って落下される球体、試験片に対する球体の衝撃
音を高温加熱炉又は低音冷却器に形成された衝撃音検出
口を通して検出する手段、前記衝突音の放射音圧の原波
形を高速フーリエ変換法による周波数分析により試験片
の曲げ振動及び捩り振動の高次モードまでの固有振動数
を検出する分析器及びその固有振動数に基づいて被測定
材料の弾性係数を算出する演算装置から構成された衝撃
音による固定材料の弾性係数計測装置。
2. A high temperature heating furnace or a low temperature cooler having an impact sound detecting port and a ball dropping port for impact, a material to be measured suspended in a furnace chamber of a high temperature heating furnace or a cooling chamber of a low temperature cooler at intervals. Two heat-resistant or cold-resistant yarns for hanging the test piece, a sphere dropped toward the test piece, and the impact sound of the sphere on the test piece through the impact sound detection port formed in the high-temperature heating furnace or low-temperature cooler. A means for detecting, an analyzer for detecting natural frequencies up to higher modes of bending vibration and torsional vibration of a test piece by frequency analysis of the original waveform of radiated sound pressure of the collision sound by a fast Fourier transform method, and its natural frequency A device for measuring the elastic coefficient of a fixed material by an impact sound, which comprises an arithmetic device for calculating the elastic coefficient of a material to be measured based on.
JP2038306A 1990-02-21 1990-02-21 Method and apparatus for measuring elastic modulus of solid material by impact sound Expired - Lifetime JPH0820343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2038306A JPH0820343B2 (en) 1990-02-21 1990-02-21 Method and apparatus for measuring elastic modulus of solid material by impact sound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2038306A JPH0820343B2 (en) 1990-02-21 1990-02-21 Method and apparatus for measuring elastic modulus of solid material by impact sound

Publications (2)

Publication Number Publication Date
JPH03243845A JPH03243845A (en) 1991-10-30
JPH0820343B2 true JPH0820343B2 (en) 1996-03-04

Family

ID=12521618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2038306A Expired - Lifetime JPH0820343B2 (en) 1990-02-21 1990-02-21 Method and apparatus for measuring elastic modulus of solid material by impact sound

Country Status (1)

Country Link
JP (1) JPH0820343B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102048337B1 (en) * 2018-08-20 2019-11-25 선문대학교 산학협력단 Apparatus and Method for Non Destructive for Measuring the Dynamic Modulus By Using Impulse-excitation Technique Under Cryogenic Conditions

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270552A (en) * 2006-03-31 2007-10-18 Univ Waseda Signal processing method, signal processing program and recording medium
DE102009055661A1 (en) * 2009-11-25 2011-05-26 Eos Gmbh Electro Optical Systems Method for producing a three-dimensional object
KR101955439B1 (en) * 2018-08-30 2019-05-30 선문대학교 산학협력단 Specimen characteristics measuring device for measuring characteristics by striking specimen while controlling temperature of specimen
KR101935932B1 (en) * 2018-09-21 2019-04-03 선문대학교 산학협력단 Method for measuring dynamic elasticity using iet technique for cylinder shape

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166945A (en) * 1984-09-10 1986-04-05 Sumitomo Electric Ind Ltd Method and device for measuring young's modulus and internal friction
JPH0646176B2 (en) * 1987-06-20 1994-06-15 勝 坂田 Brittle materials High temperature impact fracture strength measurement method and equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102048337B1 (en) * 2018-08-20 2019-11-25 선문대학교 산학협력단 Apparatus and Method for Non Destructive for Measuring the Dynamic Modulus By Using Impulse-excitation Technique Under Cryogenic Conditions

Also Published As

Publication number Publication date
JPH03243845A (en) 1991-10-30

Similar Documents

Publication Publication Date Title
JPH0127379B2 (en)
US20160108729A1 (en) Method and device for the concurrent determination of fluid density and viscosity in-situ
JP3159694B2 (en) Method of detecting and measuring changes in reactor wall thickness using wall vibration
Heritage et al. Impulse excitation technique for dynamic flexural measurements at moderate temperature
CN108427015A (en) A kind of test device and test method of impingement accelerometer thermal sensitivity drift
JPH0820343B2 (en) Method and apparatus for measuring elastic modulus of solid material by impact sound
US20070157698A1 (en) System and method for the elastic properties measurement of materials
Lannes et al. On the relationship between pipe accelerance and the void fraction of internal two-phase flow
Lambaré et al. Cavitation in superfluid helium-4 at low temperature
Delauré et al. A simultaneous PIV and heat transfer study of bubble interaction with free convection flow
Liu et al. Sound and vibration in granular materials
US3176505A (en) Vibration energy transfer techniques using stretched line element
JP3917359B2 (en) Nondestructive compression test method and nondestructive compression test equipment for concrete
Hamdy et al. A new high-temperature fretting wear test rig
EP0429446A1 (en) Non-destructive evaluation of ropes by using transverse vibrational wave method
Lee et al. Experimental cross verification of damping in three metals: The internal damping of aluminum, steel and brass in longitudinal vibration was measured using five techniques and theories to verify the easier technique
CN108802195B (en) Test device and method for measuring transverse wave velocity of core sample
JP2004037411A (en) Nondestructive compressive concrete strength measuring method and system
RU1770814C (en) Method of creep testing of materials
US6756548B2 (en) Apparatus and method for measuring mass in a microgravity environment
Date et al. Measurement of the elasticity and ultrasound velocities of steel
RU2791836C1 (en) Device for concrete strength measurement
JPH11108901A (en) Method and apparatus for measuring young's modulus of clad material by impulsive sound
US20240142410A1 (en) Improved support for impact measurements
KR102048337B1 (en) Apparatus and Method for Non Destructive for Measuring the Dynamic Modulus By Using Impulse-excitation Technique Under Cryogenic Conditions