JPH08201107A - Electrostatic capacitance type encoder - Google Patents

Electrostatic capacitance type encoder

Info

Publication number
JPH08201107A
JPH08201107A JP2594095A JP2594095A JPH08201107A JP H08201107 A JPH08201107 A JP H08201107A JP 2594095 A JP2594095 A JP 2594095A JP 2594095 A JP2594095 A JP 2594095A JP H08201107 A JPH08201107 A JP H08201107A
Authority
JP
Japan
Prior art keywords
electrode
stator
mover
polytetrafluoroethylene
moving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2594095A
Other languages
Japanese (ja)
Inventor
Hirotoshi Hayakawa
博敏 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2594095A priority Critical patent/JPH08201107A/en
Publication of JPH08201107A publication Critical patent/JPH08201107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE: To provide a long-life highly reliable electrostatic capacitance type encoder with limited friction of an electrode surface. CONSTITUTION: This electrostatic capacitahce type encoder comprises a stator 1 which has at least two stator electrodes 2 at a fixed interval on the surface of an insulating base body and a rotor or a moving element 3 having a moving element electrode 4 on the surface of the insulating base body to measure a change in the electrostatic capacitance determined by areas of the moving element electrode 4 and the stator electrode 2 as opposed to each other when the stator electrode 2 and the moving element electrode 4 are made to face each other maintaining a fixed interval therebetween. In the electrostatic capacitance type encoder, at least one of the moving element electrode 4 and the stator electrode 2 is buried into polytetrafluoroethylene to be molded integral and the surface of the moving element electrode 4 or the stator electrode 2 is covered with the polytetrafluoroethylene.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、モータあるいはリニヤ
モータの回転角度、位置、速度等を静電容量により検出
する静電容量式エンコーダに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitance type encoder for detecting a rotation angle, a position, a speed, etc. of a motor or a linear motor by a capacitance.

【0002】[0002]

【従来技術】従来の静電容量式エンコーダとして、図6
に示す構成のものがある(特開昭56ー8508)。移
動子電極4および固定子電極2a、2bは、プリント基
板表面にパターン印刷されている。固定子上の電極パタ
ーン2a、2bは、電圧相毎に分けて電気的に交互に接
続され、電圧が印加される。移動子電極の結線はスルー
ホールを介して固定子電極と対向する反対の面で行われ
ている。移動子が矢印の方向に動くと、移動子電極と固
定子電極の各々の電極が対向したときには移動子電極−
固定子電極間の静電容量が最大になり、移動子電極と固
定子電極が対向しないときには移動子電極と固定子電極
の静電容量が最小になる。静電容量式エンコーダの検出
原理は、この静電容量の変化から移動子の回転角あるい
は移動距離を検知するものである。さらに静電容量式エ
ンコーダの短絡防止のため、表面に絶縁性の膜を形成す
ることが知られている。(経営開発センター出版部発
行、「新しいセンサの技術開発と最適な選び方、使い
方」)
2. Description of the Related Art As a conventional capacitance type encoder, FIG.
There is a structure shown in (Japanese Patent Laid-Open No. 56-8508). The mover electrode 4 and the stator electrodes 2a and 2b are pattern-printed on the surface of the printed board. The electrode patterns 2a and 2b on the stator are separately electrically connected alternately for each voltage phase, and a voltage is applied. Wiring of the mover electrode is performed on the opposite surface facing the stator electrode through the through hole. When the mover moves in the direction of the arrow, when the mover electrode and the stator electrode face each other, the mover electrode −
The capacitance between the stator electrodes is maximized, and when the mover electrode and the stator electrode do not face each other, the capacitance between the mover electrode and the stator electrode is minimized. The detection principle of the electrostatic capacity encoder is to detect the rotation angle or the moving distance of the moving element from the change of the electrostatic capacity. Further, it is known that an insulating film is formed on the surface of the capacitance type encoder to prevent a short circuit. (Published by the Management Development Center, "Development of new sensor technology, optimal selection and usage")

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の静電
容量式エンコーダをモータあるいはリニヤモータに取り
付けたとき、モータあるいはリニヤモータに負荷がかか
ると機械的なガタによって移動子電極と固定子電極の距
離が変化し、移動子電極上にコーティングした絶縁膜と
固定子電極上にコーティングした絶縁膜が接触し、絶縁
膜どうしで摺動することがあり、さらに負荷が大きくな
ると最悪絶縁膜が剥がれるということがあった。一方、
絶縁膜をポリテトラフルオルエチレンで構成して固定子
と移動子の間の摩擦係数を低減させる方法が容易に考え
られるが、スパッタリングやプラズマ重合などの薄膜形
成技術では低摩擦係数のポリテトラフルオルエチレン膜
は作製できていない。また、ポリテトラフルオルエチレ
ンのフィルムを電極上に接着させようとしてもポリテト
ラフルオルエチレンは元来、他の材料に接着しにくい材
料であり電極上に形成することは困難である。最近、ポ
リテトラフルオルエチレンを表面処理し、異種材料に接
着しやすくする方法がある。しかしながら、温度変化に
伴い電極とポリテトラフルオルエチレンの熱膨張差によ
る応力が接着面に働き、ポリテトラフルオルエチレンフ
ィルムは剥離することがあった。すなわち、電極上にポ
リテトラフルオルエチレンを形成するとは難しく、静電
容量式エンコーダの電極上絶縁膜には使えなかった。そ
こで、本発明は電極表面の摩擦を小さくして、寿命が長
く、信頼性の高い静電容量式エンコーダを提供すること
を目的とする。
However, when the conventional electrostatic capacity type encoder is attached to the motor or the linear motor, when the load is applied to the motor or the linear motor, the distance between the mover electrode and the stator electrode is reduced due to mechanical play. It may change, the insulating film coated on the mover electrode and the insulating film coated on the stator electrode may come into contact with each other, and may slide between the insulating films. there were. on the other hand,
Although it is easy to consider a method of reducing the friction coefficient between the stator and the mover by forming the insulating film with polytetrafluoroethylene, polytetrafluoroethylene with a low friction coefficient is used in thin film forming technology such as sputtering or plasma polymerization. An all-ethylene film has not been produced. Further, even if an attempt is made to adhere a polytetrafluoroethylene film onto an electrode, polytetrafluoroethylene is originally a material that is difficult to adhere to other materials, and it is difficult to form it on the electrode. Recently, there is a method of surface-treating polytetrafluoroethylene to facilitate adhesion to different materials. However, as the temperature changes, stress due to the difference in thermal expansion between the electrode and polytetrafluoroethylene acts on the adhesive surface, and the polytetrafluoroethylene film may peel off. That is, it is difficult to form polytetrafluoroethylene on the electrode, and it cannot be used for the insulating film on the electrode of the capacitance type encoder. Therefore, it is an object of the present invention to provide a capacitive encoder having a long life and high reliability by reducing friction on the electrode surface.

【0004】[0004]

【課題を解決するための手段】上記の問題点を解決する
ため、本発明は絶縁性の基体表面に一定間隔をもって少
なくとも2つの固定子電極を有する固定子と、絶縁性の
基体表面に移動子電極を有する回転体または移動子とか
らなり、前記固定子電極と前記移動子電極とを一定の間
隔を保持して対向させ前記移動子電極と前記固定子電極
が対向している面積で決まる静電容量変化を測定する静
電容量式エンコーダにおいて、前記移動子電極あるいは
前記固定子電極の少なくとも一方がポリテトラフルオル
エチレン中に埋め込んで一体成型され、移動子電極また
は固定子電極の表面がポリテトラフルオルエチレンで覆
われた構成にしている。
In order to solve the above-mentioned problems, the present invention provides a stator having at least two stator electrodes at regular intervals on the surface of an insulating substrate, and a mover on the surface of the insulating substrate. A rotor or a mover having an electrode, and the stator electrode and the mover electrode are opposed to each other with a fixed space therebetween, and the static electrode is determined by the area where the mover electrode and the stator electrode are opposed to each other. In a capacitance type encoder for measuring a change in capacitance, at least one of the mover electrode or the stator electrode is embedded in polytetrafluoroethylene and integrally molded, and the surface of the mover electrode or the stator electrode is The structure is covered with tetrafluoroethylene.

【0005】[0005]

【作用】本発明の静電容量式エンコーダでは移動子電極
上でポリテトラフルオルエチレンがコーティングあるい
は接着されておらず連続して移動子全体につながって一
体成型されいるため、移動子と固定子が接触して大きな
負荷がかかっても従来技術のように絶縁膜が剥がれると
いうことがなくなる。また、温度変化が起こって電極と
ポリテトラフルオルエチレンの接着力がなくなっても、
電極上のポリテトラフルオルエチレン絶縁膜が剥離する
ことがない。これらに加え、ポリテトラフルオルエチレ
ンを使用しているため、移動子と固定子の間の摺動性が
極めて良い。
In the electrostatic capacity type encoder of the present invention, since the polytetrafluoroethylene is not coated or adhered on the mover electrode and is continuously connected to the whole mover and integrally molded, the mover and the stator are integrally formed. However, even if they are in contact with each other and a large load is applied, the insulating film is not peeled off as in the prior art. Also, even if the temperature changes and the adhesive force between the electrode and polytetrafluoroethylene disappears,
The polytetrafluoroethylene insulating film on the electrode does not peel off. In addition to these, since polytetrafluoroethylene is used, the slidability between the mover and the stator is extremely good.

【0006】[0006]

【実施例】以下、本発明の実施例を図に基づいて説明す
る。図1は本発明の静電容量式エンコーダの構成を示す
断面図である。図において、1は固定子、2は固定子電
極、3は移動子、4は移動子電極である。図2は移動子
3、図3は固定子1の平面図をそれぞれ示したものであ
る。移動子3は、移動子電極4をポリテトラフルオルエ
チレンで埋め込まれた構造であり、図4に示す成型法で
作製した。すなわち、金型5の円筒状の雌型5bの中に
ポリテトラフルオルエチレン粉末(図示せず)を均一に
充填し、その上に銅の薄板からなる半円状の移動子電極
4を設置し、さらにその上に円形状のポリテトラフルオ
ルエチレンシート6を載せ、円柱状の雄型5aを圧入し
加熱プレスで一体成型した。固定子電極2は通常の銅板
のエッチングによるパターニング方法で90°の扇形に
対角位置に形成されている。いま、移動子電極4と固定
子電極2a、2bを対向させて、固定子電極2a、2b
に励起電圧を印加して移動子3を回転させると、図5に
示すように静電容量が変化し、エンコーダとしての機能
を有していることが分かった。つぎに、本発明の静電容
量式エンコーダの耐久性を調べた。まず、本エンコーダ
をモータに取付け、大きな負荷をかけて固定子1と移動
子3とを接触させて回転しても本発明の静電容量式エン
コーダの移動子電極4のテトラフルオルエチレンは剥離
することはなかった。さらに、本発明の静電容量式エン
コーダの効果を定量的に調べるため従来のエンコーダと
比較した。本発明の静電容量式エンコーダと従来の静電
容量式エンコーダのそれぞれの移動子3と固定子1とを
接触させて、かつ接触面に2kg/cm2 の荷重かけて
100rpmの回転数で静電容量式エンコーダを回転さ
せ、移動子電極4と固定子電極2が短絡するまでの時間
を計測した。なお試験条件として、従来の静電容量式エ
ンコーダの移動子電極用の絶縁膜は100μmの厚さの
含油ポリアセタールを使用し、固定子用絶縁膜には10
0μmの厚さのポリアセタールを使用した。従来の静電
容量式エンコーダでは100個のうち70個が1時間以
内に絶縁膜が剥離し、短絡して故障し、1〜2時間の間
に19個が故障し、3時間で残りのすべてが故障した。
一方、本発明の静電容量式エンコーダの5つを試験した
結果、故障までに平均3004時間を要した。すなわ
ち、本発明の静電容量式エンコーダでは従来の静電容量
式エンコーダに比べ、非常に長い寿命であることがわか
った。この理由は、本発明の静電容量式エンコーダの移
動子電極4の上のポリテトラフルオルエチレン6が単独
で存在するのではなく、連続して、移動子3全体につな
がっているためである。また、ポリテトラフルオルエチ
レン6の摩擦特性が優れていることも長寿命の理由と考
えられる。上記の耐久試験の他に、−30〜80℃のヒ
ートサイクル試験を行った結果、従来の静電容量式エン
コーダでは、100回のヒートサイクル試験で全て絶縁
膜が剥離したが、本実施例の静電容量式エンコーダでは
全く損傷がなかった。本実施例では、移動子電極4の全
体をポリテトラフルオルエチレン中に埋め込んだが、固
定子電極を埋め込んで同様に試験しても本実施例と同じ
効果が得られる。また、固定子電極と移動子電極の両方
がポリテトラフルオルエチレンの中に埋め込まれていれ
ば、さらに長寿命となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing the configuration of the capacitance type encoder of the present invention. In the figure, 1 is a stator, 2 is a stator electrode, 3 is a mover, and 4 is a mover electrode. 2 is a plan view of the mover 3, and FIG. 3 is a plan view of the stator 1. The mover 3 has a structure in which the mover electrode 4 is embedded with polytetrafluoroethylene, and was manufactured by the molding method shown in FIG. That is, polytetrafluoroethylene powder (not shown) is uniformly filled in the cylindrical female die 5b of the die 5, and the semicircular mover electrode 4 made of a thin copper plate is placed thereon. Then, a circular polytetrafluoroethylene sheet 6 was placed thereon, and a cylindrical male die 5a was press-fitted and integrally molded by a heating press. The stator electrode 2 is formed in a 90 ° fan shape at diagonal positions by a normal patterning method by etching a copper plate. Now, with the mover electrode 4 and the stator electrodes 2a, 2b facing each other, the stator electrodes 2a, 2b
It was found that when an excitation voltage is applied to the moving element 3 to rotate the moving element 3, the electrostatic capacity changes as shown in FIG. 5, and the element has a function as an encoder. Next, the durability of the capacitance type encoder of the present invention was examined. First, even if this encoder is attached to a motor and a large load is applied to bring the stator 1 and the mover 3 into contact with each other and rotate, the tetrafluoroethylene of the mover electrode 4 of the capacitance type encoder of the present invention peels off. I didn't do it. Furthermore, in order to quantitatively investigate the effect of the capacitance type encoder of the present invention, comparison was made with a conventional encoder. Each of the electrostatic capacity encoder of the present invention and the conventional electrostatic capacity encoder is brought into contact with the moving element 3 and the stator 1, and a static load of 2 kg / cm 2 is applied to the contact surface so as to be static at a rotational speed of 100 rpm. The capacitance type encoder was rotated, and the time until the mover electrode 4 and the stator electrode 2 were short-circuited was measured. As a test condition, an oil-impregnated polyacetal having a thickness of 100 μm was used as the insulating film for the moving electrode of the conventional electrostatic capacity encoder, and 10% was used as the insulating film for the stator.
0 μm thick polyacetal was used. In the conventional electrostatic capacity type encoder, 70 out of 100 pieces peeled off the insulating film within 1 hour and caused a short circuit, 19 pieces failed in 1 to 2 hours, and all remaining in 3 hours. Broke down.
On the other hand, as a result of testing five capacitance type encoders of the present invention, it took an average of 3004 hours to fail. That is, it was found that the electrostatic capacity encoder of the present invention has a much longer life than the conventional electrostatic capacity encoder. The reason for this is that the polytetrafluoroethylene 6 on the moving element electrode 4 of the capacitance type encoder of the present invention does not exist alone but is continuously connected to the entire moving element 3. . Further, it is considered that the excellent friction property of polytetrafluoroethylene 6 is also the reason for the long life. In addition to the above-mentioned durability test, as a result of performing a heat cycle test at -30 to 80 ° C., in the conventional capacitive encoder, the insulating film was completely peeled off in the heat cycle test of 100 times. The capacitive encoder did not show any damage. In this embodiment, the entire mover electrode 4 is embedded in polytetrafluoroethylene, but the same effect as in this embodiment can be obtained by embedding the stator electrode and performing the same test. Further, if both the stator electrode and the mover electrode are embedded in polytetrafluoroethylene, the life becomes even longer.

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば、移
動子電極または固定子電極の少なくともいずれか一方を
ポリテトラフルオルエチレン中に埋め込んだ構造にした
ので、寿命が著しく長く、信頼性の高い静電容量式エン
コーダを提供できる効果がある。
As described above, according to the present invention, since at least one of the mover electrode and the stator electrode is embedded in polytetrafluoroethylene, the life is extremely long and the reliability is high. There is an effect that it is possible to provide a capacitive encoder having high property.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の静電容量式エンコーダの実施例を示す
断面図である。
FIG. 1 is a sectional view showing an embodiment of a capacitance type encoder of the present invention.

【図2】本発明の移動子の平面図である。FIG. 2 is a plan view of a mover of the present invention.

【図3】本発明の固定子の平面図である。FIG. 3 is a plan view of a stator of the present invention.

【図4】本発明の移動子の成形方法を示す斜視図であ
る。
FIG. 4 is a perspective view showing a method of molding a moving element according to the present invention.

【図5】本発明の静電容量式エンコーダの静電容量変化
を示す電圧特性図である。
FIG. 5 is a voltage characteristic diagram showing a capacitance change of the capacitance type encoder of the present invention.

【図6】従来の静電容量式エンコーダの構成を示す断面
図である。
FIG. 6 is a cross-sectional view showing a configuration of a conventional capacitance type encoder.

【符号の説明】[Explanation of symbols]

1:固定子 2、2a、2b: 固定子電極 3:移動子 4:移動子電極 5:金型 5a:雄型 5b:雌型 6:ポリテトラフルオルエチレンシート 1: Stator 2, 2a, 2b: Stator electrode 3: Moving element 4: Moving element electrode 5: Mold 5a: Male type 5b: Female type 6: Polytetrafluoroethylene sheet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性の基体表面に一定間隔をもって少
なくとも2つの固定子電極を有する固定子と、絶縁性の
基体表面に移動子電極を有する回転子または移動子とか
らなり、前記固定子電極と前記移動子電極とを一定の間
隔を保持して対向させ前記移動子電極と前記固定子電極
が対向している面積で決まる静電容量変化を測定する静
電容量式エンコーダにおいて、 前記移動子電極あるいは前記固定子電極の少なくとも一
方がポリテトラフルオルエチレン中に埋め込んで一体成
型され、移動子電極または固定子電極の表面がポリテト
ラフルオルエチレンで覆われていることを特徴とする静
電容量式エンコーダ。
1. A stator comprising an insulative base surface having at least two stator electrodes at regular intervals, and a rotor or a mover having an insulative base surface having mover electrodes. In the electrostatic capacity encoder for measuring the capacitance change determined by the area where the mover electrode and the stator electrode are opposed to each other, the mover electrode and the mover electrode are opposed to each other with a constant gap, At least one of the electrode or the stator electrode is embedded in polytetrafluoroethylene and integrally molded, and the surface of the mover electrode or the stator electrode is covered with polytetrafluoroethylene. Capacitive encoder.
JP2594095A 1995-01-20 1995-01-20 Electrostatic capacitance type encoder Pending JPH08201107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2594095A JPH08201107A (en) 1995-01-20 1995-01-20 Electrostatic capacitance type encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2594095A JPH08201107A (en) 1995-01-20 1995-01-20 Electrostatic capacitance type encoder

Publications (1)

Publication Number Publication Date
JPH08201107A true JPH08201107A (en) 1996-08-09

Family

ID=12179761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2594095A Pending JPH08201107A (en) 1995-01-20 1995-01-20 Electrostatic capacitance type encoder

Country Status (1)

Country Link
JP (1) JPH08201107A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051751A (en) * 2006-08-28 2008-03-06 Nissan Motor Co Ltd Capacitance detection type rotation sensor
JP2012163415A (en) * 2011-02-04 2012-08-30 Seiko Epson Corp Acceleration sensor and manufacturing method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051751A (en) * 2006-08-28 2008-03-06 Nissan Motor Co Ltd Capacitance detection type rotation sensor
JP2012163415A (en) * 2011-02-04 2012-08-30 Seiko Epson Corp Acceleration sensor and manufacturing method for the same

Similar Documents

Publication Publication Date Title
JP3980300B2 (en) Membrane pressure sensitive resistor and pressure sensor
Zeiser et al. Capacitive strain gauges on flexible polymer substrates for wireless, intelligent systems
JP2006518841A (en) Measuring bearing with integrated data detection and processing device
US20080043811A1 (en) Flexible Thin Metal Film Thermal Sensing System
JPH08201107A (en) Electrostatic capacitance type encoder
GB2168530A (en) Mass airflow sensor with backflow detection
JPH02193030A (en) Pressure detector
KR100547275B1 (en) Contact capacitive sensor
JP2003075277A (en) Sheetlike pressure sensor
CN111513686B (en) Temperature sensing assembly, temperature detector and wearing device
JPH08210873A (en) Variable capacitor and rotational angle detector using the capacitor
JPS6311672Y2 (en)
JPH08159706A (en) Interval sensor
JPH028171Y2 (en)
JP2000299203A (en) Resistor and manufacture thereof
JP3834612B2 (en) Bearing with deterioration sensor
JPH02114871A (en) Pyroelectricity actuator
JP3357794B2 (en) Strain sensor
JP2000030910A (en) Electric resistor having at least two connecting and contacting fields on ceramic substrate and its manufacture
JPS61281418A (en) Load detection sensor
JPH0833410B2 (en) Acceleration sensor
CN116155039A (en) Miniature electromagnetic actuator and preparation method thereof
CN116164865A (en) Preparation method of sensor based on single-sided internal micro-touch structure
JPS637856Y2 (en)
JP2002181648A (en) Pressure sensor