JPH08201266A - Pore distribution measuring instrument and constant-quantity injector - Google Patents

Pore distribution measuring instrument and constant-quantity injector

Info

Publication number
JPH08201266A
JPH08201266A JP3304595A JP3304595A JPH08201266A JP H08201266 A JPH08201266 A JP H08201266A JP 3304595 A JP3304595 A JP 3304595A JP 3304595 A JP3304595 A JP 3304595A JP H08201266 A JPH08201266 A JP H08201266A
Authority
JP
Japan
Prior art keywords
gas
valve
diaphragm
injector
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3304595A
Other languages
Japanese (ja)
Other versions
JP2779913B2 (en
Inventor
Minoru Takeuchi
稔 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7033045A priority Critical patent/JP2779913B2/en
Publication of JPH08201266A publication Critical patent/JPH08201266A/en
Application granted granted Critical
Publication of JP2779913B2 publication Critical patent/JP2779913B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE: To provide a measuring method by which measuring time can be shortened and measurement errors are not accumulated. CONSTITUTION: A pore distribution measuring instrument is provided with a system which is provided so that gases introduced to a thermostatic chamber 35 from an adsorbed gas source 1 and non-adsorbed gas source 2 can be switched to each other by means of stops valves 10 and 11 after the pressure of the gases are adjusted to a constant pressure by means of precision regulators 8 and 9 and injects the gases into the upper piping of a sample cell 20 by means of a constant-quantity injector 19, second system in which a plurality of stop valves and volume pipes 18 are provided in the piping connecting the upper piping of the cell 20 to a vacuum pump 28, and third system in which a stop valve is provided in the upper piping of a reference cell 21 removably provided on the outside of the chamber 35 so that the gases and pump 28 can be switched to each other. The measuring instrument is also provided with pressure tranducers 24, 25, and 26 provided in the upper piping of the cell 20 and that of the cell 21, a vacuum gauge provided in the piping led to the pump 28, control means 32 which controls the valves 10 and 11 and injector 19 and detects pressure signals, arithmetic means 33 which performs monitoring control and data analysis, and output means 34 which outputs results.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体サンプルにガスを
吸着させ吸着量の変位により、その固体物性値の細孔分
布、表面積等を測定する細孔分布測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pore distribution measuring apparatus for adsorbing a gas on a solid sample and measuring the distribution of the physical properties of the solid by varying the adsorption amount.

【0002】[0002]

【従来の技術】従来、吸着時の平衡圧力を測定して用い
られる細孔分布測定装置としては、特公告昭53−31
5吸脱着量自動測定装置、特公告平5−19096全自
動吸着装置を用いて行う吸着方法、特公告平5−394
27試料分析方法および装置、特公告平6−23676
吸着量測定装置などに用いられる原理で古くから知られ
る定容積法もしくは定容量法と言われる方法と、特公告
平4−5341号公報による質量流量計を用いた定流量
法と言われる2種の方法が知られている。
2. Description of the Related Art Conventionally, as a pore distribution measuring device used for measuring equilibrium pressure during adsorption, Japanese Patent Publication No. 53-31
5 Adsorption / desorption amount automatic measuring device, Japanese Patent Publication No. 5-19096 Adsorption method using fully automatic adsorption device, Japanese Patent Publication No. 5-394
27 sample analysis method and device, Japanese Patent Publication No. 6-23676
A method known as a constant volume method or a constant volume method, which has been known for a long time based on a principle used for an adsorption amount measuring device, and two types called a constant flow method using a mass flow meter according to Japanese Patent Publication No. 4-5341. The method is known.

【0003】特公告平4−5341号公報記載の定流量
法による測定方法によれば、質量流量計を有するマスフ
ローコントローラーにより吸着ガス流量を安定させ、連
続的に吸着ガスをサンプルセル内に流し計測する趣旨が
存するものである。したがって公報に記載された従来技
術によれば、吸着圧力を非平衡圧力で計測しているため
吸着結果の信頼性に乏しいと言う問題が存する。また高
価なマスフローコントローラとコントロール信号系を設
けるために製作費用が高騰するという問題も存するもの
である。
According to the measuring method by the constant flow rate method described in Japanese Patent Publication No. 4-5341, the adsorbed gas flow rate is stabilized by a mass flow controller having a mass flow meter, and the adsorbed gas is continuously flown into the sample cell for measurement. There is a purpose to do. Therefore, according to the conventional technique described in the publication, since the adsorption pressure is measured at the non-equilibrium pressure, there is a problem that the reliability of the adsorption result is poor. Further, there is also a problem that the manufacturing cost rises because an expensive mass flow controller and control signal system are provided.

【0004】特公告昭53−315吸脱着量自動測定装
置、特公告平5−19096全自動吸着装置を用いて行
う吸着方法、特公告平5−39427試料分析方法およ
び装置、特公告平6−23676吸着量測定装置記載の
定容積法による測定方法を従来技術の作用を示す図5に
より説明すると、サンプルセル(容積Vd)と開閉弁に
より仕切られた容積室(容積Vs)に所定圧力の吸着ガ
スを満たして密閉した後、開閉弁を開きサンプルセル及
び容積室(容積Vd+Vs)の平衡圧力を測定する趣旨
が存するものである。
Japanese Patent Publication No. 53-315, Automatic adsorption / desorption amount measuring device, Japanese Patent Publication No. 5-19096 Adsorption method using fully automatic adsorption device, Japanese Patent Publication No. 5-39427, Sample analysis method and device, Japanese Patent Publication No. 6- The measurement method by the constant volume method described in the 23676 adsorption amount measuring device will be described with reference to FIG. 5 showing the operation of the conventional technique. Adsorption of a predetermined pressure to a volume chamber (volume Vs) partitioned by a sample cell (volume Vd) and an on-off valve. The purpose is to measure the equilibrium pressure of the sample cell and the volume chamber (volume Vd + Vs) after opening the on-off valve after filling and sealing the gas.

【0005】したがって、公報に記載された定容積法に
より吸着量Vn を求める場合には、以下の数式1に代表
される繰り返し計算が必要となる。
Therefore, when the adsorption amount Vn is obtained by the constant volume method described in the publication, iterative calculation represented by the following formula 1 is required.

【0006】[0006]

【数1】 [Equation 1]

【0007】これによれば、前回の吸着量Vn-1 を毎回
加算するため測定誤差を含む数値までもが加算され測定
精度に大きく影響する累積誤差発生の問題が存する。
According to this, since the previous adsorption amount Vn-1 is added every time, even a numerical value including a measurement error is added, and there is a problem of cumulative error that greatly affects the measurement accuracy.

【0008】また容積法による測定装置の構成では容積
室Vs を恒温槽とし、サンプルセルをデュワー瓶に配置
するため、容積室では恒温槽温度の通常は室温より高い
30度ないし40度程度の温度から液体窒素などの極低
温度の環境へと連通後、平衡圧力まで保管して計測を行
う。これによれば先ず、容積室Vs に導かれた吸着ガス
は恒温室温度になるまで膨張する安定時間を設ける必要
があり、更に開閉弁によりサンプルセルVd との連通後
は完全に吸着平衡に達するまで保管しなくてはならな
い。何故ならば、次回の吸着測定に入るために開閉弁を
閉じた後サンプルセル内圧がまだ変化していた場合には
正確な吸着量を得られないばかりでなく、前述したよう
にその測定誤差が累積され著しく信頼性に乏しいものと
なるからである。また更に、窒素ガス吸着などの物理吸
着現象においては吸着現象は、ほぼ瞬間的に発生するに
も係わらず容積法において吸着平衡にまで多くの時間を
要する主要員は容積室Vs とサンプルセルVd の距離や
容積、そして温度差などが主要因と考えられる。したが
って従来技術の容積法においては測定時間を要するとい
う問題も存するものである。
Further, in the construction of the measuring device by the volume method, since the volume chamber Vs is used as a constant temperature chamber and the sample cell is arranged in the Dewar bottle, the temperature in the volume chamber is about 30 to 40 degrees higher than the room temperature, which is usually higher than room temperature. After communicating with an environment of extremely low temperature such as liquid nitrogen, store at the equilibrium pressure and measure. According to this, first, it is necessary to provide a stable time for the adsorbed gas introduced into the volume chamber Vs to expand until the temperature of the thermostatic chamber is reached, and further the adsorption equilibrium is reached after the communication with the sample cell Vd by the on-off valve. Must be stored until. The reason is that if the internal pressure of the sample cell was still changing after closing the on-off valve to start the next adsorption measurement, not only an accurate adsorption amount could not be obtained, but also the measurement error as described above. This is because they are accumulated and become extremely unreliable. Further, in the physical adsorption phenomenon such as nitrogen gas adsorption, although the adsorption phenomenon occurs almost instantaneously, it takes a lot of time to reach adsorption equilibrium in the volumetric method. The main members are the volume chamber Vs and the sample cell Vd. The main factors are distance, volume, and temperature difference. Therefore, the volumetric method of the prior art has a problem that it takes a long time for measurement.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記事情に
鑑みてなされたものであり、完全な吸着平衡による測定
を行い且つ吸着平衡に要する時間を短縮すると共に、測
定誤差を累積しない測定方法を提案する事を目的とする
ものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a measurement method for performing measurement by perfect adsorption equilibrium and shortening the time required for adsorption equilibrium, and not accumulating measurement errors. The purpose is to propose.

【0010】[0010]

【課題を解決するための手段】請求項1の発明によれ
ば、槽内温度を所定温度に制御された恒温室を設け、恒
温室外部に設けられた吸着ガス源および非吸着ガス源よ
り恒温室に導かれるガスを精密レギュレータにより一定
圧に整え開閉弁にて切り替え可能に設け、恒温室外部に
着脱可能に設けたサンプルセルの上部配管に前記吸着ガ
スもしくは非吸着ガスを定量注入器により注入する系統
を有する。更に、前記サンプルセル上部配管から恒温室
外部に設けた真空ポンプに導かれる配管に複数の開閉弁
と開閉弁の間に設けた容積管を設けた系統を有する。更
に、恒温室外部に着脱可能に設けたリファレンスセルの
上部配管に前記吸着ガスもしくは非吸着ガスと前記真空
ポンプとを切り替え可能に複数の開閉弁を設けた系統を
有する。更に、前記サンプルセル上部配管とリファレン
スセル上部配管にそれぞれ圧力トランスデューサを設
け、前記真空ポンプに導かれる配管に真空計を設け、前
記開閉弁と定量注入器の制御および圧力信号を検出する
制御手段と制御手段を監視制御およびデータ解析を行う
演算手段と解析及び制御結果を出力する出力手段を具備
することを特徴とする細孔分布測定装置である。
According to the first aspect of the present invention, a thermostatic chamber in which the temperature inside the tank is controlled to a predetermined temperature is provided, and a constant temperature is maintained from the adsorption gas source and the non-adsorption gas source provided outside the thermostatic chamber. The gas introduced into the chamber is regulated to a constant pressure by a precision regulator and can be switched by an on-off valve, and the adsorbed gas or non-adsorbed gas is injected into the upper pipe of the sample cell detachably installed outside the temperature-controlled room by a fixed quantity injector. Have a system to do. Further, it has a system in which a pipe leading from the sample cell upper pipe to a vacuum pump provided outside the temperature-controlled room is provided with a plurality of open / close valves and a volume pipe provided between the open / close valves. Furthermore, the system has a system in which a plurality of open / close valves are provided in an upper pipe of a reference cell detachably provided outside the thermostatic chamber so that the adsorption gas or the non-adsorption gas and the vacuum pump can be switched. Further, a pressure transducer is provided in each of the sample cell upper pipe and the reference cell upper pipe, a vacuum gauge is provided in the pipe guided to the vacuum pump, and control means for controlling the on-off valve and the quantitative injector and detecting a pressure signal. It is an apparatus for measuring pore size distribution, which comprises an arithmetic means for monitoring and controlling the control means and data analysis and an output means for outputting the analysis and control results.

【0011】請求項2の発明によれば、注入器ヘッドを
平行に貫通するガス入口とガス出口の一方が開口する注
入器ヘッドの面を覆うように密着配置するダイヤフラム
を設け、前記ダイヤフラムは全周を固定リングにより注
入器ヘッドに密着固定され中央部にはダイヤフラムロッ
トを設けてある。更に前記ガス入口をダイヤフラムの外
面から押圧閉口せしめる入口弁ロットと前記ガス出口を
ダイヤフラムの外面から押圧閉口せしめる出口弁ロット
を設け、前記入口弁ロットとダイヤフラムロットと出口
弁ロットをそれぞれを駆動するアクチェータを具備する
ことを特徴とする請求項1の発明に使用する定量注入器
である。
According to the second aspect of the present invention, a diaphragm is provided so as to be closely arranged so as to cover the surface of the injector head in which one of the gas inlet and the gas outlet penetrating the injector head in parallel is open, and the diaphragm is entirely formed. The circumference is tightly fixed to the injector head by a fixing ring, and a diaphragm lot is provided at the center. Further, an inlet valve lot for pressing and closing the gas inlet from the outer surface of the diaphragm and an outlet valve lot for pressing and closing the gas outlet from the outer surface of the diaphragm are provided, and an actuator for driving the inlet valve lot, the diaphragm lot and the outlet valve lot, respectively. The metered dose injector for use in the invention of claim 1, further comprising:

【0012】[0012]

【作用】請求項1の発明によれば、槽内温度を所定温度
に制御された恒温室を設け、恒温室外部に設けられた吸
着ガス源および非吸着ガス源より恒温室に導かれるガス
を精密レギュレータにより一定圧に整え開閉弁にて切り
替え可能に設けサンプルセルの上部配管に定量注入器に
より注入する系統を有する。これによれば、サンプルセ
ル及び上部配管はほぼ同一の内径で連通した極低容積の
単一容器である。そこに予め標準状態(P=760To
rr、T=273°K)における注入量を知られた定量
注入器により吸着ガスを定量注入される構成である。定
量注入器が一度に注入するガスは極微量のため分解能の
高い測定が可能であり、更に吸着は瞬時に発生し低容積
のサンプルセル内では平衡圧力に達する時間が短いと言
う作用を存する細孔分布測定装置である。
According to the first aspect of the present invention, a temperature-controlled room in which the temperature inside the tank is controlled to a predetermined temperature is provided, and the gas introduced into the temperature-controlled room from the adsorbed gas source and the non-adsorbed gas source provided outside the temperature-controlled room is supplied. The system has a system that injects a fixed amount of pressure into the upper pipe of the sample cell by means of a fixed-quantity injector, which is regulated to a constant pressure by a precision regulator and can be switched by an on-off valve. According to this, the sample cell and the upper pipe are a single container of an extremely low volume, which communicates with each other with substantially the same inner diameter. Standard state (P = 760To
In this configuration, the adsorption gas is quantitatively injected by a constant quantity injector whose injection quantity is known at rr, T = 273 ° K). Since the amount of gas injected by the constant-quantity injector at one time is extremely small, it is possible to measure with high resolution. Furthermore, adsorption occurs instantly and the time to reach equilibrium pressure in a low-volume sample cell is short. It is a pore distribution measuring device.

【0013】請求項2の発明による定量注入器は槽内温
度を所定温度に制御された恒温室内に設けられ、精密レ
ギュレータにより一定圧に整えられたガスがガス入口に
導かれる。導かれたガスは、本発明の作用を示す図3の
様にソレノイドもしくはエアーシリンダーを用いたアク
チェータにより順次駆動され、1:入り口弁開、2:ガ
ス吸入、3:気密、4:出口弁開、5:ガス注入、6:
密閉、と言う動作を繰り返しサンプルセルにガスを注入
せしめる。3の気密により捕集されるガスは温度、圧力
ともに精密に整えられた環境により常に一定量であり、
注入されるサンプルセルの内部は注入圧力(精密レギュ
レータ設定圧力)より低い圧力のため迅速に注入される
作用を有する。
The metered dose injector according to the second aspect of the present invention is provided in a thermostatic chamber in which the temperature inside the tank is controlled to a predetermined temperature, and a gas regulated to a constant pressure by a precision regulator is introduced to the gas inlet. The introduced gas is sequentially driven by an actuator using a solenoid or an air cylinder as shown in FIG. 3 showing the operation of the present invention, 1: inlet valve opening, 2: gas suction, 3: air tightness, 4: outlet valve opening. 5, gas injection, 6:
The operation of closing is repeated and gas is injected into the sample cell. The gas collected by the airtightness of 3 is always a constant amount due to the environment where the temperature and pressure are precisely adjusted,
The inside of the sample cell to be injected has a function of being rapidly injected because of a pressure lower than the injection pressure (precision regulator setting pressure).

【0014】以上に記載された本願発明によれば完全な
吸着平衡による測定を実施し、且つ測定時間を短縮する
測定を行い得るものである。
According to the invention of the present application described above, it is possible to carry out the measurement by a complete adsorption equilibrium and to shorten the measurement time.

【0015】[0015]

【実施例】以下に、本発明の実施例について詳細に説明
する。
EXAMPLES Examples of the present invention will be described in detail below.

【0016】図1は請求項1記載の発明の実施例を示
す、これによれば槽内温度を所定温度に制御された恒温
室(35)を設け、恒温室外部に設けられた吸着ガス源
(1)および非吸着ガス源(2)より恒温室に導かれる
ガスを精密レギュレータ(8)(9)により一定圧に整
え開閉弁(10)(11)にて切り替え可能に設け、恒
温室外部に着脱可能に設けたサンプルセル(20)の上
部配管に前記吸着ガス(1)もしくは非吸着ガス(2)
を定量注入器(19)により注入する系統を有する。更
に、前記サンプルセル(20)の上部配管から恒温室外
部に設けた真空ポンプ(28)に導かれる配管に複数の
開閉弁(15)(16)(17)と開閉弁の間に設けた
容積管(18)を設けた系統を有する。更に、恒温室外
部に着脱可能に設けたリファレンスセル(21)の上部
配管に前記吸着ガス(1)もしくは非吸着ガス(2)と
前記真空ポンプ(28)とを切り替え可能に複数の開閉
弁(12)(13)(14)を設けた系統を有する。更
に、前記サンプルセル上部配管とリファレンスセル上部
配管にそれぞれ圧力トランスデューサ(24)(25)
を設け、前記真空ポンプに導かれる配管に真空計(2
6)を設け、前記開閉弁と定量注入器(19)の制御お
よび圧力信号を検出する制御手段(32)と制御手段を
監視制御およびデータ解析を行う演算手段(33)と解
析及び制御結果を出力する出力手段(34)を具備する
ことを特徴とする細孔分布測定装置である。
FIG. 1 shows an embodiment of the invention according to claim 1, according to which an adsorbed gas source provided outside the thermostatic chamber is provided with a thermostatic chamber (35) whose internal temperature is controlled to a predetermined temperature. The gas introduced from (1) and the non-adsorbed gas source (2) to the temperature-controlled room is regulated to a constant pressure by the precision regulators (8) and (9), and the switching valves (10) and (11) are provided so as to be switchable. The adsorbed gas (1) or the non-adsorbed gas (2) is attached to the upper pipe of the sample cell (20) detachably attached to
Has a system for injecting the sucrose with a metered dose injector (19). Furthermore, the volume provided between the plurality of on-off valves (15) (16) (17) and the on-off valves in the pipe leading from the upper pipe of the sample cell (20) to the vacuum pump (28) provided outside the temperature-controlled room. It has a system provided with a pipe (18). Further, a plurality of on-off valves () that can switch between the adsorbed gas (1) or the non-adsorbed gas (2) and the vacuum pump (28) are provided in an upper pipe of a reference cell (21) detachably provided outside the temperature-controlled room. 12) (13) (14) is provided. Further, pressure transducers (24) and (25) are respectively provided in the sample cell upper pipe and the reference cell upper pipe.
And a vacuum gauge (2
6) is provided, and the control means (32) for controlling the on-off valve and the fixed quantity injector (19) and for detecting the pressure signal, the arithmetic means (33) for monitoring and controlling the control means and the analysis and control results are displayed. The pore distribution measuring apparatus is characterized by comprising an output means (34) for outputting.

【0017】更に、実施例では開閉弁を駆動するために
駆動ガス源(3)から導かれたガスもしくはエアーをレ
ギュレータ(6)により整え、制御手段により駆動され
る電磁弁ユニット(7)を介して開閉弁を駆動する系統
を有する。また前記セル(20)(21)を吸着温度に
整えるデュワー瓶などの恒温容器(23)を上下動せし
める上下ユニット(29)を有する。実施例の上下ユニ
ット(29)では送りネジ(31)と正逆転モーター
(30)により上下動を実現している構成である。また
更に、精密レギュレータ(8)(9)の誤差要因となる
吸着ガス源(1)および非吸着ガス源(2)の圧力変動
が有る場合に設けるレギュレータ(4)(5)と、HK
法による精密なマイクロポア孔の解析などで高真空を必
要とする場合に設ける油拡散ポンプもしくはターボ分子
ポンプなどの真空昇圧ポンプ(27)も記されている。
尚、吸着量測定装置には必ず必要となる前処理の真空脱
気で用いるマントルヒータとその温度制御系および恒温
室の温度制御系は省略されている。
Further, in the embodiment, the gas or air introduced from the driving gas source (3) for driving the on-off valve is conditioned by the regulator (6), and the electromagnetic valve unit (7) driven by the control means is used. Has a system for driving the on-off valve. It also has a vertical unit (29) for vertically moving a constant temperature container (23) such as a Dewar bottle for adjusting the cells (20) (21) to an adsorption temperature. The vertical unit (29) of the embodiment is configured to realize vertical movement by the feed screw (31) and the forward / reverse rotation motor (30). Furthermore, regulators (4) and (5) provided when there are pressure fluctuations of the adsorbed gas source (1) and the non-adsorbed gas source (2) that cause error in the precision regulators (8) and (9), and HK
A vacuum booster pump (27) such as an oil diffusion pump or a turbo molecular pump, which is provided when a high vacuum is required for accurate analysis of micropores by the method, is also described.
The adsorption amount measuring device does not include the mantle heater and its temperature control system and the temperature control system of the temperature-controlled room, which are always used in the vacuum degassing in the pretreatment.

【0018】図4は本発明の実施例の他例を示すもの
で、吸着ガス源(1)および非吸着ガス源(2)の圧力
を整える精密レギュレータ(8)(9)を共通とした事
と開閉弁(13)もしくは開閉弁(17)のいずれか一
方を省略して構成された本願発明の請求項1記載の細孔
分布測定装置の応用例である。
FIG. 4 shows another embodiment of the present invention, in which precision regulators (8) and (9) for adjusting the pressures of the adsorbed gas source (1) and the non-adsorbed gas source (2) are common. It is an application example of the pore size distribution measuring apparatus according to claim 1 of the present invention, which is configured by omitting one of the on-off valve (13) and the on-off valve (17).

【0019】図2は請求項2に記載の発明の実施例を示
すもので、これによれば注入器ヘッド(51)を平行に
貫通するガス入口(53)とガス出口(54)の一方が
開口する注入器ヘッドの平面を覆うように密着配置すダ
イヤフラム(52)を設け、前記ダイヤフラムは全周を
固定リング(67)により注入器ヘッドに密着固定され
中央部にはダイヤフラムロット(56)を設けてある。
ガス入口(53)の他方には吸着ガス源(1)もしくは
非吸着ガス源(2)より導かれるガス導入配管(61)
をさし込み継ぎ手(65)により連通され、ガス出口
(54)の他方にはサンプルセル(20)の上部配管に
導かれるガス注入配管(62)がさし込み継ぎ手(6
6)により連通されている。更に、前記ガス入口(5
3)の一方をダイヤフラム(52)の外面から押圧閉口
せしめる入口弁ロット(55)と前記ガス出口(54)
の一方をダイヤフラム(52)の外面から押圧閉口せし
める出口弁ロット(57)を設け、前記入口弁ロットと
ダイヤフラムロットと出口弁ロットをそれぞれを駆動す
るアクチェータ(58)(59)(60)を具備するこ
とを特徴とする請求項1の発明に使用する定量注入器で
ある。また、実施例においては入口弁ロット(55)先
端と出口弁ロット(57)先端にはダイヤフラム(5
2)を痛めないよう緩衝部材(63)が設けられ、ダイ
ヤフラムフラム(52)中央にはダイヤフラムロット
(56)を着脱可能とするために連結部材(64)を設
けてある。尚、固定リング(67)を着脱可能に固定せ
しめる止めネジやアクチャータ(58)(59)(6
0)の駆動系の構成は省略されている。
FIG. 2 shows an embodiment of the invention as claimed in claim 2, according to which one of the gas inlet (53) and the gas outlet (54) passing through the injector head (51) in parallel. A diaphragm (52) which is closely arranged so as to cover the plane of the opened injector head is provided, and the entire circumference of the diaphragm is closely fixed to the injector head by a fixing ring (67), and a diaphragm lot (56) is provided at the central portion. It is provided.
A gas introduction pipe (61) led from the adsorbed gas source (1) or the non-adsorbed gas source (2) to the other of the gas inlets (53).
A gas injection pipe (62), which is communicated with the insertion joint (65) and is guided to the upper pipe of the sample cell (20), is connected to the other end of the gas outlet (54).
It is communicated by 6). Furthermore, the gas inlet (5
3) An inlet valve lot (55) for pressing and closing one side from the outer surface of the diaphragm (52) and the gas outlet (54)
An outlet valve lot (57) for pressing and closing one side from the outer surface of the diaphragm (52) is provided, and actuators (58) (59) (60) for driving the inlet valve lot, the diaphragm lot and the outlet valve lot are provided. The metered dose injector for use in the invention according to claim 1, wherein Further, in the embodiment, the diaphragm (5) is provided at the tip of the inlet valve lot (55) and the tip of the outlet valve lot (57).
A buffer member (63) is provided so as not to damage 2), and a connecting member (64) is provided at the center of the diaphragm (52) so that the diaphragm lot (56) can be attached and detached. In addition, a set screw or an actuator (58) (59) (6) for fixing the fixing ring (67) detachably.
The configuration of the drive system of 0) is omitted.

【0020】以上に示された本願発明の細孔分布測定装
置を使用するには、サンプル(22)を投入されたサン
プルセル(20)を装着し、開閉弁(15)(16)必
要により開閉弁(17)を交互に開閉を繰り返し、サン
プル(22)を吸引しないよう注意しながらサンプルセ
ル(20)内部を真空引きし、更にマントルヒータによ
り加熱真空脱気を十分行う。
To use the pore distribution measuring apparatus of the present invention described above, the sample cell (20) charged with the sample (22) is mounted, and the opening / closing valves (15) (16) are opened and closed as necessary. The valve (17) is alternately opened and closed, the inside of the sample cell (20) is evacuated while being careful not to suck the sample (22), and further the heating vacuum deaeration is sufficiently performed by the mantle heater.

【0021】次に、空のサンプルセルで代用できるリフ
ァレンスセル(21)を装着し、開閉弁(13)(1
4)(17)を開き真空引きを行う。ここで、吸着ガス
に応じた冷媒を恒温容器(23)に満たす。冷媒とは窒
素ガス吸着には液体窒素を用い、アルゴンガス吸着には
液体アルゴンというように使い分けると様々な吸着ガス
に適用できる。
Next, a reference cell (21) which can be replaced by an empty sample cell is attached, and the on-off valves (13) (1) are attached.
4) Open (17) and evacuate. Here, the constant temperature container (23) is filled with the refrigerant corresponding to the adsorbed gas. The refrigerant can be applied to various adsorbed gases by using liquid nitrogen for nitrogen gas adsorption and liquid argon for argon gas adsorption.

【0022】次に開閉弁を全て閉じ、恒温容器(23)
を上下ユニット(29)によりゆっくりと上昇させ、サ
ンプルセル(20)およびリファレンスセル(21)を
冷媒中に埋没せしめる。ここで、開閉弁(10)(1
2)(14)を開き吸着ガスをリファレンスセル(2
1)に3分間ないし5分間ほど導入し、リファレンスセ
ル(21)内部に液化ガスを生成せしめ開閉弁(14)
を閉じて密閉とする。密閉された容器の内部は圧力トラ
ンスデュサー(25)により、その後の測定中を通して
正確な吸着ガスの飽和蒸気圧Ps を提供する事となる。
Next, all the on-off valves are closed and the constant temperature container (23)
Is slowly raised by the vertical unit (29) to immerse the sample cell (20) and the reference cell (21) in the refrigerant. Here, the on-off valve (10) (1
2) Open (14) and set the adsorbed gas to the reference cell (2
It is introduced into 1) for about 3 to 5 minutes to generate a liquefied gas inside the reference cell (21) to open / close the valve (14).
To close and seal. The pressure transducer (25) provides an accurate saturated vapor pressure Ps of the adsorbed gas throughout the subsequent measurement inside the sealed vessel.

【0023】次に、全ての開閉弁を閉じた状態から開閉
弁(12)、開閉弁(13)、開閉弁(17)を開き配
管内のガスをパージし開閉弁を全て閉じる。ここで開閉
弁(11)を開き、ヘリウムガスに代表される非吸着ガ
スを導入し定量注入器(19)によりサンプルセル(2
0)に定量づつガスを注入し所定時間の後、圧力トラン
スデュサー(24)により計測を行う。この動作を少な
くとも10数回行い圧力上昇の傾きを最小二乗法により
求める。この計測データがサンプルの容積も差し引かれ
た正格なサンプルセル(20)の冷媒温度における見か
け容積つまり死容積値を提供する。
Next, the open / close valve (12), the open / close valve (13) and the open / close valve (17) are opened from the state where all the open / close valves are closed to purge the gas in the pipe and close all the open / close valves. Here, the on-off valve (11) is opened, a non-adsorbed gas represented by helium gas is introduced, and the sample cell (2
Gas is quantitatively injected into 0), and after a predetermined time, measurement is performed by the pressure transducer (24). This operation is performed at least ten times and the slope of the pressure rise is obtained by the least square method. This metrology data provides the apparent or dead volume value at the refrigerant temperature of the authentic sample cell (20) with the sample volume also subtracted.

【0024】次に、開閉弁(15)(16)と必要によ
り開閉弁(17)を交互に開閉を繰り返し、サンプル
(22)を吸引しないよう注意しながらサンプルセル
(20)内部の非吸着ガスのパージを十分行った後、全
ての開閉弁を閉じた状態から開閉弁(12)(13)
(17)を開き配管内の残留ガスをパージし開閉弁を全
て閉じる。ここで開閉弁(10)を開き吸着ガスを導入
し、定量注入器(19)によりサンプルセル(20)に
定量づつガスを注入し、吸着平衡となる時間の後圧力ト
ランスデュサー(24)により計測を行う事により吸着
等温データが得られる。このとき、定量注入器(19)
の注入を1回毎測定すれば測定点数の多い高い分解精度
による解析結果が得られ、複数回の注入を行った後測定
すれば短時間の簡便な測定となり、目的に応じた分解能
や測定時間が得られる機能を有する。最も本願発明の細
孔分布測定装置を有効に使用するためには解析目的に応
じた測定モードをプログラムとして予め演算手段(3
3)に登録して適便使い分ける事が望ましい。
Next, the open / close valves (15) and (16) and the open / close valve (17) are alternately opened and closed repeatedly as necessary, taking care not to suck the sample (22), and the non-adsorbed gas inside the sample cell (20). After performing sufficient purging of the on-off valves (12) (13)
Open (17) to purge residual gas in the pipe and close all on-off valves. Here, the on-off valve (10) is opened to introduce the adsorbed gas, the gas is quantitatively injected into the sample cell (20) by the fixed quantity injector (19), and after the time when the adsorption equilibrium is reached, the pressure transducer (24) is used. By measuring, adsorption isotherm data can be obtained. At this time, a fixed quantity injector (19)
If you measure each injection once, you can get the analysis result with high number of measurement points and high resolution accuracy, and if you measure after multiple injections, it will be a simple measurement in a short time, and the resolution and measurement time according to your purpose. Has the function to obtain. In order to use the pore size distribution measuring apparatus of the present invention most effectively, the calculation mode (3
It is desirable to register in 3) and use the appropriate flight properly.

【0025】たとえば、HK法によるマイクロポア孔解
析の測定データを得るためには最大の分解能を得られる
ように1回の注入毎に吸着平衡圧力の測定をし、BET
法による比表面積の解析には相対圧0.35までに数点
の分解能があれば足りるので数十回毎の計測でも十分と
なる。更に、BJH法やDH法によるメソポアからマク
ロポア孔分布の解析データを得る少なくとも20点以上
の分解能とするには、数回から十数回毎の計測でも十分
な分解能を得ることが可能である。
For example, in order to obtain the measurement data of the micropore analysis by the HK method, the adsorption equilibrium pressure is measured for each injection to obtain the maximum resolution, and the BET is measured.
For the analysis of the specific surface area by the method, it is sufficient to have a resolution of several points up to a relative pressure of 0.35, so that it is sufficient to measure every tens of times. Furthermore, in order to obtain a resolution of at least 20 points or more for obtaining analysis data of macropore distribution from mesopores by the BJH method or DH method, it is possible to obtain sufficient resolution even if the measurement is performed several times to several tens of times.

【0026】次に、本願記載の実施例により脱着等温デ
ータを得るためには、吸着測定終了時の飽和蒸気圧近傍
から開始される。この場合、開閉弁(15)(17)を
開け、予め容積管(18)内を真空引きした後に開閉弁
(15)(17)を閉じる。ここで開閉弁(16)を開
けサンプルセル(20)内が吸着平衡となるまで保管後
に圧力を計測する。この場合の脱着ガス量は、定容積法
による数式1に準拠し求められる。
Next, in order to obtain the desorption isotherm data according to the embodiment described in the present application, it is started near the saturated vapor pressure at the end of the adsorption measurement. In this case, the on-off valves (15) (17) are opened, the inside of the volume tube (18) is evacuated in advance, and then the on-off valves (15) (17) are closed. Here, the on-off valve (16) is opened and the pressure is measured after storage until the inside of the sample cell (20) is in adsorption equilibrium. The amount of desorption gas in this case is calculated according to the mathematical formula 1 by the constant volume method.

【0027】従来、BJH法やDH法による細孔分布解
析には脱着等温線による解析が一般的で有ったが、文献
(盛岡良雄,表面,Vol28,598/1990)に
よる「多孔体の細孔径分布と細孔の網目構造」に示され
るように、細孔分布の解析には吸着等温線による解析が
適していることからも本願記載の測定方法による吸着測
定法が有用であることが明確である。従って、本願発明
により脱着測定を行う場合は、壺型細孔による吸脱着等
温線のヒステリシス特性の解析に用いる場合に限られる
が、本願実施例によれば完全な吸着平衡による測定が可
能である。
Conventionally, the desorption isotherm was generally used for the pore distribution analysis by the BJH method or the DH method. However, according to the literature (Yoshio Morioka, Surface, Vol 28, 598/1990), As shown in "Pore size distribution and pore network structure", it is clear that the adsorption measurement method according to the present invention is useful because the analysis by the adsorption isotherm is suitable for the analysis of the pore distribution. Is. Therefore, the desorption measurement according to the present invention is limited to the case where it is used for the analysis of the hysteresis characteristic of the adsorption / desorption isotherm due to the pot-shaped pores, but according to the examples of the present invention, the measurement by the complete adsorption equilibrium is possible. .

【0028】本願発明による細孔分布測定装置は吸着測
定における高精度で柔軟な測定パターンが選択できる点
でも特筆できるが、更に本願記載の吸着測定方法により
吸着ガス量Vn を求めるには次に示す数式2の如く至極
簡単に求められる。
The pore size distribution measuring apparatus according to the present invention can be particularly noted in that a highly precise and flexible measurement pattern can be selected in the adsorption measurement. Further, the adsorption gas amount Vn can be obtained by the adsorption measurement method described in the present invention as follows. It can be obtained very easily as in the formula 2.

【0029】[0029]

【数2】 [Equation 2]

【0030】これによれば、任意の相対圧力時の吸着量
を求める場合、数式1の様な煩雑な繰り返し計算を行わ
なくても瞬時にして求められる。それに加え測定方法に
よる測定誤差も少なく、また吸着計算による累積誤差を
生まない相乗作用により高精度の測定が可能となる。
According to this, when the adsorption amount at an arbitrary relative pressure is obtained, it can be instantly obtained without performing a complicated repetitive calculation such as Equation 1. In addition, there are few measurement errors due to the measurement method, and highly accurate measurement is possible due to the synergistic effect that does not cause cumulative errors due to adsorption calculation.

【0031】[0031]

【発明の効果】詳述した本発明によれば、上記構成とし
たことにより以下の効果を奏ずる。
According to the present invention which has been described in detail, the following effects are obtained by the above-mentioned configuration.

【0032】本願発明の吸着測定方法は、吸着ガスを流
しながら測定するものではなく完全な吸着平衡圧を計測
して求める方法であるため測定値の信頼性が高い。また
高価なマスフローコントローラやコントロール信号系が
不要なため製造費用が安価となる。
Since the adsorption measuring method of the present invention is a method of measuring the complete adsorption equilibrium pressure instead of measuring while flowing the adsorption gas, the measured value is highly reliable. Further, since an expensive mass flow controller and control signal system are unnecessary, the manufacturing cost is low.

【0033】定容積法のように容積室Vs との連通動作
を不要としたためサンプルセル容積Vd のみと小容積と
なり吸着平衡圧の到達時間も短くなる上、定量注入器を
複数回実行するスキップ動作を行っても誤差を発生しな
い柔軟な測定パターンが可能となる。同様に、差圧測定
による計測ではなく吸着平衡圧力のみを計測する絶対圧
計測方法のため測定精度が高い。同様に吸着量計算にお
ける累積誤差を生じない計測方法により更に高い測定精
度が得られる。
Since the communication operation with the volume chamber Vs is not required unlike the constant volume method, only the sample cell volume Vd becomes a small volume, and the arrival time of the adsorption equilibrium pressure is shortened, and the skip operation for executing the quantitative injection device a plurality of times is performed. A flexible measurement pattern that does not generate an error even when performing is possible. Similarly, the measurement accuracy is high because it is an absolute pressure measurement method that measures only the adsorption equilibrium pressure, not the measurement by differential pressure measurement. Similarly, a higher measurement accuracy can be obtained by a measurement method that does not cause a cumulative error in the adsorption amount calculation.

【0034】更に、本願発明の実施例に示すように、開
閉弁駆動方法および定量注入器の駆動方法共にON−O
FF制御によるため、マスフローコントローラーやリー
ク弁のようなアナログコントロール信号を必要としない
安価な費用で製作できるという効果も奏ずるものであ
る。
Further, as shown in the embodiment of the present invention, both the on-off valve driving method and the metering device driving method are ON-O.
Since the FF control is used, there is no effect that an analog control signal such as a mass flow controller or a leak valve is not required and the device can be manufactured at a low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1の実施例を示す機器構成図で
ある。
FIG. 1 is a device configuration diagram showing an embodiment of claim 1 of the present invention.

【図2】本発明の請求項2の実施例を示す断面図であ
る。
FIG. 2 is a sectional view showing an embodiment of claim 2 of the present invention.

【図3】本発明の請求項2の作用を示す断面図である。FIG. 3 is a cross-sectional view showing the operation of claim 2 of the present invention.

【図4】本発明の請求項1の実施例の他例を示す機器構
成図である。
FIG. 4 is a device configuration diagram showing another example of the embodiment of claim 1 of the present invention.

【図5】従来技術の作用を示す機器構成図である。FIG. 5 is a device configuration diagram showing an operation of a conventional technique.

【符号の説明】[Explanation of symbols]

1 吸着ガス源 2 非吸着ガス源 3 駆動ガス源 4 レギュレータ 5 レギュレータ 6 レギュレータ 7 電磁弁ユニット 8 精密レギュレータ 9 精密レギュレータ 10 開閉弁 11 開閉弁 12 開閉弁 13 開閉弁 14 開閉弁 15 開閉弁 16 開閉弁 17 開閉弁 18 容積管 19 定量注入器 20 サンプルセル 21 リファレンスセル 22 サンプル 23 恒温容器 24 圧力トランスデューサ 25 圧力トランスデューサ 26 圧力トランスデューサ 27 真空昇圧ポンプ 28 真空ポンプ 29 上下ユニット 30 正逆転モーター 31 送りネジ 32 制御手段 33 演算手段 34 出力手段 35 恒温室 51 注入器ヘッド 52 ダイヤフラム 53 ガス入口 54 ガス出口 55 入口弁ロット 56 ダイヤフラムロット 57 出口弁ロット 58 アクチェータ 59 アクチェータ 60 アクチェータ 61 ガス導入配管 62 ガス注入配管 63 緩衝部材 64 連結部材 65 差し込み継ぎ手 66 差し込み継ぎ手 67 固定リング 1 Adsorbed gas source 2 Non-adsorbed gas source 3 Driving gas source 4 Regulator 5 Regulator 6 Regulator 7 Electromagnetic valve unit 8 Precision regulator 9 Precision regulator 10 Open / close valve 11 Open / close valve 12 Open / close valve 13 Open / close valve 14 Open / close valve 15 Open / close valve 16 Open / close valve 17 Opening / closing valve 18 Volume tube 19 Quantitative injector 20 Sample cell 21 Reference cell 22 Sample 23 Constant temperature container 24 Pressure transducer 25 Pressure transducer 26 Pressure transducer 27 Vacuum boost pump 28 Vacuum pump 29 Vertical unit 30 Forward / reverse motor 31 Feed screw 32 Control means 33 computing means 34 output means 35 constant temperature chamber 51 injector head 52 diaphragm 53 gas inlet 54 gas outlet 55 inlet valve lot 56 diaphragm lot 57 outlet valve lot 58 ac Cheater 59 Actuator 60 Actuator 61 Gas introduction pipe 62 Gas injection pipe 63 Buffer member 64 Connecting member 65 Insert joint 66 Insert joint 67 Fixing ring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】槽内温度を所定温度に制御された恒温室に
吸着ガス源および非吸着ガス源より導かれるガスを精密
レギュレータにより一定圧にととのえ開閉弁にて切り替
え可能に設け、恒温室外部に着脱可能に設けたサンプル
セルの上部配管に前記吸着ガスもしくは非吸着ガスを定
量注入器により注入する系統を有し、前記サンプルセル
上部配管から恒温室外部に設けた真空ポンプに導かれる
配管に複数の開閉弁と開閉弁の間に設けた容積管を設け
た系統を有し、恒温室外部に着脱可能に設けたリファレ
ンスセルの上部配管に前記吸着ガスもしくは非吸着ガス
と前記真空ポンプとを切り替え可能に開閉弁を設けた系
統を有し、前記サンプルセル上部配管とリファレンスセ
ル上部配管にそれぞれ圧力トランスデューサを設け、前
記真空ポンプに導かれる配管に真空計を設け、前記開閉
弁と定量注入器の制御および圧力信号を検出する制御手
段と制御手段を監視制御およびデータ解析を行う演算手
段と解析及び制御結果を出力する出力手段を具備するこ
とを特徴とする細孔分布測定装置。
1. A thermostatic chamber in which the temperature inside the tank is controlled to a predetermined temperature is provided so that the gas introduced from the adsorbing gas source and the non-adsorbing gas source is kept at a constant pressure by a precision regulator and can be switched by an on-off valve. Has a system for injecting the adsorbed gas or the non-adsorbed gas into the upper pipe of the sample cell detachably attached to the upper pipe of the sample cell through a pipe introduced from the sample cell upper pipe to a vacuum pump provided outside the temperature-controlled room. It has a system in which a volume pipe is provided between a plurality of on-off valves and an on-off valve, and the adsorbed gas or non-adsorbed gas and the vacuum pump are attached to the upper pipe of a reference cell detachably provided outside the temperature-controlled room. It has a system with an open / close valve that can be switched, and a pressure transducer is installed in each of the sample cell upper pipe and the reference cell upper pipe, and the pressure transducer is connected to the vacuum pump. A vacuum gauge is provided in the pipe to be provided, and control means for controlling the on-off valve and fixed quantity injector and detecting a pressure signal and control means for monitoring and controlling the control means and output means for outputting the analysis and control result are provided. A pore size distribution measuring device characterized by:
【請求項2】注入器ヘッドを平行に貫通するガス入口と
ガス出口の一方が開口する注入器ヘッドの面を覆うよう
に密着配置すダイヤフラムを設け、前記ダイヤフラムは
全周を固定リングにより注入器ヘッドに密着固定し中央
部にはダイヤフラムロットを設け、前記ガス入口をダイ
ヤフラムの外面から押圧閉口せしめる入口弁ロットと前
記ガス出口をダイヤフラムの外面から押圧閉口せしめる
出口弁ロットを設け、入口弁ロットとダイヤフラムロッ
トと出口弁ロットをそれぞれ駆動するアクチェータを具
備することを特徴とする請求項1の発明に使用する定量
注入器。
2. A diaphragm, which is closely arranged so as to cover the surface of the injector head in which one of a gas inlet and a gas outlet penetrating through the injector head in parallel is provided, and the diaphragm is provided with a fixing ring all around the injector. It is tightly fixed to the head and a diaphragm lot is provided in the central part, and an inlet valve lot that presses and closes the gas inlet from the outer surface of the diaphragm and an outlet valve lot that presses and closes the gas outlet from the outer surface of the diaphragm are provided. The metered dose injector for use in the invention of claim 1, further comprising actuators for driving the diaphragm lot and the outlet valve lot, respectively.
JP7033045A 1995-01-30 1995-01-30 Pore distribution measuring device and metering injector Expired - Lifetime JP2779913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7033045A JP2779913B2 (en) 1995-01-30 1995-01-30 Pore distribution measuring device and metering injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7033045A JP2779913B2 (en) 1995-01-30 1995-01-30 Pore distribution measuring device and metering injector

Publications (2)

Publication Number Publication Date
JPH08201266A true JPH08201266A (en) 1996-08-09
JP2779913B2 JP2779913B2 (en) 1998-07-23

Family

ID=12375823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7033045A Expired - Lifetime JP2779913B2 (en) 1995-01-30 1995-01-30 Pore distribution measuring device and metering injector

Country Status (1)

Country Link
JP (1) JP2779913B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02307038A (en) * 1989-05-22 1990-12-20 Shimadzu Corp Adsorption quantity measuring instrument
JPH04230831A (en) * 1990-05-09 1992-08-19 Inst Fr Petrole Method and apparatus for measuring adsorption and desorption of adsorbed gas with solid sample and utilizing method thereof
JPH0539427A (en) * 1991-08-06 1993-02-19 Asahi Chem Ind Co Ltd Resin composition
JPH05180750A (en) * 1991-01-22 1993-07-23 Minoru Takeuchi Measuring apparatus of distribution of thin holes
JPH0623676A (en) * 1991-05-28 1994-02-01 Swearless Tools Corp Socket and driving device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02307038A (en) * 1989-05-22 1990-12-20 Shimadzu Corp Adsorption quantity measuring instrument
JPH04230831A (en) * 1990-05-09 1992-08-19 Inst Fr Petrole Method and apparatus for measuring adsorption and desorption of adsorbed gas with solid sample and utilizing method thereof
JPH05180750A (en) * 1991-01-22 1993-07-23 Minoru Takeuchi Measuring apparatus of distribution of thin holes
JPH0623676A (en) * 1991-05-28 1994-02-01 Swearless Tools Corp Socket and driving device
JPH0539427A (en) * 1991-08-06 1993-02-19 Asahi Chem Ind Co Ltd Resin composition

Also Published As

Publication number Publication date
JP2779913B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
US20040134258A1 (en) Method and apparatus to measure gas amounts adsorbed on a powder sample
CN101395453B (en) Gas flow rate verification unit
CN101498642B (en) Accurate tester for sorbent and method thereof
US6595036B1 (en) Method and apparatus for measuring amount of gas adsorption
US5637810A (en) Apparatus and method for efficient determination of equilibrium adsorption isotherms at low pressures
US7850918B2 (en) Multiple sample gas sorption tester
US5360743A (en) Method for measuring a sample sorption and a sample cell void volume and wall adsorption using an adsorbate gas
JP6037760B2 (en) Adsorption characteristic measuring device
JP2784476B2 (en) Pore distribution measuring device
US5895841A (en) Method and apparatus for performing adsorption and desorption analysis of samples
CN107202743A (en) A kind of Multi-example Static Adsorption test device and its method of testing
JPH08201266A (en) Pore distribution measuring instrument and constant-quantity injector
CN110702578A (en) Volumetric method isobaric adsorption tester
CN206420834U (en) A kind of gas chromatograph vacuum sampling device
CN210803224U (en) Volumetric method isobaric adsorption tester
CN201387413Y (en) Adsorbent precision tester
CN106706816A (en) Vacuum sampling device for gas chromatograph
CN109916467B (en) Volume measuring system and method
CN107340204A (en) Multiple isothermal method can be measured during a complete plenum
CN106841482A (en) A kind of gas chromatograph application process of vacuum sampling device
CN207133152U (en) A kind of device of acetylene absorption measurement
JP2005077310A (en) Gas measuring device and self-diagnosis method therefor
CN117309672B (en) Integrated module for precisely controlling gas adsorption and desorption by pulsation and control method
JP2779871B2 (en) Pore distribution measuring device
CN210690061U (en) 1N single-component thruster test system