JPH08202870A - Picture processing method - Google Patents

Picture processing method

Info

Publication number
JPH08202870A
JPH08202870A JP7013479A JP1347995A JPH08202870A JP H08202870 A JPH08202870 A JP H08202870A JP 7013479 A JP7013479 A JP 7013479A JP 1347995 A JP1347995 A JP 1347995A JP H08202870 A JPH08202870 A JP H08202870A
Authority
JP
Japan
Prior art keywords
straight line
image
density change
pixel
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7013479A
Other languages
Japanese (ja)
Inventor
Kunihiko Kido
邦彦 木戸
Koichi Sano
耕一 佐野
Junichi Taguchi
順一 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP7013479A priority Critical patent/JPH08202870A/en
Publication of JPH08202870A publication Critical patent/JPH08202870A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a noise reduction picture while minimizing the blur of an edge and density irregularity to a picture of low S/N. CONSTITUTION: This method executes a step 101 giving desired low pass filter processing to picture data, a step 102 calculating the magnitude of density change in the direction of straight line components concerning each straight line component passing through the picture element by each picture element of a low-pass-filter-processed picture, a step 103 obtaining the straight line component minimizing density change and a step 104 executing one-dimensional nonlinear smoothing processing by limiting to the straight line component of an original picture provided with the same direction as the straight line component of minimum density change obtained from the low-pass-filter-processes picture by each picture element of the original picture. Thus, as the straight line component of minimum density change in the low-pass-filter-processed picture is detected, a straight line component which is not affected by noise can be detected to one-dimensionally smooth by limiting to the straight line component provided with the directions. Thereby, while saving a false picture made by the structuring of noise components and minimizing the deterioration of space resolution, noise is effectively reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、画像処理分野のノイズ
低減処理に関し、とくに画像のぼけや濃度むらを引き起
こさずにノイズ低減させる処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to noise reduction processing in the field of image processing, and more particularly to a processing method for reducing noise without causing image blurring and density unevenness.

【0002】[0002]

【従来の技術】ノイズ低減処理は、基本的に濃度の急激
な変動を滑らかにする働きがあるため、図形の輪郭線を
ぼかす効果を持つ。そこで、図形の輪郭線を何らかの方
法で大まかに推定し、それを損なわないやり方で平滑化
を施す、エッジ保存平滑化と呼ばれるノイズ低減処理が
ある。この種のノイズ低減処理は、従来から色々な方法
が考案されている。代表的なものとしてLLSE法があ
る(J-S.Lee,DigitalImage Enhancement and Noise Fil
tering by Use of Local Satistics, IEEE,Trans on P
attern Anal.Machine Intell.,Vol.PAMI-2 No.2, Marc
h,1980)。
2. Description of the Related Art Noise reduction processing basically has the function of smoothing abrupt changes in density, and therefore has the effect of blurring the outline of a figure. Therefore, there is a noise reduction process called edge-preserving smoothing, which roughly estimates the contour line of a figure by some method and performs smoothing in a manner that does not impair it. Various methods have been conventionally devised for this type of noise reduction processing. A typical example is the LLSE method (JS. Lee, Digital Image Enhancement and Noise Fil.
tering by Use of Local Satistics, IEEE, Trans on P
attern Anal.Machine Intell., Vol.PAMI-2 No.2, Marc
h, 1980).

【0003】この方法は、局所分散値により、局所領域
においてエッジ構造があるかどうかの度合いを定義し
て、そのエッジ構造の度合いに応じて平滑化の効果を調
節するものである。具体的には、画像I(i,j)の各画素ご
と局所領域(5*5行列の25画素)の分散値σI(i,j)
を計算し、次式に従って平滑化の度合いを調節する。以
下のσはノイズレベルを表すしきい値である。
This method defines the degree of presence or absence of an edge structure in a local area based on the local variance value, and adjusts the smoothing effect according to the degree of the edge structure. Specifically, for each pixel of the image I (i, j), the variance value σ I (i, j) of the local region (25 pixels of the 5 * 5 matrix)
Is calculated and the degree of smoothing is adjusted according to the following formula. The following σ is a threshold value representing the noise level.

【0004】 I~(i,j) = c(i,j)(I(i,j)-mI(i,j))+mI(i,j) c(i,j) = σI(i,j)2/(σI(i,j)22) mI(i,j) = (Σ2 k,l=-2I(i+k,j+l))/5 σI(i,j)= (Σ2 k,l=-2(I(i+k,j+l)-mI(i,j))2)/5 この式は、分散値σI(i,j)がσに比して十分大きい場合
には、I~(i,j)≒I(i,j)であり、分散値σI(i,j)がσに
比して十分小さい場合には、I~(i,j)≒mI(i,j)という具
合に、元の画素値から単純平均値の間にある値が分散値
σI(i,j)に応じて決定される。
I ~ (i, j) = c (i, j) (I (i, j) -m I (i, j)) + m I (i, j) c (i, j) = σ I (i, j) 2 / (σ I (i, j) 2 + σ 2 ) m I (i, j) = (Σ 2 k, l = -2 I (i + k, j + l)) / 5 σ I (i, j) = (Σ 2 k, l = -2 (I (i + k, j + l) -m I (i, j)) 2 ) / 5 This equation gives the variance value σ I ( If i, j) is sufficiently larger than σ, then I ~ (i, j) ≈ I (i, j), and the variance value σ I (i, j) is sufficiently smaller than σ. In this case, a value between the original pixel value and the simple mean value is determined according to the variance value σ I (i, j), such as I ~ (i, j) ≈ m I (i, j). To be done.

【0005】画像の局所構造をもう少し精密に考慮した
うえで、平滑化を行う方法としては局所テンプレ−トマ
ッチングを利用した方法がある(鳥脇純一郎著 「画像
理解のためのディジタル画像処理[Ι]昭晃堂、平成元
年11月30日 pp112〜114)。
A method using local template matching is a method for smoothing after considering the local structure of an image with a little more precision (Junichiro Toriwaki "Digital image processing for image understanding [Ι]). Shokodo, November 30, 1989, pp112-114).

【0006】この方法は、画像の局所領域におけるエッ
ジや線の典型的なパタ−ンをテンプレ−トに用意してお
き、画像の各画素(i,j)の近傍U((i,j))の
入力濃度値とテンプレ−トマッチングを行い、近傍U
((i,j))の局所構造に適合したテンプレ−トを重
み関数として平滑化処理を行う方法である。もう少し詳
しく説明すると、まずあらかじめいくつかの部分画像の
サンプル(テンプレ−ト)を用意しておく。一方、画素
(i,j)の近傍U((i,j))の入力濃度値を一定
の順序で並べたものを1次元ベクトルとみなしFijと表
す。テンプレ−トの方も同様な順序で1次元ベクトル化
されているとし、それを、A1,A2,…,Amとする。
このとき、(i,j)における各テンプレ−トの適合度
を表す関数Sに対して、 k0=minS(Fij,Ak) を計算して、テンプレ−トAk0を重み関数として画素
(i,j)の近傍U((i,j))に含まれる画素値か
ら平滑化処理を行う。ここで、適合度を表す関数Sの具
体的な形は多種多様なものが、特にパタ−ン認識や統計
学における数値分類の分野で工夫されている。
In this method, a typical pattern of edges and lines in a local area of an image is prepared in a template, and the neighborhood U ((i, j) of each pixel (i, j) of the image is prepared. ) Template matching is performed with the input density value of
This is a method of performing smoothing processing using a template adapted to the local structure of ((i, j)) as a weighting function. To explain in more detail, first, some partial image samples (templates) are prepared in advance. On the other hand, the input density values of the neighborhood U ((i, j)) of the pixel (i, j) arranged in a fixed order are regarded as a one-dimensional vector and are represented as F ij . It is assumed that the template is also one-dimensionally vectorized in the same order, and it is A 1 , A 2 , ..., Am .
At this time, k 0 = minS (F ij , A k ) is calculated for the function S representing the goodness of fit of each template in (i, j), and the template A k0 is used as a weighting function for the pixel. Smoothing processing is performed from the pixel values included in the neighborhood U ((i, j)) of (i, j). Here, a variety of concrete forms of the function S representing the goodness of fit are devised especially in the field of pattern recognition and numerical classification in statistics.

【0007】[0007]

【発明が解決しようとする課題】上記、局所テンプレ−
トマッチング法では、テンプレ−トのサイズが小さい
と、局所構造に引きづられて大域的な構造を引き出すこ
とができず、ノイズによる偽構造を強調し構造化、可視
化してしまう恐れがある。逆に、テンプレ−トのサイズ
を大きくすると画像がぼけるという問題があった。また
上記、LLSE法では、画像の構造を局所的な分散値で
捉えるので、エッジかどうかを判断するだけでその形態
的な情報は考慮に入れてない。このため、大域的な構造
を引き出すため、分散値を計算する領域を大きくすると
画像がぼけやすく、逆に、分散値を計算する領域を小さ
くすると、ノイズによる変動に敏感になりノイズ低減効
果が小さくなるという問題があった。本特許の目的は、
ノイズに埋もれた画像デ−タに対して、画像の大域的な
構造を浮きだたせ鮮明にさせながら、画像の詳細な構造
をなるべく保存してノイズ低減することである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the matching method, if the template size is small, it is not possible to draw out a global structure due to the local structure, and there is a risk that a false structure due to noise will be emphasized and structured and visualized. On the contrary, there is a problem that the image is blurred when the size of the template is increased. Further, in the LLSE method, since the structure of the image is captured by the local variance value, only the edge is determined and the morphological information is not taken into consideration. For this reason, in order to bring out the global structure, if the area for calculating the variance value is made large, the image tends to be blurred. Conversely, if the area for calculating the variance value is made small, it becomes sensitive to fluctuations due to noise and the noise reduction effect is small. There was a problem of becoming. The purpose of this patent is
It is to reduce the noise by preserving the detailed structure of the image as much as possible while making the global structure of the image stand out and be sharp against the image data buried in the noise.

【0008】[0008]

【課題を解決するための手段】画像デ−タに所望のロー
パスフィルタ処理を施すステップと、前記ローパスフィ
ルタ処理した画像の各画素ごとに、その画素を通る各々
の直線成分について、その直線成分方向の濃度変化の大
きさを計算し、濃度変化の大きさが最小になる直線成分
を求めるステップと、原画像の各画素ごとに、前記ロー
パスフィルタ処理した画像より求めた濃度変化の大きさ
が最小な直線成分と同一方向を持つ原画像の直線成分に
限定して1次元非線形平滑化処理を行うステップを実行
する。
A step of subjecting image data to a desired low-pass filter processing, and for each pixel of the image subjected to the low-pass filter processing, for each linear component passing through the pixel, the linear component direction The step of calculating the magnitude of the density change of, and obtaining the straight line component that minimizes the magnitude of the density change, and the magnitude of the density change obtained from the low-pass filtered image for each pixel of the original image is the minimum. The step of performing the one-dimensional nonlinear smoothing process is limited to the straight line component of the original image having the same direction as the straight line component.

【0009】[0009]

【作用】ローパスフィルタ画像では、詳細な構造やノイ
ズ成分が消失し大域的な構造が現われる。従って、ロー
パスフィルタ画像で濃度変化の最小な直線成分を求めれ
ば、ノイズの影響のない大域的な等濃度線の方向を捉え
ることになる。このため、原画像に対して、ローパスフ
ィルタ画像の各画素ごと求めた直線成分と同一方向の直
線成分で1次元非線形平滑化処理を施せば、ノイズの影
響のない大域的な直線方向に平滑化を合わせ込むことに
なり、ノイズ成分に引きづられることのない、本来持つ
べき方向への平滑化となりノイズを構造化、可視化させ
ることくなく大域的な構造を浮き出させることになる。
また、明確なエッジ構造部では、ゆるくローパスフィル
タをかけても、エッジの走行線方向は変化しないため、
その方向に1次元平滑化してもエッジを壊すことはな
い。
In the low-pass filter image, the detailed structure and the noise component disappear and a global structure appears. Therefore, if the straight line component with the minimum density change is obtained in the low-pass filter image, the direction of the global iso-concentration line without the influence of noise can be captured. Therefore, if the original image is subjected to a one-dimensional non-linear smoothing process with a straight line component in the same direction as the straight line component obtained for each pixel of the low-pass filter image, it is smoothed in the global straight line direction without the influence of noise. Therefore, it becomes a smoothing in the direction that it should have, without being attracted to the noise component, and the global structure is exposed without structuring and visualizing the noise.
Also, in the clear edge structure part, even if a low-pass filter is loosely applied, the traveling line direction of the edge does not change,
One-dimensional smoothing in that direction does not destroy the edge.

【0010】[0010]

【実施例】本発明の実施例を第1図を用いて説明する。
対象となる2次元画像はI(i,j)で表わす。また、図2の
5*5マトリクスは、直線成分を表現したものであり、
以下の実施例ではこのマトリックスで表現された直線成
分について濃度変化を調べる。
EXAMPLE An example of the present invention will be described with reference to FIG.
The target two-dimensional image is represented by I (i, j). In addition, the 5 * 5 matrix in FIG. 2 represents a linear component,
In the following examples, the change in density is examined for the linear component expressed by this matrix.

【0011】[ステップ101] 2次元画像I(i,j)に
ローパスフィルタLを施し、その結果をIL(i,j)とする。
ここでローパスフィルタLは、数1に示す3*3マトリ
クスMによるコンボリュ−ションとした。
[Step 101] The low-pass filter L is applied to the two-dimensional image I (i, j), and the result is IL (i, j).
Here, the low-pass filter L is a convolution by the 3 * 3 matrix M shown in Formula 1.

【0012】[0012]

【数1】 [Equation 1]

【0013】[ステップ102] ローパスフィルタ処
理画像ILの各画素(i,j)ごとに、図2に示される8方向
の直線成分について、濃度変化の大きさE(i)(i=1〜8)
を、以下の数2にしたがって計算する。
[Step 102] For each pixel (i, j) of the low-pass filtered image IL, the magnitude E (i) (i = 1 to 8) of the density change is calculated for the linear components in the eight directions shown in FIG. )
Is calculated according to the following equation 2.

【0014】 Δk,l(i,j)=|IL(i+k,j+l)-IL(i,j)|(k,l=-2〜2) ・・・・(数2) 方向201: E(1)=Δ0,1(i,j)+Δ0,-1(i,j)+Δ0,2(i,
j)+Δ0,-2(i,j) 方向202: E(2)=Δ-1,1(i,j)+Δ+1,-1(i,j)+Δ
+1,-2(i,j)+Δ-1,+2(i,j) 方向203: E(3)=Δ-1,1(i,j)+Δ+1,-1(i,j)+Δ
-2,+2(i,j)+Δ+2,-2(i,j) 方向204: E(4)=Δ-1,1(i,j)+Δ+1,-1(i,j)+Δ
+2,-1(i,j)+Δ-2,+1(i,j) 方向205: E(5)=Δ1,0(i,j)+Δ-1,0(i,j)+Δ2,0(i,
j)+Δ-2,0(i,j) 方向206: E(6)=Δ-1,-1(i,j)+Δ+1,+1(i,j)+Δ
+2,+1(i,j)+Δ-2,-1(i,j) 方向207: E(7)=Δ-1,-1(i,j)+Δ+1,+1(i,j)+Δ
+2,+2(i,j)+Δ-2,-2(i,j) 方向208: E(8)=Δ-1,-1(i,j)+Δ+1,+1(i,j)+Δ
+1,+2(i,j)+Δ-2,-1(i,j) [ステップ103]濃度変化の大きさE(i)(i=1〜8)が最
小となる直線成分を表す5画素の濃度値を、原画像Iか
ら取り出しp(i)(i=1〜5)とおく。例えば、E(1)が最小で
あるなら次の数3ようになる。
Δ k, l (i, j) = | IL (i + k, j + l) -IL (i, j) | (k, l = −2 to 2) ... (Equation 2) Direction 201: E (1) = Δ 0,1 (i, j) + Δ 0, -1 (i, j) + Δ 0,2 (i,
j) + Δ 0, -2 (i, j) direction 202: E (2) = Δ -1,1 (i, j) + Δ + 1, -1 (i, j) + Δ
+ 1, -2 (i, j) + Δ -1, + 2 (i, j) direction 203: E (3) = Δ -1,1 (i, j) + Δ + 1, -1 (i, j) + Δ
-2, + 2 (i, j) + Δ + 2, -2 (i, j) direction 204: E (4) = Δ -1,1 (i, j) + Δ + 1, -1 (i, j) + Δ
+ 2, -1 (i, j) + Δ -2, + 1 (i, j) direction 205: E (5) = Δ 1,0 (i, j) + Δ -1,0 (i, j) + Δ 2,0 (i,
j) + Δ -2,0 (i, j) direction 206: E (6) = Δ -1, -1 (i, j) + Δ + 1, + 1 (i, j) + Δ
+ 2, + 1 (i, j) + Δ -2, -1 (i, j) direction 207: E (7) = Δ -1, -1 (i, j) + Δ + 1, + 1 (i , j) + Δ
+ 2, + 2 (i, j) + Δ -2, -2 (i, j) direction 208: E (8) = Δ -1, -1 (i, j) + Δ + 1, + 1 (i , j) + Δ
+ 1, + 2 (i, j) + Δ -2, -1 (i, j) [Step 103] Represents a straight line component that minimizes the magnitude E (i) of density change (i = 1 to 8) The density value of 5 pixels is extracted from the original image I and is set as p (i) (i = 1 to 5). For example, if E (1) is the minimum, the following equation 3 is obtained.

【0015】 p(1)=I(i,j+2),p(2)=I(i,j+1),p(3)=I(i,j),p(4)=I(i,j-1),p(5)=I(i,j-2) ・・・(数3) [ステップ104]ステップ103で決定された5画素
の濃度値p(i)(i=1〜5)からLLSE法により平滑化処理
を行なう。この処理を数式であらすと(数4)となる。
P (1) = I (i, j + 2), p (2) = I (i, j + 1), p (3) = I (i, j), p (4) = I ( i, j-1), p (5) = I (i, j-2) (Equation 3) [Step 104] 5 pixel density value p (i) (i = 1 determined in Step 103) The smoothing process is performed by the LLSE method from (5) to (5). If this processing is expressed by a mathematical expression, it becomes (Equation 4).

【0016】 I~(i,j) = c(i,j)(I(i,j)-mI(i,j))+mI(i,j) c(i,j) = σI(i,j)2/(σI(i,j)22) mI(i,j) = (Σ5 k=1p(k))/5 σI(i,j)= (Σ5 k=1(p(k)-mI(i,j))2)/5 ・・・(数4) [ステップ105]I~(i,j)を出力画像とする。I ~ (i, j) = c (i, j) (I (i, j) -m I (i, j)) + m I (i, j) c (i, j) = σ I (i, j) 2 / (σ I (i, j) 2 + σ 2 ) m I (i, j) = (Σ 5 k = 1 p (k)) / 5 σ I (i, j) = ( Σ 5 k = 1 (p (k) -m I (i, j)) 2 ) / 5 (Equation 4) [Step 105] I to (i, j) are output images.

【0017】ステップ102から103における濃度変
化が最小な方向成分の抽出を原画像で行った場合、ノイ
ズの影響により図3(a)のように検出方向がばらばら
で、本来の大域的な方向にそろわないことがある。従っ
て、もしこのばらばらの検出方向で一次元平滑化して
も、ノイズ低減効果が弱いばかりか、最悪の場合、ノイ
ズを故意に構造化してしまう可能性もある。本実施例で
は、まず原画像に3*3マトリクスによる単純平均処理
を行いノイズを低減させる。このノイズ低減した画像か
ら濃度変化の最小な直線方向を見つけるため、図3
(b)のようなノイズの影響がない方向成分を抽出で
き、本来の画像の持つべき方向へ平滑化の方向がそろ
う。これにより、ノイズを構造化することなくノイズ低
減することができる。ここで、本実施例ステップ101
のローパスフィルタLの特性を変えれば、処理結果の画
質を変化させることができる。大域的な構造を浮き上が
らせるには、ローパスフィルタを強めて、高周波成分を
なるべくカットすればよく、逆に詳細な構造を残したけ
ればローパスフィルタを弱めて高周波成分をなるべく多
く取り込めばよい。
When the extraction of the direction component having the smallest density change in steps 102 to 103 is performed on the original image, the detection directions are different due to the influence of noise, and the original global direction is obtained. There are things that are not available. Therefore, even if one-dimensional smoothing is performed in the disparate detection directions, not only the noise reduction effect is weak, but in the worst case, noise may be intentionally structured. In this embodiment, first, the original image is subjected to a simple averaging process using a 3 * 3 matrix to reduce noise. In order to find the straight line direction in which the density change is the minimum from this noise-reduced image, FIG.
A direction component that is not affected by noise as in (b) can be extracted, and the smoothing direction is aligned with the original direction of the image. This makes it possible to reduce noise without structuring the noise. Here, step 101 of the present embodiment
By changing the characteristics of the low-pass filter L, the image quality of the processing result can be changed. In order to raise the global structure, the low-pass filter should be strengthened and the high-frequency component should be cut as much as possible. Conversely, if the detailed structure should be left, the low-pass filter should be weakened and the high-frequency component should be taken in as much as possible.

【0018】例えば、ステップ101の3*3マトリク
スMを、
For example, the 3 * 3 matrix M of step 101 is

【0019】[0019]

【数5】 (Equation 5)

【0020】とすれば、ローパス効果が弱まり、Then, the low-pass effect is weakened,

【0021】[0021]

【数6】 (Equation 6)

【0022】とすれば、さらにローパス効果が弱くな
り、処理画像の画質は原画像に近づく。また、本実施例
では画像自体にコンボリュ−ション処理を施すことによ
ってローパスフィルタ処理を行ったが、周波数空間上で
所望の帯域を通過させるようなフィルタ処理を施しても
よい。
If so, the low-pass effect becomes weaker and the quality of the processed image approaches that of the original image. Further, in the present embodiment, the low-pass filter processing is performed by performing the convolution processing on the image itself, but the filter processing may be performed so as to pass a desired band in the frequency space.

【0023】また、以上のステップ105では、出力画
像としてステップ104の値をそのまま用いたが、その
他にもステップ104の値を主に含み、他の値を多少考
慮したものを出力画像とすることもできる。例えば、上
記ステップ101のローパス画像の値を20%含み、ステ
ップ104で得た画像を80%含む画像を最終出力として
もよい。また、ステップ104で得た画像に、ローパス
フィルタをかけたものを最終出力にしたりすることもで
きる。
Further, in the above step 105, the value of step 104 is used as it is as the output image, but in addition to that, the value of step 104 is mainly included, and other values are taken into consideration in the output image. You can also For example, the final output may be an image containing 20% of the low-pass image value of step 101 and 80% of the image obtained in step 104. Alternatively, the image obtained in step 104 may be low-pass filtered to be the final output.

【0024】[0024]

【発明の効果】本発明により、ノイズに埋もれた画像デ
−タに対して、画像の大域的な構造を浮きだたせ鮮明に
させながら、画像の詳細な構造をなるべく保存してノイ
ズ低減することができる。
According to the present invention, it is possible to reduce the noise by preserving the detailed structure of the image as much as possible while making the global structure of the image stand out and clear for the image data buried in the noise. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の処理手順を示すフロ−チャ−
トである。
FIG. 1 is a flow chart showing a processing procedure of an embodiment of the present invention.
It is

【図2】本発明の実施例における直線成分を示す図であ
る。
FIG. 2 is a diagram showing a linear component in the embodiment of the present invention.

【図3】本発明の画像の局所構造の方向検出手段につい
て、その効果を説明する図である。
FIG. 3 is a diagram for explaining the effect of the image local structure direction detecting means of the present invention.

【符号の説明】[Explanation of symbols]

101:原画像にローパスフィルタ処理を施すステッ
プ。 102:各画素ごと、ローパスフィルタ処理画像から各
直線成分の濃度変化の大きさを計算するステップ。 103:濃度変化の最小な直線成分を検出するステッ
プ。 104:原画像において、ステップ103で検出した直
線成分と同一方向の直線成分に限定して1次元非線形平
滑化処理を行うステップ。 201〜208:方向成分の1つ。
101: A step of performing low-pass filter processing on the original image. 102: A step of calculating the magnitude of the density change of each linear component from the low-pass filtered image for each pixel. 103: A step of detecting a linear component having the smallest change in density. 104: A step of performing one-dimensional non-linear smoothing processing on the original image by limiting to the linear component in the same direction as the linear component detected in step 103. 201-208: One of the directional components.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田口 順一 神奈川県川崎市麻生区王禅寺1099番地 株 式会社日立製作所システム開発研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junichi Taguchi 1099 Ozenji, Aso-ku, Kawasaki-shi, Kanagawa Incorporated company Hitachi, Ltd. Systems Development Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】平滑化を行う画像処理において、画像デ−
タに所望のローパスフィルタ処理を施すステップと、前
記ローパスフィルタ処理した画像の各画素ごとに、その
画素を通る各々の直線成分について、その直線成分方向
の濃度変化の大きさを計算し、濃度変化の大きさが最小
になる直線成分を求めるステップと、原画像の各画素ご
とに、前記ローパスフィルタ処理した画像より求めた濃
度変化の大きさが最小な直線成分と同一方向を持つ原画
像の直線成分に限定して1次元非線形平滑化処理を行う
ステップを有する画像処理方法。
1. Image processing in smoothing image processing
The desired low-pass filter processing to the data, and for each pixel of the low-pass filtered image, for each linear component passing through that pixel, the magnitude of the density change in the direction of the linear component is calculated, and the density change Of a straight line component of the original image having the same direction as the straight line component having the smallest magnitude of the density change obtained from the low-pass filtered image, for each pixel of the original image. An image processing method including a step of performing one-dimensional non-linear smoothing processing limited to components.
【請求項2】上記1次元非線形平滑化処理を行うステッ
プでは、上記ローパスフィルタ処理した画像より求めた
濃度変化の大きさが最小な直線成分と同一方向を持つ原
画像の直線成分上の画素から平均値と濃度変化の大きさ
を求め、平均値と濃度変化の大きさを変数とする所望の
関数に基づいて注目画素の出力値を決定することを特徴
とする請求項1に記載の画像処理方法。
2. In the step of performing the one-dimensional non-linear smoothing process, from the pixels on the straight line component of the original image having the same direction as the straight line component having the minimum density change obtained from the low-pass filtered image, The image processing according to claim 1, wherein the average value and the magnitude of the density change are obtained, and the output value of the pixel of interest is determined based on a desired function having the average value and the magnitude of the density change as variables. Method.
【請求項3】上記所望の関数は、注目画素値をI、上記
濃度変化の大きさが最小になる直線上の画素による平均
値および濃度変化の大きさをそれぞれm,qとして、 F(q)= c(I-m)+m c = q2/(q22)(σ:定数) で定義する関数Fである請求項1に記載の画像処理方
法。
3. The desired function is F (q, where I is the pixel value of interest, and m and q are the average value and the magnitude of density change by the pixels on the straight line where the magnitude of the density change is minimum. The image processing method according to claim 1, which is a function F defined by) = c (Im) + mc = q 2 / (q 2 + σ 2 ) (σ: constant).
【請求項4】請求項1の濃度変化の大きさを計算するス
テップにおいて、次式で定義するE(i)を濃度変化の大き
さとする請求項1に記載の画像処理方法。 E(i)=Σk|pi(0)-pi(k)| ここで、pi(k)は注目画素を通り濃度変化の大きさを評
価する直線成分上にある画素値、kは濃度変化の大きさ
を評価する範囲を順序づけた値、たとえば、直線上の5
点を評価する場合、kは−2、−1、0、1、2の5つ
の値であり、pi(0)は注目画素値、pi(-1)、pi(1)は着目
画素の両隣の画素値、pi(-2)、pi(2)は着目画素の2つ
隣の画素値である。
4. The image processing method according to claim 1, wherein in the step of calculating the magnitude of density change in claim 1, E (i) defined by the following equation is used as the magnitude of density change. E (i) = Σ k | p i (0) -p i (k) | where p i (k) is the pixel value on the linear component that passes through the pixel of interest and evaluates the magnitude of the density change, k Is an ordered value of the range for evaluating the magnitude of change in density, such as 5 on a straight line.
When evaluating a point, k is five values of -2, -1, 0, 1, and 2, p i (0) is the pixel value of interest, and p i (-1) and p i (1) are Pixel values on both sides of the pixel, p i (-2) and p i (2), are pixel values on the two sides next to the pixel of interest.
【請求項5】上記ローパスフィルタ処理は、画像デ−タ
に所定のサイズのマトリクスによるコンボリュ−ション
を施すことにより行うことを特徴とする請求項1に記載
の画像処理方法。
5. The image processing method according to claim 1, wherein the low-pass filter processing is performed by subjecting image data to convolution with a matrix of a predetermined size.
【請求項6】上記所定のサイズのマトリクスは、3*3
の正方形マトリクスである請求項5に記載の画像処理方
法。
6. The matrix of the predetermined size is 3 * 3.
The image processing method according to claim 5, wherein the image is a square matrix.
【請求項7】上記ローパスフィルタ処理を、画像デ−タ
をフ−リエ変換して得られる周波数デ−タに、所望の通
過特性の関数をかけたのち、そのデ−タを逆フ−リエ変
換して行うことを特徴とする請求項1に記載の画像処理
方法。
7. In the low-pass filter processing, frequency data obtained by Fourier transforming image data is multiplied by a function of a desired pass characteristic, and then the resulting data is subjected to inverse Fourier transform. The image processing method according to claim 1, wherein conversion is performed.
JP7013479A 1995-01-31 1995-01-31 Picture processing method Pending JPH08202870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7013479A JPH08202870A (en) 1995-01-31 1995-01-31 Picture processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7013479A JPH08202870A (en) 1995-01-31 1995-01-31 Picture processing method

Publications (1)

Publication Number Publication Date
JPH08202870A true JPH08202870A (en) 1996-08-09

Family

ID=11834265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7013479A Pending JPH08202870A (en) 1995-01-31 1995-01-31 Picture processing method

Country Status (1)

Country Link
JP (1) JPH08202870A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146729A1 (en) * 2007-05-28 2008-12-04 Olympus Corporation Noise removal device, program, and method
WO2009008430A1 (en) * 2007-07-10 2009-01-15 Olympus Corporation Image processing device, image processing program and image picking-up device
WO2009081709A1 (en) * 2007-12-25 2009-07-02 Olympus Corporation Image processing apparatus, image processing method, and image processing program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146729A1 (en) * 2007-05-28 2008-12-04 Olympus Corporation Noise removal device, program, and method
WO2009008430A1 (en) * 2007-07-10 2009-01-15 Olympus Corporation Image processing device, image processing program and image picking-up device
JP2009020605A (en) * 2007-07-10 2009-01-29 Olympus Corp Image processor, image processing program, and imaging device
US8724920B2 (en) 2007-07-10 2014-05-13 Olympus Corporation Image processing device, program recording medium, and image acquisition apparatus
WO2009081709A1 (en) * 2007-12-25 2009-07-02 Olympus Corporation Image processing apparatus, image processing method, and image processing program

Similar Documents

Publication Publication Date Title
Lin et al. Intensity and edge based adaptive unsharp masking filter for color image enhancement
JP3472596B2 (en) Noise reduction filter
US4074231A (en) Pattern processing system
Torkamani-Azar et al. Image recovery using the anisotropic diffusion equation
US20070223834A1 (en) Method for small detail restoration in digital images
JP2002024821A (en) Digital image processing method for edge reshaping
Hassan et al. A cascaded approach for image defogging based on physical and enhancement models
JP2004139600A (en) Image processing method, processor and computer program code means for executing the method
CN111091107A (en) Face region edge detection method and device and storage medium
JP2007226791A (en) Method for processing digital image
JPH09130614A (en) Image processing unit
JP3462917B2 (en) Image processing method
Calderón et al. Dewaff: A novel image abstraction approach to improve the performance of a cell tracking system
JPH08202870A (en) Picture processing method
CN115965552A (en) Frequency-space-time domain joint denoising and recovery system for low signal-to-noise ratio image sequence
JPH05346956A (en) Processor for image signal
Mendhurwar et al. Edge-detection in noisy images using independent component analysis
Krylov et al. Adaptive image deblurring with ringing control
Choudhary et al. A novel approach for edge detection for blurry images by using digital image processing
RU2411584C2 (en) Method of adaptive smoothing to suppress screen-type pattern of images
Kumar et al. Comparative analysis of edge detectors applying on the Noisy image using edge-preserving filter
RU2680754C2 (en) Method of increasing the sharpness of digital image
CN114581443B (en) Image processing method and device, computer equipment and readable storage medium
Jassim et al. Image De-Blurring and De-Noising by Using a Wiener Filter for Different Types of Noise
Chen et al. A class of hierarchical networks for VLSI/WSI based multicomputers