JPH08201454A - Method and apparatus for measuring ground unit of automatic train stop system - Google Patents

Method and apparatus for measuring ground unit of automatic train stop system

Info

Publication number
JPH08201454A
JPH08201454A JP2458595A JP2458595A JPH08201454A JP H08201454 A JPH08201454 A JP H08201454A JP 2458595 A JP2458595 A JP 2458595A JP 2458595 A JP2458595 A JP 2458595A JP H08201454 A JPH08201454 A JP H08201454A
Authority
JP
Japan
Prior art keywords
coil
pilot signal
level
frequency
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2458595A
Other languages
Japanese (ja)
Other versions
JP2984570B2 (en
Inventor
Kazuo Ichikawa
和男 市川
Yoshiki Ozawa
吉樹 小澤
Hiroyuki Nagasaka
浩行 長坂
Kenichi Shiraishi
憲一 白石
Toshiyuki Takegahara
俊幸 竹ヶ原
Shoichi Suzuki
章一 鈴木
Shuichi Okamoto
修一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kenwood KK
Railway Technical Research Institute
Original Assignee
Kenwood KK
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kenwood KK, Railway Technical Research Institute filed Critical Kenwood KK
Priority to JP2458595A priority Critical patent/JP2984570B2/en
Publication of JPH08201454A publication Critical patent/JPH08201454A/en
Application granted granted Critical
Publication of JP2984570B2 publication Critical patent/JP2984570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE: To measure the resonance frequency and quality factor accurately regardless of the distance between a vehicle unit and a ground unit by detecting variation in the level of a pilot signal extracted from an induced voltage and then correcting the level of the induced voltage. CONSTITUTION: Output from a multiplex frequency signal oscillator 1 is applied to the transmission coil 5T of a vehicle unit 5 and a voltage is induced in the receiving coil 5R through electromagnetic induction between the coil 5T and a ground unit 6 coil and between the ground unit 6 coil and the receiving coil 5R. A circuit 11 then extracts a pilot signal component from the voltage thus induced and the pilot signal component is fed to a digital signal processor 12. The processor 12 operates 12A a level variation curve and a level correcting operation 12B is carried out based on the level variation curve before a fast Fourier transform 12c is carried out. Discrete spectral information thus operated is recorded 16 on a magnetic disc. An external computer interpolates the discrete spectra and operates a resonance frequency and a quality factor. With such arrangement, an accurate measurement can be realized even if the vehicle unit 5 moves to vary the distance to the ground unit 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は点制御式の自動列車停止
装置(ATS)の地上子良否判定のための測定方法およ
び測定装置に関し、さらに詳細には地上子の共振周波数
および共振の先鋭度(Q)を測定する自動列車停止装置
地上子の測定方法および測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring method and a measuring device for determining the quality of a ground control of an automatic train stop system (ATS) of a point control type, and more particularly to the resonance frequency of the ground control and the sharpness of resonance. TECHNICAL FIELD The present invention relates to an automatic train stop device for measuring (Q) and a measuring device and a measuring device for a ground element.

【0002】[0002]

【従来の技術】停止信号の場合や車輌の速度が制限速度
超過の場合に運転士に警報を与えると共に、該警報が無
視されたときに非常ブレーキをかける自動列車停止装置
が多くの線区に設備されている。かかる自動列車停止装
置において運転士に警報などの情報を与える方法とし
て、コイルと該コイルに選択的に接続される複数のコン
デンサとからなり、信号条件に基づいてコイルに接続さ
れるコンデンサが切り換えられる地上子と称される共振
回路を線区内の所定位置に設けて、地上子に電磁的に結
合した車上子コイルからの信号に基づいて警報やブレー
キ指令などを発生させる点制御式の方法が知られてい
る。
2. Description of the Related Art An automatic train stop device that gives an alarm to a driver in the case of a stop signal or when the speed of a vehicle exceeds a speed limit and applies an emergency brake when the alarm is ignored is used in many line sections. It is equipped. As a method of giving information such as an alarm to a driver in such an automatic train stop device, it is composed of a coil and a plurality of capacitors selectively connected to the coil, and the capacitors connected to the coil are switched based on a signal condition. A point control method in which a resonance circuit called a ground element is provided at a predetermined position in the line section, and an alarm or a brake command is generated based on a signal from an onboard coil electromagnetically coupled to the ground element. It has been known.

【0003】かかる自動列車停止装置において経年変化
によって地上子の共振回路構成部品が劣化、特に地上子
のコイルが劣化し、地上子の共振周波数および共振の尖
鋭度Qに変化を来す。このため、正確な自動列車停止制
御動作を維持するべく、地上子の共振周波数および共振
の尖鋭度Qを測定する地上子の測定装置等を搭載した検
測車を所定期間毎に走行させて地上子の劣化を検出し、
劣化地上子のコイルの交換するなどの保守を行ってい
る。しかしながら、検測車の台数が少ないこと等により
地上子の共振周波数および共振の尖鋭度Qの測定は1年
に1〜2回程度しか行えない。
In such an automatic train stop device, the resonance circuit components of the ground element are deteriorated, especially the coil of the ground element is deteriorated due to aging, and the resonance frequency of the ground element and the sharpness Q of the resonance are changed. For this reason, in order to maintain accurate automatic train stop control operation, an inspection vehicle equipped with a measuring device of the ground element that measures the resonance frequency of the ground element and the sharpness Q of the resonance is run every predetermined period, and Detects the deterioration of the child,
Maintenance such as replacing the coil of the deteriorated ground element is performed. However, due to the small number of inspection vehicles, the resonance frequency of the ground element and the sharpness Q of the resonance can be measured only once or twice a year.

【0004】一方、地上子の従来の測定装置として、特
開平5−264617号公報に開示されているように、
車上子コイルに所定周波数まで平坦なスペクトルの信号
電圧を印加し、車上子コイルと地上子コイルが電磁誘導
結合したときの車上子コイルに発生する信号を抽出し、
アナログ−デジタル変換してメモリに格納し、メモリに
格納されたデータを離散フーリエ変換して得た離散スペ
クトルから地上子の共振周波数と共振の先鋭度Qとを算
出して、地上子コイルの劣化の程度を判別することが提
案されている。
On the other hand, as a conventional measuring device for a ground element, as disclosed in Japanese Patent Laid-Open No. 5-264617,
Apply a flat spectrum signal voltage up to a predetermined frequency to the car top coil, extract the signal generated in the car top coil when the car top coil and the ground core coil are electromagnetically coupled,
The analog-digital conversion is performed, the data is stored in the memory, the resonance frequency of the ground element and the resonance sharpness Q are calculated from the discrete spectrum obtained by performing the discrete Fourier transform of the data stored in the memory, and the deterioration of the ground element coil is calculated. It has been proposed to determine the degree of.

【0005】[0005]

【発明が解決しようとする課題】上記した従来の測定装
置によるときは短時間の測定で高精度に地上子の共振周
波数および共振の尖鋭度Qの測定ができる。そこで、上
記測定装置を通常の営業車に搭載して地上子の共振周波
数の測定を行った場合、従来の検測車よりも測定回数を
増加させることが可能になる。さらに、上記した従来の
測定装置によるときは、車上子と地上子との間隔が測定
時毎に異なっても測定誤差の発生は解消された。しか
し、車上子が地上子に対向している場合は測定が良好に
行えるが、営業車が走行中、すなわち車上子が移動して
地上子と車上子との間の距離が変化しているときは共振
周波数および共振の尖鋭度Qの測定が正確に行えないと
いう問題点があった。
With the above-mentioned conventional measuring device, the resonance frequency of the ground element and the sharpness Q of the resonance can be measured with high accuracy in a short time. Therefore, when the above-mentioned measuring device is mounted on an ordinary business vehicle to measure the resonance frequency of the ground element, it is possible to increase the number of measurements as compared with the conventional inspection vehicle. Furthermore, when the above-mentioned conventional measuring device is used, the occurrence of the measurement error is eliminated even if the distance between the vehicle upper piece and the ground piece is different at each measurement time. However, when the car top is facing the ground coil, the measurement can be performed well, but when the commercial vehicle is running, that is, the car core moves, the distance between the ground coil and the car core changes. However, there is a problem that the resonance frequency and the resonance sharpness Q cannot be accurately measured.

【0006】本発明は、車上子と地上子との間の距離が
変化しても正確に共振周波数および共振の尖鋭度Qの測
定ができる測定方法および測定装置を提供することを目
的とする。
It is an object of the present invention to provide a measuring method and a measuring device capable of accurately measuring the resonance frequency and the sharpness Q of the resonance even if the distance between the car core and the ground core changes. .

【0007】[0007]

【課題を解決するための手段】本発明にかかる自動列車
停止装置地上子の測定方法は、車上子の送信コイルに所
定周波数のパイロット信号と所定周波数まで平坦なスペ
クトルの信号とを印加し、車上子の受信コイルと地上子
のコイルとの電磁誘導により車上子の受信コイルに誘起
された電圧中からパイロット信号を抽出し、地上子と車
上子との間の距離に基づく抽出パイロット信号のレベル
変動を検出し、パイロット信号のレベル変動に基づいて
前記車上子の受信コイルに誘起された電圧のレベルを補
正し、レベル補正された前記受信コイルの誘起電圧をフ
ーリエ変換して得られた離散的スペクトルから地上子の
共振周波数と共振の尖鋭度を算出することを特徴とす
る。
A method for measuring an automatic train stopping device grounding element according to the present invention applies a pilot signal of a predetermined frequency and a signal of a flat spectrum up to a predetermined frequency to a transmitting coil of a car top, The pilot signal is extracted from the voltage induced in the receiving coil of the car core by electromagnetic induction between the receiving coil of the car core and the coil of the ground coil, and the extracted pilot is based on the distance between the ground coil and the car coil. Detecting signal level fluctuations, correcting the level of the voltage induced in the receiving coil of the train car based on the level fluctuations of the pilot signal, and Fourier transforming the level-corrected induced voltage of the receiving coil. It is characterized in that the resonance frequency of the ground element and the sharpness of the resonance are calculated from the obtained discrete spectrum.

【0008】本発明にかかる自動列車停止装置地上子の
測定装置は、所定周波数のパイロット信号と所定周波数
まで平坦なスペクトルの信号を発生し車上子の送信コイ
ルに印加する多重周波数発生器と、車上子の受信コイル
と地上子のコイルとの電磁誘導により車上子の受信コイ
ルに誘起された電圧中からパイロット信号を抽出するパ
イロット信号抽出回路と、地上子と車上子との間の距離
に基づく抽出パイロット信号のレベル変動を検出する検
出回路と、パイロット信号のレベル変動に基づいて前記
車上子の受信コイルに誘起された電圧のレベルを補正す
る補正回路と、レベル補正された前記受信コイルの誘起
電圧をフーリエ変換するフーリエ変換回路とを備え、フ
ーリエ変換して得られた離散的スペクトルから地上子の
共振周波数と共振の尖鋭度を算出することを特徴とす
る。
An automatic train stopping device grounding device measuring device according to the present invention comprises a multi-frequency generator for generating a pilot signal having a predetermined frequency and a signal having a flat spectrum up to a predetermined frequency, and applying the signal to a transmitting coil of a train car. A pilot signal extraction circuit that extracts a pilot signal from the voltage induced in the receiving coil of the car core by electromagnetic induction between the receiving coil of the car core and the coil of the ground coil, and between the ground coil and the car coil A detection circuit that detects a level fluctuation of the extracted pilot signal based on the distance, a correction circuit that corrects the level of the voltage induced in the receiving coil of the vehicle upper member based on the level fluctuation of the pilot signal, and the level-corrected A Fourier transform circuit for Fourier transforming the induced voltage of the receiving coil is provided, and the resonance frequency of the ground element and the resonance are obtained from the discrete spectrum obtained by the Fourier transform. And calculates the sharpness.

【0009】[0009]

【作用】本発明にかかる自動列車停止装置地上子の測定
方法および測定装置は、所定周波数のパイロット信号と
所定周波数まで平坦なスペクトルの信号とが車上子の送
信コイルに印加され、車上子の受信コイルと地上子のコ
イルとの電磁誘導により車上子の受信コイルに誘起され
た電圧中からパイロット信号が抽出される。抽出された
パイロット信号のレベルは地上子と車上子との間の距離
に基づいて変化している。このパイロット信号のレベル
変動が検出され、パイロット信号のレベル変動に基づい
て前記車上子の受信コイルに誘起された電圧のレベルが
補正される。レベル補正された前記受信コイルの誘起電
圧がフーリエ変換して得られた離散的スペクトルから地
上子の共振周波数と共振の尖鋭度が算出される。
According to the measuring method and the measuring device of the automatic train stopping device grounding device according to the present invention, the pilot signal of the predetermined frequency and the signal of the spectrum which is flat to the predetermined frequency are applied to the transmitting coil of the car upper member. A pilot signal is extracted from the voltage induced in the reception coil of the train car by electromagnetic induction between the reception coil of the vehicle and the coil of the ground coil. The level of the extracted pilot signal changes based on the distance between the ground child and the car upper child. The level fluctuation of the pilot signal is detected, and the level of the voltage induced in the receiving coil of the car top is corrected based on the level fluctuation of the pilot signal. The resonance frequency of the ground element and the sharpness of resonance are calculated from the discrete spectrum obtained by Fourier transforming the level-corrected induced voltage of the receiving coil.

【0010】ここで、車上子の送信コイルおよび受信コ
イルと、地上子のコイルとの電磁的な結合度は、車上子
と地上子との間の距離に基づいて変化し、この変化に基
づいて車上子の受信コイルの誘起電圧が変化するが、こ
の結合度の変化は車上子と地上子との間の距離の変化に
のみ影響され、周波数には影響されないため、パイロッ
ト信号のレベル変動が検出されて、パイロット信号のレ
ベル変動に基づいて車上子の受信コイルに誘起された電
圧のレベルが補正され、レベル補正後の誘起電圧がフー
リエ変換されるために、車上子と地上子との間の距離の
変化は補償されることになって、車上子と地上子との間
の距離が変化しても正確に共振周波数、共振の尖鋭度が
算出できる。
Here, the degree of electromagnetic coupling between the transmitter coil and the receiver coil of the car core and the coil of the ground coil changes based on the distance between the car coil and the ground coil. Based on this, the induced voltage in the receiver coil of the car top changes, but this change in the coupling degree is affected only by the change in the distance between the car top and the ground element, not by the frequency. The level fluctuation is detected, the level of the voltage induced in the receiving coil of the car top is corrected based on the level fluctuation of the pilot signal, and the induced voltage after the level correction is Fourier-transformed. Since the change in the distance between the ground element and the ground element is compensated for, the resonance frequency and the sharpness of the resonance can be accurately calculated even if the distance between the onboard element and the ground element changes.

【0011】[0011]

【実施例】以下、本発明を実施例により説明する。図1
は本発明にかかる自動列車停止装置地上子の測定装置の
一実施例の構成を示すブロック図である。
The present invention will be described below with reference to examples. FIG.
FIG. 1 is a block diagram showing a configuration of an embodiment of an automatic train stop device grounding device measuring device according to the present invention.

【0012】符号20は本実施例の測定装置を示す。多
重周波数信号発生器1からの出力はD/A変換器2に供
給されてアナログ信号に変換され、D/A変換器2の出
力はローパスフィルタ3に供給されてD/A変換器2の
出力中の高周波成分が除去され、ローパスフィルタ3か
らの出力は増幅器4に供給されて所定レベルにまで増幅
され、増幅器4の出力は車上子5の送信コイル5Tに印
加されて、送信される。
Reference numeral 20 indicates the measuring apparatus of this embodiment. The output from the multi-frequency signal generator 1 is supplied to the D / A converter 2 and converted into an analog signal, and the output of the D / A converter 2 is supplied to the low pass filter 3 and the output of the D / A converter 2. The high frequency component in the inside is removed, the output from the low-pass filter 3 is supplied to the amplifier 4 and is amplified to a predetermined level, and the output of the amplifier 4 is applied to the transmission coil 5T of the car top 5 and transmitted.

【0013】多重周波数信号発生器1は、図2に示すよ
うに、パイロット信号発振器と所定周波数間隔の(n−
1)個の発振器とからなる発振器1Aと発振器1Aから
の出力を合成する合成器1Bとを備えており、発振器1
Aを構成する各発振器は単一の周波数であって出力レベ
ルが等しい発振出力を発生し、発振器1Aからの発振出
力は合成器1Bによって合成されて出力される。したが
って、合成器1Bの出力の周波数スペクトルは図3
(a)に示すように所望の帯域でレベルが平坦な離散的
スペクトルである。本例においてはパイロット信号発振
器の発振周波数fpは例えば116kHzに設定し、
(n−1)個の各発振器の発振周波数は所定周波数間隔
の97kHz〜113kHzの発振周波数および所定周
波数間隔の119kHz〜137kHz発振の周波数に
設定してある。
As shown in FIG. 2, the multi-frequency signal generator 1 includes a pilot signal oscillator and (n-
1) An oscillator 1A including one oscillator and a combiner 1B for combining the outputs from the oscillator 1A are provided.
Each oscillator constituting A generates an oscillation output having a single frequency and an equal output level, and the oscillation output from the oscillator 1A is synthesized by the synthesizer 1B and output. Therefore, the frequency spectrum of the output of the combiner 1B is shown in FIG.
As shown in (a), it is a discrete spectrum having a flat level in a desired band. In this example, the oscillation frequency fp of the pilot signal oscillator is set to 116 kHz,
The oscillation frequency of each of the (n-1) oscillators is set to an oscillation frequency of 97 kHz to 113 kHz with a predetermined frequency interval and a frequency of 119 kHz to 137 kHz with a predetermined frequency interval.

【0014】発振器1Aの発振周波数をこのように選択
したのは、現状の地上子の共振周波数は130kHz、
123kHz、108kHzおよび103kHzに選定
されているためであって、抽出が容易でかつ他の周波数
から離れているようにパイロット信号の周波数は使用さ
れていない周波数範囲113kHz〜119kHzの中
間に選択してある。
The oscillating frequency of the oscillator 1A is selected in this way because the resonance frequency of the current ground element is 130 kHz,
This is because the frequencies are selected to 123 kHz, 108 kHz, and 103 kHz, and the frequency of the pilot signal is selected in the middle of the unused frequency range 113 kHz to 119 kHz so as to be easily extracted and away from other frequencies. .

【0015】上記において多重周波数信号発生器1はア
ナログ的構成の場合を例示したが、メモリに図3(a)
に示す周波数スペクトルに対応するデータを格納してお
いて、該データをメモリから読み出してD/A変換する
ことによって、図3(a)に示す周波数スペクトルの多
重周波数信号を得るようにした、デジタル的構成とする
こともできる。
In the above description, the multi-frequency signal generator 1 has been illustrated as having an analog structure, but the memory shown in FIG.
The data corresponding to the frequency spectrum shown in FIG. 3 is stored, the data is read from the memory and D / A converted to obtain a multiple frequency signal of the frequency spectrum shown in FIG. It can also be set to a physical structure.

【0016】車上子5は図4に示すように前記送信コイ
ル5Tと受信コイル5Rとを備え、送信コイル5Tと受
信コイル5Rとの電磁的な結合度は〃0〃に設定されて
おり、相互に結合することはない。一方、地上子6は図
4に示すようにコイル6Lと、コンデンサ6C1および
6C2と、コンデンサ6C1と6C2とを信号に基づき
切り換えてコイル6Lに並列接続するためのスイッチS
とを備えている。ここで、コイル6Lと送信コイル5T
との電磁的結合は疎結合に設定され、かつコイル6Lと
受信コイル5Rとの電磁的結合も疎結合に設定されてい
る。
As shown in FIG. 4, the train car 5 is provided with the transmitting coil 5T and the receiving coil 5R, and the degree of electromagnetic coupling between the transmitting coil 5T and the receiving coil 5R is set to "0". It does not bind to each other. On the other hand, the ground element 6, as shown in FIG. 4, is a switch S for switching the coil 6L, the capacitors 6C1 and 6C2, and the capacitors 6C1 and 6C2 based on a signal to connect them in parallel to the coil 6L.
It has and. Here, the coil 6L and the transmission coil 5T
The electromagnetic coupling between the coil 6L and the receiving coil 5R is set to be loosely coupled.

【0017】増幅器4からの出力が印加された送信コイ
ル5Tとコイル6Lとの電磁誘導により、さらにコイル
6Lと受信コイル5Rとの電磁誘導によって受信コイル
5Rに誘起された電圧は増幅器7に供給されて所定利得
に基づいて増幅され、増幅器7の出力はバンドパスフィ
ルタ8に供給されて帯域制限される。バンドパスフィル
タ8の出力はA/D変換器9に供給されてデジタル信号
に変換され、A/D変換器9からの出力デジタル信号は
パイロット信号抽出回路11に供給されて、A/D変換
器9の出力中からパイロット信号成分が抽出される。
The voltage induced in the receiving coil 5R by the electromagnetic induction between the transmitting coil 5T and the coil 6L to which the output from the amplifier 4 is applied and the electromagnetic induction between the coil 6L and the receiving coil 5R is supplied to the amplifier 7. Is amplified based on a predetermined gain, and the output of the amplifier 7 is supplied to the bandpass filter 8 and band-limited. The output of the bandpass filter 8 is supplied to the A / D converter 9 and converted into a digital signal, and the output digital signal from the A / D converter 9 is supplied to the pilot signal extraction circuit 11 and the A / D converter is supplied. The pilot signal component is extracted from the output of 9.

【0018】パイロット信号抽出回路11はローカル発
振器11A、ダウンコンバータ11B、FIR形のデジ
タルローパスフィルタ11CおよびFIR形のデジタル
バンドパスフィルタ11Dを備えている。
The pilot signal extraction circuit 11 includes a local oscillator 11A, a down converter 11B, an FIR type digital low pass filter 11C and an FIR type digital band pass filter 11D.

【0019】パイロット信号抽出回路11では、ローカ
ル発振器11Aからの発振出力とA/D変換器9の出力
デジタル信号とがダウンコンバータ11Bにて周波数混
合されて周波数変換され、A/D変換出力が処理のしや
すい周波数に低下させられる。ダウンコンバータ11B
からの出力を受けたデジタルローパスフィルタ11Cに
よってダウンコンバータ11Bの出力中の高域側が遮断
されパイロット信号を含む低域側が抽出される。デジタ
ルローパスフィルタ11Cからの出力を受けたデジタル
バンドパスフィルタ11Dによってデジタルローパスフ
ィルタ11Cの出力中からパイロット信号周波数成分の
みが抽出され、パイロット信号が抽出される。
In the pilot signal extraction circuit 11, the oscillation output from the local oscillator 11A and the output digital signal of the A / D converter 9 are frequency mixed and frequency-converted by the down converter 11B, and the A / D converted output is processed. It is lowered to a frequency that is easy to handle. Down converter 11B
The digital low-pass filter 11C that receives the output from the down converter 11B cuts off the high frequency side of the output of the down converter 11B and extracts the low frequency side including the pilot signal. The digital band pass filter 11D receiving the output from the digital low pass filter 11C extracts only the pilot signal frequency component from the output of the digital low pass filter 11C, and the pilot signal is extracted.

【0020】A/D変換器9の出力デジタル信号および
パイロット信号抽出回路11から抽出されたパイロット
信号はデジタルシグナルプロセッサ12に供給されて、
デジタルシグナルプロセッサ12においてレベル検出、
レベル補正および高速フーリエ演算をする信号処理がな
される。
The output digital signal of the A / D converter 9 and the pilot signal extracted from the pilot signal extraction circuit 11 are supplied to the digital signal processor 12,
Level detection in the digital signal processor 12,
Signal processing for level correction and fast Fourier calculation is performed.

【0021】デジタルシグナルプロセッサ12は機能的
に、パイロット信号抽出回路11から抽出されたパイロ
ット信号のレベル変動曲線を演算するレベル変動曲線演
算回路12Aと、A/D変換器9の出力デジタル信号に
対して演算されたレベル変動曲線に基づく補正演算を行
うレベル補正演算回路12Bと、レベル補正演算回路1
2Bにてレベル補正されたレベル補正演算回路12Bの
出力データを受けて高速フーリエ演算を行うFFT演算
回路12Cとを備えている。
The digital signal processor 12 functionally responds to the level fluctuation curve calculation circuit 12A for calculating the level fluctuation curve of the pilot signal extracted from the pilot signal extraction circuit 11 and the output digital signal of the A / D converter 9. And a level correction calculation circuit 1 for performing a correction calculation based on the level fluctuation curve calculated by
An FFT operation circuit 12C that receives the output data of the level correction operation circuit 12B whose level has been corrected in 2B and performs a fast Fourier operation is provided.

【0022】デジタルシグナルプロセッサ12によって
演算された離散的スペクトルの情報はメモリ13と協働
するコンピュータ14に供給してフロッピーディスクな
どの磁気ディスク記録装置16に記録され、本測定装置
20の外に設けたコンピュータによって離散スペクトル
間の補間を行い、共振周波数〃f0〃および共振の尖鋭
度Qが演算される。補間は最小二乗法による補間、また
はスプライン補間によって行われる。
The information of the discrete spectrum calculated by the digital signal processor 12 is supplied to a computer 14 cooperating with a memory 13 and recorded in a magnetic disk recording device 16 such as a floppy disk, which is provided outside the measuring device 20. The computer performs interpolation between the discrete spectra to calculate the resonance frequency 〃f0〃 and the resonance sharpness Q. The interpolation is performed by the least squares method or the spline interpolation.

【0023】勿論、コンピュータ14において、デジタ
ルシグナルプロセッサ12によって演算された離散的ス
ペクトル間の補間を行い、共振周波数〃f0〃および共
振の尖鋭度Qの演算を行うこともできるが、測定装置2
0を営業車に搭載させてあるため、高速走行時に演算処
理が間にあわなくなるので演算された離散的スペクトル
の情報を一旦メモリ13に記憶させて、該スペクトル情
報より〃f0〃および共振の尖鋭度Qを演算するとき
は、さらに磁気ディスク記憶装置16に情報を移して別
途処理するのである。
Of course, the computer 14 can also interpolate between the discrete spectra calculated by the digital signal processor 12 to calculate the resonance frequency 〃 f0 〃 and the resonance sharpness Q.
Since 0 is mounted on a commercial vehicle, the calculation processing cannot be completed in time when traveling at high speed. Therefore, the information of the discrete spectrum calculated is temporarily stored in the memory 13, and 〃 f0〃 and the sharpness Q of the resonance are calculated from the spectrum information. When calculating, the information is further transferred to the magnetic disk storage device 16 and processed separately.

【0024】ここで、測定装置20は営業車に搭載され
ているため、地上子6と車上子5との相対位置が営業車
の走行に基づいて変化し、地上子6の位置に車上子5が
近づくにしたがって車上子5の受信コイル5Rからの誘
起電圧は増加し、地上子6の位置に車上子5が対向した
ときに最大となり、遠ざかるにしたがって減少する。し
たがって、バンドパスフィルタ8の出力の周波数スペク
トルのレベルは、地上子6の位置に車上子5が近づくに
したがって、例えば図3(b)から図3(c)に示すご
とくに増加し、遠ざかるにしたがって図3(c)から図
3(b)に示すごとくに減少する。
Since the measuring device 20 is mounted on the commercial vehicle, the relative position between the ground element 6 and the vehicle upper element 5 changes based on the running of the commercial vehicle, and the measuring element 20 is mounted on the vehicle on the vehicle. The induced voltage from the receiving coil 5R of the on-board child 5 increases as the child 5 approaches, becomes maximum when the on-board child 5 faces the position of the ground child 6, and decreases as the child moves away. Therefore, the level of the frequency spectrum of the output of the bandpass filter 8 increases as the position of the ground element 6 approaches, and as shown in FIG. 3B to FIG. Accordingly, as shown in FIG. 3C to FIG.

【0025】パイロット信号抽出回路11から抽出され
たパイロット信号のレベルも同様に地上子6と車上子5
との相対位置に基づいて変化する。この結果、レベル変
動曲線演算回路12Aによって演算された結果のパイロ
ット信号のレベル変動曲線は図5の実線で示す曲線aに
示す如くになる。図5において時刻〃t0〃においてレ
ベルが最大になり、この時が地上子6に車上子5が対向
しているときである。
The level of the pilot signal extracted from the pilot signal extraction circuit 11 is similarly the ground element 6 and the vehicle element 5.
It changes based on the relative position with. As a result, the level fluctuation curve of the pilot signal, which is the result of calculation by the level fluctuation curve calculation circuit 12A, becomes as shown by the curve a shown by the solid line in FIG. In FIG. 5, the level is maximized at time t0 t0, which is when the car top 5 is facing the ground contact 6.

【0026】一方、レベル変動補正演算回路12Bに供
給されたA/D変換器9の出力デジタル信号は、レベル
変動補正演算回路12Bにおいてレベル変動曲線に基づ
いてレベル変動の補正がなされる。この補正は具体的
に、図5の曲線aに対して対称な図5において破線で示
す曲線bの値とA/D変換器9からのデジタル信号との
乗算によってレベルが補正される。このように補正する
のは、地上子6と車上子5との間の結合度は両者の距離
にのみ依存して変化し、周波数には依存しないためであ
る。
On the other hand, the output digital signal of the A / D converter 9 supplied to the level fluctuation correction calculation circuit 12B is corrected in the level fluctuation correction calculation circuit 12B based on the level fluctuation curve. Specifically, the level is corrected by multiplying the value of the curve b shown by the broken line in FIG. 5 which is symmetrical with respect to the curve a of FIG. 5 by the digital signal from the A / D converter 9. This correction is made because the degree of coupling between the ground element 6 and the vehicle upper element 5 depends only on the distance between the two and does not depend on the frequency.

【0027】この補正がなされたレベル変動補正演算回
路12Bからの出力がFFT演算回路12Cにおいて信
号処理されてフーリエ演算される。
The output from the level fluctuation correction calculation circuit 12B thus corrected is subjected to signal processing in the FFT calculation circuit 12C and Fourier calculation is performed.

【0028】次に、本実施例による場合の測定結果を従
来例による場合との比較で説明する。本実施例におい
て、車上子5の送信コイル5Tに印加される電圧波形は
図8(a)に示すごとくである。この電圧を受けて車上
子5の受信コイル5Rからの出力電圧波形は図7(a)
に示すごとくであり、図7(a)に示す電圧波形がレベ
ル補正された結果、図7(b)に示す如くになる。この
電圧波形がフーリエ変換されて、補間処理された結果図
7(c)に示すような共振曲線が得られる。この曲線か
ら図6に示すように、レベルが最大のときの周波数から
共振周波数〃f0〃が得られ、最大レベルから3dB下
がったレベルの電圧を示す周波数〃f1〃および〃f2
〃とから、共振の尖鋭度Qがf0/(f1−f2)によ
って求められる。
Next, the measurement results in the case of this embodiment will be described in comparison with the case of the conventional example. In the present embodiment, the waveform of the voltage applied to the transmitter coil 5T of the train car 5 is as shown in FIG. 8 (a). The waveform of the output voltage from the receiving coil 5R of the car top 5 in response to this voltage is shown in FIG.
7B, the voltage waveform shown in FIG. 7A is level-corrected, and the result is as shown in FIG. 7B. This voltage waveform is Fourier-transformed, and as a result of interpolation processing, a resonance curve as shown in FIG. 7C is obtained. From this curve, as shown in FIG. 6, the resonance frequency 〃 f0 〃 is obtained from the frequency at the maximum level, and the frequencies 〃 f1 〃 and 〃 f2 showing the voltage at the level 3 dB lower than the maximum level.
From 〃, the sharpness Q of the resonance is obtained by f0 / (f1-f2).

【0029】共振周波数〃f0〃が所定範囲を超えて変
化し、または共振の尖鋭度Qが所定値以下に低下したと
きは地上子6が劣化したと判定されて地上子6を取り替
えることにより、地上子6の保守が行えて、常に地上子
6の性能を所定範囲内に維持できることになる。
When the resonance frequency "f0" changes over a predetermined range, or when the sharpness Q of the resonance falls below a predetermined value, it is judged that the ground element 6 has deteriorated and the ground element 6 is replaced. The maintenance of the ground element 6 can be performed, and the performance of the ground element 6 can always be maintained within the predetermined range.

【0030】従来例による場合は、車上子5の送信コイ
ル5Tに印加される電圧波形は図8(a)に示すごとく
であって、パイロット信号を無視すれば本実施例の場合
と同様であり、地上子6に車上子5が対向する位置に静
止しているときの受信コイル5Rの出力電圧波形は図8
(b)に示すごとくであって、受信コイル5Rの電圧波
形を処理したときの共振曲線は図8(c)に示すごとく
であり、共振周波数および共振の尖鋭度Qの測定に支障
はない。しかるに車上子5が移動して地上子6との相対
距離が変化すると、図9(a)に示す波形の電圧、すな
わち図8(a)に示す波形と同一の電圧が送信コイル5
Tに印加されたときにおいて、受信コイル5Rの出力電
圧の波形は図9(b)に示すようになり、その共振曲線
は図9(c)に示す如くになって、複数の峰が生じた曲
線となって、共振周波数〃f0〃、共振の尖鋭度Qの演
算に誤りが生じ易くなって、測定結果の信頼度は低下す
る。
In the case of the conventional example, the voltage waveform applied to the transmission coil 5T of the train top 5 is as shown in FIG. 8 (a), and if the pilot signal is ignored, it is the same as in the case of this embodiment. FIG.
As shown in FIG. 8B, the resonance curve when the voltage waveform of the receiving coil 5R is processed is as shown in FIG. 8C, and there is no problem in measuring the resonance frequency and the resonance sharpness Q. However, when the on-board child 5 moves and the relative distance from the ground child 6 changes, the voltage of the waveform shown in FIG. 9A, that is, the same voltage as the waveform shown in FIG.
When applied to T, the waveform of the output voltage of the receiving coil 5R is as shown in FIG. 9B, and its resonance curve is as shown in FIG. 9C, and a plurality of peaks are generated. As a curve, an error is likely to occur in the calculation of the resonance frequency 〃f0〃 and the resonance sharpness Q, and the reliability of the measurement result decreases.

【0031】図7と、図8および図9と比較すれば明ら
かなように、本実施例の場合はレベル補正されるために
地上子6と車上子6との相対位置が変化しても、従来例
の図8の場合すなわち地上子6と車上子6とが対向して
いる位置関係にある場合と同様の波形となって、正確に
共振周波数〃f0〃および共振の尖鋭度Qが得られるこ
とになり、測定結果の信頼性は低下しない。この結果、
測定装置20を営業車に搭載して地上子の共振周波数〃
f0〃の変化、共振の尖鋭度Qの悪化、すなわち地上子
の劣化を正確に判定することができることになる。
As is clear from comparison between FIG. 7 and FIGS. 8 and 9, in the case of this embodiment, the level is corrected, so that the relative position between the ground element 6 and the vehicle upper element 6 changes. In the case of FIG. 8 of the conventional example, that is, in the same waveform as in the case where the ground element 6 and the top element 6 face each other, the resonance frequency 〃f0〃 and the resonance sharpness Q are accurately determined. As a result, the reliability of the measurement result does not decrease. As a result,
The measuring device 20 is installed in a commercial vehicle and the resonance frequency of the ground element is 〃
It is possible to accurately determine the change in f0, the deterioration of the resonance sharpness Q, that is, the deterioration of the ground element.

【0032】また、本実施例によればパイロット信号の
レベル変動曲線が演算されるため、パイロット信号のレ
ベルに基づいてレベル補正ができるほか、パイロット信
号のレベル変動曲線のピーク位置を中心とする所定範囲
を設定することによって、該範囲をFFT演算範囲とす
るなどFFT演算範囲の決定にも利用することができ
る。さらに、パイロット信号のレベル変動曲線のピーク
位置において地上子6と車上子5とが対向しているた
め、レベル変動曲線のピーク位置の情報を利用して営業
車の位置検出装置の校正に使用することができる。これ
は、地上子6の位置が予め定められているため、地上子
位置にて営業車位置データを校正されるのである。
Further, according to this embodiment, since the level variation curve of the pilot signal is calculated, the level can be corrected based on the level of the pilot signal, and the pilot signal level variation curve is centered around the peak position of the level variation curve. By setting the range, it can be used for determining the FFT calculation range, such as setting the range as the FFT calculation range. Further, since the ground element 6 and the car top element 5 face each other at the peak position of the level fluctuation curve of the pilot signal, the information of the peak position of the level fluctuation curve is used to calibrate the position detection device of the commercial vehicle. can do. This is because the position of the ground element 6 is predetermined and the business vehicle position data is calibrated at the ground element position.

【0033】[0033]

【発明の効果】以上説明したように本発明にかかる自動
列車停止装置地上子の測定方法および測定装置によれ
ば、車上子と地上子との間の距離が変化しても正確に共
振周波数および共振の尖鋭度の測定ができるという効果
が得られる。
As described above, according to the measuring method and the measuring device for the automatic train stop device ground element according to the present invention, the resonance frequency can be accurately set even if the distance between the car top element and the ground element changes. And the effect that the sharpness of resonance can be measured is obtained.

【0034】この結果、本発明にかかる自動列車停止装
置地上子の測定装置を営業車に搭載して地上子の共振周
波数、共振の尖鋭度を測定することによって、地上子の
良否判別の時間的間隔が短縮できて、正確な自動列車停
止制御動作を維持することができるという効果が得られ
る。
As a result, the automatic train stop device according to the present invention is installed in a commercial vehicle and the resonance frequency of the ground element and the sharpness of the resonance are measured to measure the quality of the ground element. The effect is that the interval can be shortened and the accurate automatic train stop control operation can be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる自動列車停止装置地上子の測定
装置の一実施例の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an embodiment of a measuring device for an automatic train stopping device ground element according to the present invention.

【図2】本発明にかかる自動列車停止装置地上子の測定
装置の一実施例における多重周波数信号発生器の構成を
示すブロック図である。
FIG. 2 is a block diagram showing a configuration of a multi-frequency signal generator in an embodiment of a measuring device for an automatic train stopping device ground element according to the present invention.

【図3】本発明にかかる自動列車停止装置地上子の測定
装置の一実施例における多重周波数信号発生器の出力の
周波数スペクトルおよび受信信号の周波数スペクトルを
示す模式図である。
FIG. 3 is a schematic diagram showing a frequency spectrum of an output of a multiple frequency signal generator and a frequency spectrum of a received signal in an embodiment of a measuring device for an automatic train stopping device ground element according to the present invention.

【図4】本発明にかかる自動列車停止装置地上子の測定
装置の一実施例における車上子および地上子の構成を示
す模式図である。
FIG. 4 is a schematic diagram showing a configuration of an on-board member and a ground member in an embodiment of an automatic train stop device ground member measuring device according to the present invention.

【図5】本発明にかかる自動列車停止装置地上子の測定
装置の一実施例におけるレベル変動曲線の説明に供する
模式図である。
FIG. 5 is a schematic diagram for explaining a level fluctuation curve in an embodiment of an automatic train stop device grounding device measuring device according to the present invention.

【図6】共振周波数と共振の尖鋭度との関係を示す模式
図である。
FIG. 6 is a schematic diagram showing a relationship between a resonance frequency and a sharpness of resonance.

【図7】本発明にかかる自動列車停止装置地上子の測定
装置の一実施例における作用の説明に供する波形図であ
る。
FIG. 7 is a waveform diagram for explaining the operation of the embodiment of the automatic train stop device grounding device measuring device according to the present invention.

【図8】本発明にかかる自動列車停止装置地上子の測定
装置の一実施例における作用の説明に供する波形図であ
る。
FIG. 8 is a waveform diagram for explaining the operation of the embodiment of the automatic train stop device grounding device measuring apparatus according to the present invention.

【図9】本発明にかかる自動列車停止装置地上子の測定
装置の一実施例における作用の説明に供する波形図であ
る。
FIG. 9 is a waveform diagram for explaining the operation of the embodiment of the automatic train stop device grounding device measuring apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 多重周波数信号発生器 2 D/A変換器 3 ローパスフィルタ 4および7 増幅器 5 車上子 6 地上子 8 バンドパスフィルタ 9 A/D変換器 11 パイロット信号抽出回路 12 デジタルシグナルプロセッサ 13 メモリ 14 コンピュータ 16 磁気ディスク記憶装置 5T 送信コイル 5R 受信コイル 6L コイル 11A ローカル発振器 11B ダウンコンバータ 11C デジタルローパスフィルタ 11D デジタルバンドパスフィルタ 12A レベル変動曲線演算回路 12B レベル変動補正演算回路 12C FFT演算回路 1 multi-frequency signal generator 2 D / A converter 3 low-pass filter 4 and 7 amplifier 5 car child 6 ground child 8 band-pass filter 9 A / D converter 11 pilot signal extraction circuit 12 digital signal processor 13 memory 14 computer 16 Magnetic disk storage device 5T transmission coil 5R reception coil 6L coil 11A local oscillator 11B down converter 11C digital low pass filter 11D digital band pass filter 12A level fluctuation curve calculation circuit 12B level fluctuation correction calculation circuit 12C FFT calculation circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長坂 浩行 東京都渋谷区道玄坂1丁目14番6号 株式 会社ケンウッド内 (72)発明者 白石 憲一 東京都渋谷区道玄坂1丁目14番6号 株式 会社ケンウッド内 (72)発明者 竹ヶ原 俊幸 東京都渋谷区道玄坂1丁目14番6号 株式 会社ケンウッド内 (72)発明者 鈴木 章一 東京都渋谷区道玄坂1丁目14番6号 株式 会社ケンウッド内 (72)発明者 岡本 修一 東京都渋谷区道玄坂1丁目14番6号 株式 会社ケンウッド内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Nagasaka 1-14-6 Dogenzaka, Shibuya-ku, Tokyo Kenwood Co., Ltd. (72) Kenichi Shiraishi 1-14-6 Dogenzaka, Shibuya-ku, Tokyo Kenwood Co., Ltd. (72) Inventor Toshiyuki Takegahara 1-14-6 Dogenzaka, Shibuya-ku, Tokyo Kenwood Co., Ltd. (72) Inventor Shoichi Suzuki 1-14-6 Dogenzaka, Shibuya-ku, Tokyo Kenwood Co., Ltd. (72 ) Inventor Shuichi Okamoto 1-14-6 Dogenzaka, Shibuya-ku, Tokyo Inside Kenwood Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】車上子の送信コイルに所定周波数のパイロ
ット信号と所定周波数まで平坦なスペクトルの信号とを
印加し、車上子の受信コイルと地上子のコイルとの電磁
誘導により車上子の受信コイルに誘起された電圧中から
パイロット信号を抽出し、地上子と車上子との間の距離
に基づく抽出パイロット信号のレベル変動を検出し、パ
イロット信号のレベル変動に基づいて前記車上子の受信
コイルに誘起された電圧のレベルを補正し、レベル補正
された前記受信コイルの誘起電圧をフーリエ変換して得
られた離散的スペクトルから地上子の共振周波数と共振
の尖鋭度を算出することを特徴とする自動列車停止装置
地上子の測定方法。
Claim: What is claimed is: 1. A pilot signal having a predetermined frequency and a signal having a flat spectrum up to a predetermined frequency are applied to a transmission coil of a car top and the car top is electromagnetically induced by a reception coil of the car top and a coil of the ground core. The pilot signal is extracted from the voltage induced in the receiving coil of the vehicle, the level variation of the extracted pilot signal based on the distance between the ground element and the vehicle upper element is detected, and the onboard vehicle is detected based on the level variation of the pilot signal. The level of the voltage induced in the receiver coil of the child is corrected, and the resonance frequency of the ground child and the sharpness of the resonance are calculated from the discrete spectrum obtained by Fourier transforming the level-corrected induced voltage of the receiver coil. A method for measuring an automatic train stop device ground element.
【請求項2】所定周波数のパイロット信号と所定周波数
まで平坦なスペクトルの信号を発生し車上子の送信コイ
ルに印加する多重周波数発生器と、車上子の受信コイル
と地上子のコイルとの電磁誘導により車上子の受信コイ
ルに誘起された電圧中からパイロット信号を抽出するパ
イロット信号抽出回路と、地上子と車上子との間の距離
に基づく抽出パイロット信号のレベル変動を検出する検
出回路と、パイロット信号のレベル変動に基づいて前記
車上子の受信コイルに誘起された電圧のレベルを補正す
る補正回路と、レベル補正された前記受信コイルの誘起
電圧をフーリエ変換するフーリエ変換回路とを備え、フ
ーリエ変換して得られた離散的スペクトルから地上子の
共振周波数と共振の尖鋭度を算出することを特徴とする
自動列車停止装置地上子の測定装置。
2. A multi-frequency generator for generating a pilot signal having a predetermined frequency and a signal having a flat spectrum up to a predetermined frequency and applying the same to a transmitting coil of a car top, a receiving coil of the car top, and a coil of a ground coil. A pilot signal extraction circuit that extracts a pilot signal from the voltage induced in the receiving coil of the car top by electromagnetic induction, and a detection that detects the level fluctuation of the extracted pilot signal based on the distance between the ground wire and the car top A circuit, a correction circuit that corrects the level of the voltage induced in the receiving coil of the vehicle on the basis of the level fluctuation of the pilot signal, and a Fourier transform circuit that performs a Fourier transform of the level-corrected induced voltage of the receiving coil. And an automatic train stop device characterized by calculating the resonance frequency of a ground element and the sharpness of resonance from a discrete spectrum obtained by Fourier transform The upper child of the measuring device.
【請求項3】請求項2記載の自動列車停止装置地上子の
測定装置において、パイロット信号抽出回路はパイロッ
ト信号の周波数を低域側に周波数変換させる周波数変換
手段を備えたことを特徴とする自動列車停止装置地上子
の測定装置。
3. The automatic train stop device grounding device measuring device according to claim 2, wherein the pilot signal extraction circuit includes frequency conversion means for converting the frequency of the pilot signal to the low frequency side. Train stop device Measuring device for ground elements.
JP2458595A 1995-01-20 1995-01-20 Automatic train stop device Ground child measuring method and measuring device Expired - Fee Related JP2984570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2458595A JP2984570B2 (en) 1995-01-20 1995-01-20 Automatic train stop device Ground child measuring method and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2458595A JP2984570B2 (en) 1995-01-20 1995-01-20 Automatic train stop device Ground child measuring method and measuring device

Publications (2)

Publication Number Publication Date
JPH08201454A true JPH08201454A (en) 1996-08-09
JP2984570B2 JP2984570B2 (en) 1999-11-29

Family

ID=12142242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2458595A Expired - Fee Related JP2984570B2 (en) 1995-01-20 1995-01-20 Automatic train stop device Ground child measuring method and measuring device

Country Status (1)

Country Link
JP (1) JP2984570B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501703A1 (en) * 2002-05-21 2006-10-15 Siemens Ag INDUCTIVE PULL CONTROL SYSTEM
JP2007028877A (en) * 2005-07-21 2007-02-01 Nippon Signal Co Ltd:The Train control receiver
JP2007185045A (en) * 2006-01-06 2007-07-19 Univ Nihon Device and method for measuring q-value of ats ground element
JP2009194948A (en) * 2008-02-12 2009-08-27 Nippon Signal Co Ltd:The Signal detector for train control
JP2011097715A (en) * 2009-10-29 2011-05-12 Kyosan Electric Mfg Co Ltd Train control unit
WO2013145201A1 (en) * 2012-03-29 2013-10-03 株式会社日立製作所 Image generating system and image generating method
JP2015177602A (en) * 2014-03-13 2015-10-05 株式会社東芝 On-train train control device
JP2019129582A (en) * 2018-01-23 2019-08-01 日本信号株式会社 Ground unit inspection device and on-vehicle pickup appropriateness determination device
CN113075736A (en) * 2021-03-24 2021-07-06 通号(北京)轨道工业集团有限公司轨道交通技术研究院 Magnetic suspension train absolute positioning equipment and method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501703B1 (en) * 2002-05-21 2007-03-15 Siemens Ag INDUCTIVE PULL CONTROL SYSTEM
AT501703A1 (en) * 2002-05-21 2006-10-15 Siemens Ag INDUCTIVE PULL CONTROL SYSTEM
DE10223116B4 (en) * 2002-05-21 2014-06-26 Siemens Aktiengesellschaft Inductive train protection system
JP4652165B2 (en) * 2005-07-21 2011-03-16 日本信号株式会社 Train control receiver
JP2007028877A (en) * 2005-07-21 2007-02-01 Nippon Signal Co Ltd:The Train control receiver
JP2007185045A (en) * 2006-01-06 2007-07-19 Univ Nihon Device and method for measuring q-value of ats ground element
JP4723382B2 (en) * 2006-01-06 2011-07-13 学校法人日本大学 ATS ground unit Q value measuring apparatus and method
JP2009194948A (en) * 2008-02-12 2009-08-27 Nippon Signal Co Ltd:The Signal detector for train control
JP2011097715A (en) * 2009-10-29 2011-05-12 Kyosan Electric Mfg Co Ltd Train control unit
WO2013145201A1 (en) * 2012-03-29 2013-10-03 株式会社日立製作所 Image generating system and image generating method
JP2015177602A (en) * 2014-03-13 2015-10-05 株式会社東芝 On-train train control device
JP2019129582A (en) * 2018-01-23 2019-08-01 日本信号株式会社 Ground unit inspection device and on-vehicle pickup appropriateness determination device
CN113075736A (en) * 2021-03-24 2021-07-06 通号(北京)轨道工业集团有限公司轨道交通技术研究院 Magnetic suspension train absolute positioning equipment and method

Also Published As

Publication number Publication date
JP2984570B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
US6040796A (en) Radar system installable in an automotive vehicle for detecting a target object
KR20190031517A (en) Apparatus for detecting residual braking torque in a vehicle equipped with a disc brake
US9076272B2 (en) Wheel speed sensor and interface systems and methods
US20190143767A1 (en) Method for determining a wheel tire ground print
JPH08201454A (en) Method and apparatus for measuring ground unit of automatic train stop system
JP2007256095A (en) Measuring instrument and method
JP3514689B2 (en) Automatic train stop device
JP2008178230A (en) Automatic train control unit
JPH0792038B2 (en) Knocking adjustment method for internal combustion engine
JP6987018B2 (en) Train running speed calculation system
CN111722229B (en) Object detection device
CN115113186A (en) System and operating method for controlling vehicle ultrasonic sensor
JP7492234B2 (en) On-board device and method for selecting information for maintenance inspection
JP6962270B2 (en) Object detection device
JP2006160161A (en) Wayside coil sensing device
JP2568991B2 (en) Measuring device for ground on automatic train stop
JP3484134B2 (en) Train control device
JP3959015B2 (en) Signal processing method and signal processing apparatus
JP5951240B2 (en) On-board transmitter
US11658698B2 (en) Wireless communication device and wireless communication method
JPH11514444A (en) Load monitoring device connected to the secondary side of the transformer
JP2961265B1 (en) Receiver sensitivity adjustment circuit
US11977151B2 (en) Object detecting device, object detecting method, and object detecting program
US11977153B2 (en) Object detection device, object detection method, and object detection program
JP2003121541A (en) On-vehicle radar apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees