JPH08200540A - Solenoid valve - Google Patents

Solenoid valve

Info

Publication number
JPH08200540A
JPH08200540A JP946495A JP946495A JPH08200540A JP H08200540 A JPH08200540 A JP H08200540A JP 946495 A JP946495 A JP 946495A JP 946495 A JP946495 A JP 946495A JP H08200540 A JPH08200540 A JP H08200540A
Authority
JP
Japan
Prior art keywords
valve
plunger
temperature
electromagnetic
valve opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP946495A
Other languages
Japanese (ja)
Inventor
Yasuaki Kinoshita
靖朗 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP946495A priority Critical patent/JPH08200540A/en
Publication of JPH08200540A publication Critical patent/JPH08200540A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To enable a flow rate equivalent to that at high temperatures to be secured at low temperatures without using a temperature sensor, correcting duty ratio, or deteriorating responsivenss and pulsation at high temperatures. CONSTITUTION: A first and a second plungers 42, 44 are arranged in series inside a coil 20 to which a constant voltage is applied, and are energized toward the valve closing side (leftward in the figure) respectively by first and second compression coil springs 46, 48, and at high temperatures at which the coil 20 has large electrical resistance and a small electromagnetic force the first plunger 42 is moved to a first valve opening position where it abuts to the second plunger 44. At low temperatures at which the coil 20 has small electrical resistance and a large electromagnetic force, the first plunger 42 is moved to a second valve opening position where it abuts to a core 16 via the second plunger 44.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電磁開閉弁に係り、特
に、流体の流動性が低下する低温時でも高温時と同程度
の流量を確保できる電磁開閉弁に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic on-off valve, and more particularly to an electromagnetic on-off valve that can secure a flow rate at a low temperature where fluidity of a fluid is lowered and at the same time as a high temperature.

【0002】[0002]

【従来の技術】コイルに一定の電圧を印加して励磁する
ことにより、プランジャ(可動鉄心)を介して例えばポ
ペットやスプール等の弁体を開弁側へ移動させて流路を
開く電磁開閉弁が、車両用自動変速機の油圧回路など種
々の分野で用いられている。このような電磁開閉弁は、
電圧が印加されるか否かによって流路を開閉するもので
あるが、電圧の印加時間をデューティ制御することによ
り、単位時間当たりの流量を連続的に変化させることも
できる。
2. Description of the Related Art An electromagnetic on-off valve that opens a flow path by moving a valve element such as a poppet or a spool to a valve opening side via a plunger (movable iron core) by applying a constant voltage to a coil for excitation. However, it is used in various fields such as a hydraulic circuit of an automatic transmission for a vehicle. Such an electromagnetic on-off valve
Although the flow path is opened and closed depending on whether or not a voltage is applied, the flow rate per unit time can be continuously changed by controlling the duty of the voltage application time.

【0003】ところで、かかる電磁開閉弁の弁開度、す
なわち流路を開いた時の流体の流通断面積は一定である
ため、流体の温度が低くて流動性が悪い(粘性が高い)
場合と、温度が高くて流動性が良い(粘性が低い)場合
とでは、単位時間当たりの流量に差が生じ、低温時は高
温時に比較して流量が少なく応答性が悪いなどの不都合
がある。このような不都合は、温度によって粘性が大き
く変化する油などの液体やゲル状の流体の場合に顕著で
ある。前記車両用自動変速機の油圧回路用電磁開閉弁に
おいては、応答性が悪いと変速用クラッチやブレーキの
係合が遅れて変速ショックなどを生じる。このため、例
えば特開平2−86422号公報に記載されているよう
に温度センサによって流体の温度を測定することによ
り、その温度に応じて前記デューティ制御のデューティ
比を補正するなどして、温度変化に拘らず適正な流量が
得られるようにすることが考えられる。
By the way, since the valve opening degree of such an electromagnetic on-off valve, that is, the flow cross-sectional area of the fluid when the flow path is opened is constant, the fluid temperature is low and the fluidity is poor (high viscosity).
There is a difference in the flow rate per unit time between the case where the temperature is high and the fluidity is good (the viscosity is low), and there is an inconvenience that the flow rate is low at low temperature as compared with high temperature and the response is poor. . Such inconvenience is remarkable in the case of a liquid such as oil or a gel-like fluid whose viscosity largely changes depending on the temperature. In the solenoid valve for the hydraulic circuit of the automatic transmission for a vehicle, if the response is poor, the engagement of the shift clutch or the brake is delayed and a shift shock or the like occurs. Therefore, for example, as described in Japanese Patent Application Laid-Open No. 2-86422, the temperature of the fluid is measured by a temperature sensor, and the duty ratio of the duty control is corrected according to the temperature to change the temperature. Regardless of the above, it is possible to obtain an appropriate flow rate.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、その場
合は温度センサが必要であるとともに、流体温度に応じ
てデューティ比を補正する補正値をデータマップなどで
記憶しておく必要があるため、装置構成や制御が複雑に
なり、必ずしも十分に満足できなかった。また、低温時
でも十分な流量が得られるように弁自体の弁開度を大き
くし、デューティ制御で所定の流量となるように制限す
ることになるため、開閉時のプランジャの移動ストロー
クが大きくなって開閉時間が長くなり、高温時における
応答性が悪化するとともに、デューティ制御に伴う流量
や圧力の脈動が大きくなる。前記自動変速機の油圧回路
では、エンジンの起動開始当初が低温時で暖機後の通常
の走行時が高温時であり、高温時の応答性や脈動を損な
うことは回避する必要がある。
However, in that case, since the temperature sensor is required and the correction value for correcting the duty ratio according to the fluid temperature needs to be stored in the data map or the like, the device configuration is required. The control became complicated, and I was not always fully satisfied. In addition, the valve opening of the valve itself is enlarged so that a sufficient flow rate can be obtained even at low temperature, and the duty control limits the flow rate to a predetermined flow rate. As a result, the opening / closing time becomes long, the responsiveness at high temperature deteriorates, and the pulsation of the flow rate and pressure accompanying the duty control increases. In the hydraulic circuit of the automatic transmission, it is necessary to avoid impairing the responsiveness and pulsation at high temperature because the engine is initially started at a low temperature and the normal running after warm-up is a high temperature.

【0005】なお、前記特開平2−86422号公報は
弁開度自体を連続的に制御する比例電磁弁を用いている
ため、デューティ制御のような脈動が無いととともに、
高温時の応答性を損なうことなく低温時の流量を十分に
確保することが可能であるが、弁自体が複雑で高価にな
る。
Since the Japanese Patent Laid-Open No. 2-86422 uses a proportional solenoid valve for continuously controlling the valve opening itself, there is no pulsation such as duty control.
It is possible to secure a sufficient flow rate at low temperature without impairing the responsiveness at high temperature, but the valve itself is complicated and expensive.

【0006】本発明は以上の事情を背景として為された
もので、その目的とするところは、温度センサを用いた
りデューティ比を補正したりすることなく、且つ高温時
の応答性や脈動を損なうことなく、低温時でも高温時と
同程度の流量を確保できる電磁開閉弁を提供することに
ある。
The present invention has been made in view of the above circumstances. An object of the present invention is to impair responsiveness and pulsation at high temperature without using a temperature sensor or correcting a duty ratio. The purpose of the present invention is to provide an electromagnetic on-off valve that can secure the same flow rate as that at high temperature even at low temperature.

【0007】[0007]

【課題を解決するための第1の手段】かかる目的を達成
するために、第1発明は、コイルに一定の電圧を印加し
て励磁することにより、プランジャを介して弁体を開弁
側へ移動させて流路を開く電磁開閉弁において、前記コ
イルの温度低下に伴う電磁力の増大に基づいて、前記プ
ランジャを閉弁側へ付勢する付勢手段の付勢力に抗して
そのプランジャの開弁側への移動量を増大させ、低温時
には高温時よりも弁開度が大きくなるようにしたことを
特徴とする。
In order to achieve the above object, the first aspect of the present invention applies a constant voltage to a coil to excite the coil so that the valve body is opened toward the valve opening side via a plunger. In the electromagnetic on-off valve which is moved to open the flow path, the plunger of the plunger is resisted against the urging force of the urging means for urging the plunger toward the valve closing side based on the increase of the electromagnetic force accompanying the temperature decrease of the coil. It is characterized in that the amount of movement to the valve opening side is increased so that the valve opening becomes larger at low temperature than at high temperature.

【0008】[0008]

【作用および第1発明の効果】すなわち、電磁開閉弁に
用いられるコイルは、銅のエナメル線などの金属製であ
るため、温度が低くなるに従って電気抵抗が小さくな
り、一定の電圧を印加した場合には電流値が大きくなっ
て電磁力が増大するのである。そして、このように電磁
力が増大することを利用して、プランジャを閉弁側へ付
勢する付勢手段の付勢力に抗してそのプランジャの開弁
側への移動量を増大させ、低温時には高温時よりも弁開
度が大きくなるようにしたのであり、これにより、温度
が低くて流体の流動性が悪い(粘性が高い)場合でも、
温度が高くて流動性が良い(粘性が低い)場合と同程度
の流量を確保することができる。また、高温時にはプラ
ンジャの移動量が小さいため、応答性やデューティ制御
に伴う流量や圧力の脈動を従来と同程度に維持できる。
更に、温度低下に伴う電磁力の増大を利用して弁開度を
大きくするため、温度センサを用いて流体の温度を測定
したり流体温度に応じてデューティ比を補正する補正値
をデータマップなどで記憶したりするなど、温度に応じ
て弁開度を変えるための特別な手段や制御が不要で、弁
を開閉する制御系を含む装置全体を簡単且つ安価に構成
できる。
In other words, since the coil used for the solenoid opening / closing valve is made of metal such as copper enameled wire, the electric resistance becomes smaller as the temperature becomes lower, and when a constant voltage is applied. Therefore, the current value increases and the electromagnetic force increases. Then, by utilizing the increase of the electromagnetic force, the amount of movement of the plunger toward the valve opening side is increased against the biasing force of the biasing means for biasing the plunger toward the valve closing side. At times, the valve opening was made larger than at high temperature, so that even if the temperature is low and the fluidity is poor (high viscosity),
It is possible to secure the same flow rate as when the temperature is high and the fluidity is good (the viscosity is low). Further, since the amount of movement of the plunger is small at high temperatures, it is possible to maintain the pulsation of the flow rate and pressure associated with the responsiveness and duty control to the same level as in the conventional case.
Furthermore, in order to increase the valve opening by utilizing the increase in electromagnetic force due to the decrease in temperature, a temperature sensor is used to measure the temperature of the fluid, and a correction value for correcting the duty ratio according to the fluid temperature is used as a data map. No special means or control for changing the valve opening degree according to the temperature, such as memorizing at, is required, and the entire apparatus including the control system for opening and closing the valve can be configured easily and inexpensively.

【0009】以上が第1発明に特有の作用効果である
が、温度と弁開度との関係は、温度の低下に伴って弁開
度が連続的に大きくなるものでも、段階的に大きくなる
ものでも良く、流体の流動性と温度との関係に基づいて
設定することが望ましい。例えば、流体の流動性が所定
温度で急に低下する場合には、その所定温度付近で弁開
度が急に大きくなるようにすれば良い。
The above is the operation and effect peculiar to the first invention, but the relationship between the temperature and the valve opening degree increases stepwise even if the valve opening degree continuously increases as the temperature decreases. However, it is desirable to set it based on the relationship between the fluidity of the fluid and the temperature. For example, when the fluidity of the fluid suddenly drops at a predetermined temperature, the valve opening may be increased suddenly near the predetermined temperature.

【0010】また、コイルの電磁力は温度低下に伴って
連続的に大きくなるため、付勢手段の付勢力を適当に設
定すれば、付勢手段の付勢力と電磁力(厳密にはプラン
ジャに対する吸引力)とのバランスによりプランジャの
移動量すなわち弁開度を連続的に変化させることができ
るし、例えば付勢力や長さが異なる複数の付勢手段でプ
ランジャに対する付勢力を移動量に応じて段階的に変化
させれば、電磁力の増大に伴ってプランジャの移動量を
段階的に変化させることができる。
Further, since the electromagnetic force of the coil continuously increases as the temperature decreases, by appropriately setting the urging force of the urging means, the urging force of the urging means and the electromagnetic force (strictly speaking, to the plunger). The amount of movement of the plunger, that is, the valve opening, can be continuously changed by the balance with the suction force). For example, the urging force to the plunger can be changed according to the amount of movement by a plurality of urging means having different urging forces or lengths. If changed stepwise, the amount of movement of the plunger can be changed stepwise as the electromagnetic force increases.

【0011】[0011]

【課題を解決するための第2の手段】第2発明は、コイ
ルに一定の電圧を印加して励磁することにより、プラン
ジャを介して弁体を開弁側へ移動させて流路を開く電磁
開閉弁において、(a)前記プランジャの移動方向にお
いてそのプランジャを複数に分割し、閉弁側の先端に位
置する分割プランジャと前記弁体とを一体的に移動させ
て流路を開閉する一方、(b)前記複数の分割プランジ
ャの閉弁側の移動端をそれぞれ規定する複数のストッパ
と、(c)前記複数の分割プランジャをそれぞれ前記閉
弁側へ付勢して前記ストッパに当接させ、互いに離間し
た状態に保持するとともに、前記閉弁側の分割プランジ
ャ程小さな電磁力で開弁側へ移動することを許容する複
数の付勢手段とを有することを特徴とする。
A second aspect of the present invention is to electromagnetically open a flow path by moving a valve body to a valve opening side through a plunger by applying a constant voltage to a coil to excite the coil. In the on-off valve, (a) the plunger is divided into a plurality of pieces in the moving direction of the plunger, and the split plunger located at the tip on the valve closing side and the valve body are integrally moved to open and close the flow path, (B) a plurality of stoppers that respectively define moving ends of the plurality of split plungers on the valve closing side; and (c) urge the plurality of split plungers toward the valve closing side to abut the stopper. A plurality of urging means for holding the two in a state of being separated from each other and permitting the divided plungers on the valve closing side to move to the valve opening side with a smaller electromagnetic force.

【0012】[0012]

【作用】この第2発明は、前記第1発明の電磁開閉弁の
一実施態様に相当するもので、弁開度を段階的に大きく
する場合であり、コイルに一定の電圧が印加されて励磁
されると、電磁力が小さい高温時には閉弁側の先端の分
割プランジャが付勢手段の付勢力に抗して開弁側へ移動
させられるとともに、ストッパによって位置決めされて
いる2番目の分割プランジャによって移動が阻止される
ことにより、比較的小さな所定の弁開度で流路が開かれ
る。電磁力が大きい低温時には、閉弁側の先端の分割プ
ランジャに加えて2番目の分割プランジャも付勢手段の
付勢力に抗して開弁側へ移動させられることにより、比
較的大きい所定の弁開度で流路が開かれる。弁開度はプ
ランジャを分割した数に対応する段数で段階的に変化さ
せられ、例えば2分割した場合には高温時と低温時の2
種類の弁開度を設定できる。
The second invention corresponds to an embodiment of the electromagnetic on-off valve of the first invention, and it is a case where the valve opening is increased stepwise, and a constant voltage is applied to the coil for excitation. Then, when the electromagnetic force is small and the temperature is high, the split plunger at the tip on the valve closing side is moved to the valve opening side against the biasing force of the biasing means, and by the second split plunger positioned by the stopper. By blocking the movement, the flow path is opened with a relatively small predetermined valve opening. When the electromagnetic force is large and the temperature is low, the second split plunger in addition to the split plunger at the tip on the valve closing side is moved to the valve opening side against the biasing force of the biasing means, so that a relatively large predetermined valve is opened. The flow path is opened at the opening. The valve opening is changed stepwise by the number of stages corresponding to the number of divisions of the plunger.
You can set the valve opening type.

【0013】[0013]

【第2発明の効果】このように、第2発明の電磁開閉弁
においても、温度低下に伴う電磁力の増大に基づいて低
温時には高温時よりも弁開度が大きくなるため、温度が
低くて流体の流動性が悪い場合でも、温度が高くて流動
性が良い場合と同程度の流量を確保することが可能にな
るなど、前記第1発明と同様の効果が得られる。しか
も、本発明ではストッパによって位置決めされた分割プ
ランジャによって弁開度が規定されるため、例えば付勢
手段の付勢力と電磁力とのバランスによって弁開度を変
化させる場合に比較し、温度に応じて所定の弁開度が安
定して得られる。
As described above, also in the electromagnetic on-off valve of the second invention, the valve opening becomes larger at low temperature than at high temperature due to the increase in electromagnetic force due to temperature decrease, so the temperature is low. Even when the fluidity of the fluid is poor, the same effect as that of the first aspect of the invention can be obtained such that the flow rate can be as high as that when the temperature is high and the fluidity is good. Moreover, in the present invention, since the valve opening degree is defined by the split plunger positioned by the stopper, for example, the valve opening degree is changed according to the temperature as compared with the case where the valve opening degree is changed by the balance between the urging force of the urging means and the electromagnetic force. As a result, a predetermined valve opening can be stably obtained.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。図1は、本発明の一実施例である電磁開
閉弁10の縦断面図で、円筒形状のヨーク12の両端部
にはベース14およびコア16が固設されているととも
に、それ等の内部には、ボビン18の外周部に銅のエナ
メル線を巻回したコイル20がベース14およびコア1
6に跨がってヨーク12と略同心に配設されている。ベ
ース14は、ヨーク12に固設されるフランジ部22
と、フランジ部22側に開口する有底円筒状の大径部2
4と、大径部24の底部側に一体に設けられるとともに
フランジ部22と反対側に開口する有底円筒状の小径部
26とを備えており、小径部26の有底円孔が第1ポー
ト28、大径部24の周壁に設けられた複数の貫通孔が
第2ポート30として、それぞれ車両用自動変速機の油
圧回路などに連結される。第1ポート28の底部、すな
わち大径部24と小径部26との間の隔壁32には貫通
孔34が設けられており、弁体としてのポペット36が
閉弁側である図の左方向へ移動させられて貫通孔34を
閉塞するように隔壁32に着座させられることにより、
第1ポート28と第2ポート30との間の流路が閉じら
れる一方、ポペット36が開弁側である図の右方向へ隔
壁32から離間させられることにより、第1ポート28
と第2ポート30との間の流路が開かれ、作動油などの
流体が流通することが許容される。隔壁32は弁座とし
て機能するもので、図1はポペット36が弁座に着座さ
せられた閉弁状態である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a vertical cross-sectional view of an electromagnetic opening / closing valve 10 according to an embodiment of the present invention, in which a base 14 and a core 16 are fixed to both ends of a cylindrical yoke 12 and the inside of them is fixed. Is a coil 20 in which a copper enamel wire is wound around the bobbin 18 at the base 14 and the core 1.
It is disposed so as to straddle 6 and substantially concentric with the yoke 12. The base 14 has a flange portion 22 fixed to the yoke 12.
And a cylindrical large-diameter portion 2 with a bottom that opens to the flange portion 22 side
4 and a bottomed cylindrical small-diameter portion 26 that is integrally provided on the bottom side of the large-diameter portion 24 and opens on the side opposite to the flange portion 22, and the bottomed circular hole of the small-diameter portion 26 is the first. A plurality of through holes provided in the peripheral wall of the port 28 and the large diameter portion 24 are respectively connected as a second port 30 to a hydraulic circuit of the vehicle automatic transmission or the like. A through hole 34 is provided in the bottom portion of the first port 28, that is, in the partition wall 32 between the large diameter portion 24 and the small diameter portion 26, and the poppet 36 as the valve body is on the valve closing side in the leftward direction in the drawing. By being moved and seated on the partition wall 32 so as to close the through hole 34,
While the flow path between the first port 28 and the second port 30 is closed, the poppet 36 is separated from the partition wall 32 in the right direction of the drawing, which is the valve opening side, so that the first port 28
A flow path between the second port 30 and the second port 30 is opened, and fluid such as hydraulic oil is allowed to flow. The partition wall 32 functions as a valve seat, and FIG. 1 shows a closed state in which the poppet 36 is seated on the valve seat.

【0015】上記コイル20よりも内周側には、円筒形
状のスリーブ40がコイル20と同様にベース14とコ
ア16とに跨がって固設されており、そのスリーブ40
の内側には円柱形状の第1プランジャ42および第2プ
ランジャ44がそれぞれ軸方向、すなわち流路を開閉す
る際のポペット36の移動方向で図の左右方向へ、予め
定められた所定寸法だけ移動可能に配設されている。第
1プランジャ42および第2プランジャ44は、移動方
向において2分割された分割プランジャに相当するもの
で、電磁開閉弁10の中心線上に直列に配設されている
とともに、閉弁側の第1プランジャ42の先端面、すな
わち第2プランジャ44と反対側の面には前記ポペット
36が一体的に固設されている。第1プランジャ42と
第2プランジャ44との間、および第2プランジャ44
とコア16との間には、それぞれ互いに離間させる方向
へ付勢する第1圧縮コイルスプリング46,第2圧縮コ
イルスプリング48が付勢手段として介在させられてい
る。第1プランジャ42と第2プランジャ44との対向
面、第2プランジャ44とコア16との対向面には、そ
れぞれ有底の円孔が形成され、上記圧縮コイルスプリン
グ46,48はその円孔内に配設されているとともに、
ばね力(付勢力)に抗して接近させられた場合には対向
面が互いに当接させられるようになっている。
A cylindrical sleeve 40 is fixedly provided on the inner peripheral side of the coil 20 so as to straddle the base 14 and the core 16 similarly to the coil 20.
A cylindrical first plunger 42 and a second plunger 44 are movable in the axial direction, that is, in the moving direction of the poppet 36 when opening and closing the flow path, in the left-right direction of the drawing by a predetermined predetermined dimension. It is installed in. The first plunger 42 and the second plunger 44 correspond to split plungers that are split in two in the moving direction, and are arranged in series on the center line of the electromagnetic opening / closing valve 10 and also the first plunger on the valve closing side. The poppet 36 is integrally fixed to the tip end surface of 42, that is, the surface opposite to the second plunger 44. Between the first plunger 42 and the second plunger 44, and the second plunger 44
A first compression coil spring 46 and a second compression coil spring 48, which urge each other in a direction in which they are separated from each other, are interposed between the core 16 and the core 16 as urging means. A circular hole having a bottom is formed in each of the facing surfaces of the first plunger 42 and the second plunger 44 and the facing surface of the second plunger 44 and the core 16, and the compression coil springs 46 and 48 are provided in the circular holes. Is installed in the
When they are brought close to each other against the spring force (biasing force), the facing surfaces are brought into contact with each other.

【0016】上記コア16はヨーク12に一体的に固設
されているため、第2プランジャ44は第2圧縮コイル
スプリング48によって閉弁側へ付勢されるとともに、
第1プランジャ42は第1圧縮コイルスプリング46に
よって閉弁側へ付勢され、その第1プランジャ42は図
1の閉弁状態から明らかなようにポペット36が隔壁3
2に着座する閉弁側の移動端に保持される。第2プラン
ジャ44は第1プランジャ42よりも大径で、スリーブ
40の内周面もそれ等の径寸法に応じて大径部と小径部
とに分けられており、第2プランジャ44は、その内周
面の段部50に当接させられることにより閉弁側の移動
端に位置決めされ、第1プランジャ42およびコア16
の双方に対してそれぞれ所定の隙間が形成されるように
なっている。第1プランジャ42の閉弁側の移動端を規
定する隔壁32、第2プランジャ44の閉弁側の移動端
を規定する段部50は、それぞれストッパに相当する。
Since the core 16 is integrally fixed to the yoke 12, the second plunger 44 is biased toward the valve closing side by the second compression coil spring 48, and
The first plunger 42 is biased toward the valve closing side by the first compression coil spring 46, and the first plunger 42 has the poppet 36 with the partition wall 3 as is apparent from the valve closed state of FIG.
It is held at the moving end on the valve closing side which is seated at 2. The second plunger 44 has a larger diameter than the first plunger 42, and the inner peripheral surface of the sleeve 40 is also divided into a large diameter portion and a small diameter portion according to their diameter dimensions. It is positioned at the moving end on the valve closing side by being brought into contact with the step portion 50 on the inner peripheral surface, and the first plunger 42 and the core 16
Predetermined gaps are formed on both sides. The partition wall 32 that defines the moving end of the first plunger 42 on the valve closing side and the step portion 50 that defines the moving end of the second plunger 44 on the valve closing side each correspond to a stopper.

【0017】一方、前記コイル20に電圧が印加されて
励磁されると電磁力が発生し、コア16と第2プランジ
ャ44との間、第2プランジャ44と第1プランジャ4
2との間には、それぞれ電磁力に基づく吸引力が作用
し、吸引力が前記圧縮コイルスプリング46,48のば
ね力に打ち勝つと、それ等のプランジャ42,44が開
弁側へ移動して流路が開かれる。その場合に、コイル1
2は銅のエナメル線であるため、温度が低くなるに従っ
て電気抵抗が小さくなり、一定の電圧を印加した場合に
は電流値が大きくなって電磁力、更には吸引力が増大す
る。具体的には、車両用自動変速機の油圧回路の定常時
の温度である60℃での電気抵抗が例えば15Ωの場
合、−30℃での電気抵抗は約10Ωとなり、一定電圧
として12Vの電圧を印加した場合の電流値はそれぞれ
0.8A、1.2Aとなる。また、電磁力すなわち起磁
力は、コイル20の巻き数に電流値を掛算したものであ
るため、電流値が大きくなるに従って大きくなり、それ
に伴って吸引力も大きくなる。吸引力は、電磁力の2乗
に比例するとともに、吸着面の面積に比例する一方、隙
間(エアギャップ)の2乗に反比例するため、同じ電磁
力でもコア16と第2プランジャ44との間の吸引力
と、第2プランジャ44と第1プランジャ42との間の
吸引力は異なる。
On the other hand, when a voltage is applied to the coil 20 to excite it, an electromagnetic force is generated, and between the core 16 and the second plunger 44, between the second plunger 44 and the first plunger 4.
An attraction force based on an electromagnetic force acts between the two and the attraction force overcomes the spring force of the compression coil springs 46 and 48, and the plungers 42 and 44 move toward the valve opening side. The flow path is opened. In that case, coil 1
Since 2 is a copper enameled wire, the electric resistance decreases as the temperature decreases, and when a constant voltage is applied, the current value increases and the electromagnetic force, and further the attractive force increases. Specifically, when the electric resistance of the hydraulic circuit of the vehicle automatic transmission at a steady temperature of 60 ° C. is, for example, 15 Ω, the electric resistance at −30 ° C. is about 10 Ω, which is a constant voltage of 12 V. When applied, the current values are 0.8 A and 1.2 A, respectively. Further, since the electromagnetic force, that is, the magnetomotive force, is the number of turns of the coil 20 multiplied by the current value, the electromagnetic force increases as the current value increases, and the attraction force also increases accordingly. The attraction force is proportional to the square of the electromagnetic force and is proportional to the area of the suction surface, and is inversely proportional to the square of the gap (air gap). Therefore, even with the same electromagnetic force, the force between the core 16 and the second plunger 44 is increased. Is different from the suction force between the second plunger 44 and the first plunger 42.

【0018】そして、前記第1圧縮コイルスプリング4
6のばね力(予荷重)は、電磁力が比較的小さい所定の
高温時でも第1プランジャ42が吸引力に従って開弁側
へ移動させられ、図2に示すように第2プランジャ44
に当接する第1開弁位置に位置させられるように設定さ
れている。また、第2圧縮コイルスプリング48のばね
力(予荷重)は、上記所定の高温時には吸引力に打ち勝
って第2プランジャ44を段部50に当接させた状態に
保持するが、電磁力が比較的大きい所定の低温時には第
2プランジャ44が吸引力に従って開弁側へ移動させら
れ、図3に示すようにコア16に当接させられるように
設定されている。この時、第1プランジャ42は第2プ
ランジャ44と一体的に開弁側へ移動させられ、図3に
示す第2開弁位置に位置させられる。すなわち、低温時
には高温時よりも大きな弁開度となり、流通断面積が大
きくなって流体が流れ易くなるのであり、低温時に粘性
が高くなって流動性が悪化する作動油などの油圧回路に
用いた場合でも、流動性の良い高温時と同程度の流量を
確保することができる。第1プランジャ42と第2プラ
ンジャ44との間の隙間(エアギャップ)、第2プラン
ジャ44とコア16との間の隙間(エアギャップ)は、
流体の流動性の変化を考慮して、上記のように高温時と
低温時とで同程度の流量を確保できるように設定され
る。
The first compression coil spring 4
The spring force (preload) of 6 causes the first plunger 42 to move toward the valve opening side according to the suction force even at a predetermined high temperature where the electromagnetic force is relatively small, and as shown in FIG.
It is set so as to be positioned at the first valve opening position where it abuts against. Further, the spring force (preload) of the second compression coil spring 48 overcomes the suction force at the predetermined high temperature and holds the second plunger 44 in contact with the step portion 50, but the electromagnetic force is compared. The second plunger 44 is set to move toward the valve opening side in accordance with the suction force at a predetermined low temperature, which is relatively large, and is brought into contact with the core 16 as shown in FIG. At this time, the first plunger 42 is moved to the valve opening side integrally with the second plunger 44, and is positioned at the second valve opening position shown in FIG. That is, when the temperature is low, the valve opening is larger than that at the time of high temperature, the flow cross-sectional area is large, and the fluid easily flows. Even in this case, it is possible to secure the same flow rate as that at high temperature with good fluidity. The gap (air gap) between the first plunger 42 and the second plunger 44, and the gap (air gap) between the second plunger 44 and the core 16 are
In consideration of the change in fluidity of the fluid, the flow rate is set to be as high as possible at high temperature and at low temperature as described above.

【0019】なお、上記プランジャ42,44が移動す
るか否かはばね力と吸引力との関係で決まるため、結果
的に所定の温度でばね力に抗してプランジャ42,44
が移動するようになっておれば良く、プランジャ42,
44の吸着面の面積を変更するなどして調整することも
可能である。また、上記ばね力の設定に際しては、厳密
には第1プランジャ42に開弁側へ作用する流体圧を考
慮する必要がある。
Since whether or not the plungers 42 and 44 move is determined by the relationship between the spring force and the suction force, as a result, the plungers 42 and 44 resist the spring force at a predetermined temperature.
If the plunger 42,
It is also possible to adjust by changing the area of the suction surface of 44. Further, when setting the spring force, strictly speaking, it is necessary to consider the fluid pressure acting on the valve opening side of the first plunger 42.

【0020】上記電磁開閉弁10を車両用自動変速機の
油圧回路に用いる場合について具体的に説明すると、エ
ンジン暖機後の通常の走行時で作動油の流動性が良い時
の温度、例えば60℃程度の温度を上記所定の高温時と
し、その状態では第1プランジャ42が第1開弁位置ま
で移動させられるように第1圧縮コイルスプリング46
のばね力を設定する。また、エンジンの起動開始当初で
作動油の流動性が悪い比較的低温時の温度、例えば−3
0℃程度の温度を上記所定の低温時とし、その状態では
第1プランジャ42が第2開弁位置まで移動させられる
ように第2圧縮コイルスプリング48のばね力を設定す
る。すなわち、第1圧縮コイルスプリング46のばね力
については、コイル20に一定電圧が印加された場合に
は温度に関係なく第1プランジャ42が開弁側へ移動す
るように設定し、第2圧縮コイルスプリング48のばね
力については、60℃より低くて且つ−30℃よりも高
い所定の温度、具体的には作動油の流動性と温度との関
係を考慮して作動油の流動性が悪化する温度よりも高め
の所定温度以下で第2プランジャ44が開弁側へ移動す
るように設定するのである。
A specific description will be given of a case where the solenoid opening / closing valve 10 is used in a hydraulic circuit of an automatic transmission for a vehicle. The temperature when the fluidity of the working oil is good during normal running after the engine is warmed up, for example, 60 A temperature of about ℃ is set to the predetermined high temperature, and in that state, the first compression coil spring 46 is moved so that the first plunger 42 can be moved to the first valve opening position.
Set the spring force of. Further, at the beginning of starting the engine, the fluidity of the hydraulic oil is poor and the temperature is at a relatively low temperature, for example, -3.
The temperature of about 0 ° C. is set to the predetermined low temperature, and in this state, the spring force of the second compression coil spring 48 is set so that the first plunger 42 is moved to the second valve opening position. That is, the spring force of the first compression coil spring 46 is set so that the first plunger 42 moves to the valve opening side regardless of the temperature when a constant voltage is applied to the coil 20, and the second compression coil Regarding the spring force of the spring 48, the fluidity of the hydraulic oil deteriorates in consideration of a predetermined temperature lower than 60 ° C. and higher than −30 ° C., specifically, the fluidity of the hydraulic oil and the temperature. The second plunger 44 is set to move to the valve opening side at a predetermined temperature or higher higher than the temperature.

【0021】このように、本実施例の電磁開閉弁10に
おいては、コイル20に一定の電圧が印加されて励磁さ
れると、電磁力が小さい所定の高温時には図2に示すよ
うに第1プランジャ42が第1開弁位置に位置させら
れ、比較的小さい弁開度で流路が開かれる一方、電磁力
が大きい所定の低温時には、図3に示すように第1プラ
ンジャ42が第2開弁位置に位置させられ、比較的大き
い弁開度で流路が開かれる。したがって、温度が低くて
流体の流動性が悪い場合でも、温度が高くて流動性が良
い場合と同程度の流量を確保することができる。
As described above, in the electromagnetic on-off valve 10 of the present embodiment, when a constant voltage is applied to the coil 20 to excite it, at a predetermined high temperature where the electromagnetic force is small, the first plunger as shown in FIG. 42 is positioned at the first valve opening position, and the flow path is opened with a relatively small valve opening, while at a predetermined low temperature when the electromagnetic force is large, the first plunger 42 opens the second valve as shown in FIG. The flow path is opened with a relatively large valve opening. Therefore, even when the temperature is low and the fluidity is poor, it is possible to secure the same flow rate as when the temperature is high and the fluidity is good.

【0022】また、高温時には第1プランジャ42のみ
が移動させられ、ポペット36の移動量が小さいため、
弁を開閉する際の応答性が優れているとともに、電圧の
印加時間すなわち弁の開時間をデューティ制御する場合
でも、開閉に伴う流量や圧力の脈動を従来と同程度に小
さく維持できる。
Further, since only the first plunger 42 is moved when the temperature is high and the movement amount of the poppet 36 is small,
The responsiveness when opening and closing the valve is excellent, and even when the application time of the voltage, that is, the opening time of the valve is duty controlled, the pulsation of the flow rate and the pressure due to the opening and closing can be kept as small as the conventional one.

【0023】また、温度低下に伴う電磁力の増大を利用
して弁開度を大きくするため、温度センサを用いて流体
の温度を測定したり流体温度に応じてデューティ比を補
正する補正値をデータマップなどで記憶したりするな
ど、温度に応じて弁開度を変えるための特別な手段や制
御が不要で、弁を開閉する制御系を含む装置全体を簡単
且つ安価に構成できる。
Further, in order to increase the valve opening degree by utilizing the increase of the electromagnetic force due to the temperature decrease, a correction value for measuring the temperature of the fluid using a temperature sensor or correcting the duty ratio according to the fluid temperature is set. There is no need for special means or control for changing the valve opening degree according to temperature, such as storing in a data map, and the entire apparatus including the control system for opening and closing the valve can be configured simply and inexpensively.

【0024】また、第1プランジャ42が第1開弁位置
または第2開弁位置に位置決めされ、弁開度が2段階で
設定されるため、例えば付勢手段の付勢力と電磁力との
バランスによって弁開度を変化させる場合に比較し、温
度に応じて所定の弁開度が安定して得られる。
Further, since the first plunger 42 is positioned at the first valve opening position or the second valve opening position and the valve opening degree is set in two steps, for example, the balance between the urging force of the urging means and the electromagnetic force. As compared with the case where the valve opening degree is changed by, the predetermined valve opening degree can be stably obtained according to the temperature.

【0025】以上、本発明の一実施例を図面に基づいて
詳細に説明したが、本発明は他の態様で実施することも
できる。
Although one embodiment of the present invention has been described in detail with reference to the drawings, the present invention can be implemented in other modes.

【0026】例えば、前記実施例では電磁開閉弁10を
車両用自動変速機の油圧回路に用いる場合を例として説
明したが、他の種々の分野で使用できることは勿論であ
り、弁開度を変化させる温度も圧縮コイルスプリング4
8のばね力と吸引力との関係を変えることによって適宜
設定できる。
For example, in the above-described embodiment, the case where the solenoid opening / closing valve 10 is used in the hydraulic circuit of the automatic transmission for a vehicle has been described as an example, but it is needless to say that the solenoid opening / closing valve 10 can be used in various other fields and the valve opening is changed. Compressed coil spring 4
It can be set as appropriate by changing the relationship between the spring force of 8 and the suction force.

【0027】また、前記実施例では2種類の弁開度が得
られるようになっていたが、プランジャを3個以上に分
割することにより、3段階以上で弁開度を変化させるこ
ともできる。プランジャが1個であっても、付勢力や長
さが異なる複数の付勢手段でプランジャに対する付勢力
を移動量に応じて段階的に変化させることにより、弁開
度を2段階或いは3段階以上で変化させることも可能で
ある。
Further, in the above embodiment, two kinds of valve opening are obtained, but the valve opening can be changed in three or more steps by dividing the plunger into three or more. Even if there is only one plunger, the urging force for the plunger is changed stepwise according to the moving amount by a plurality of urging means having different urging forces or lengths, so that the valve opening degree can be set in two steps or in three or more steps. It is also possible to change with.

【0028】また、前記実施例では付勢手段として圧縮
コイルスプリング46,48が用いられていたが、引張
コイルスプリングなどの他のスプリングは勿論、ゴムな
どの弾性体や圧力エアなどその他の付勢手段を用いるこ
とも可能である。
Further, although the compression coil springs 46 and 48 are used as the urging means in the above-mentioned embodiment, not only other springs such as the tension coil spring but also other urging members such as an elastic body such as rubber or pressure air are used. It is also possible to use means.

【0029】また、前記実施例では両プランジャ42と
44との間に第1圧縮コイルスプリング46が介在させ
られていたが、第1プランジャ42とスリーブ40或い
はコア16との間に第1圧縮コイルスプリング46を配
設することもできる。
In the above embodiment, the first compression coil spring 46 is interposed between the plungers 42 and 44. However, the first compression coil spring 46 is interposed between the first plunger 42 and the sleeve 40 or the core 16. The spring 46 can also be provided.

【0030】また、前記実施例では弁体としてポペット
36が用いられていたが、スプールなどの他の弁体を用
いることも可能で、スプールを用いた場合には第1プラ
ンジャ42を閉弁位置に位置決めするためのストッパを
設けることになる。
Although the poppet 36 is used as the valve element in the above-mentioned embodiment, other valve elements such as spools can be used. When the spool is used, the first plunger 42 is closed. There will be a stopper for positioning.

【0031】その他一々例示はしないが、本発明は当業
者の知識に基づいて種々の変更,改良を加えた態様で実
施することができる。
Although not illustrated one by one, the present invention can be implemented in various modified and improved modes based on the knowledge of those skilled in the art.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である電磁開閉弁の縦断面図
で、閉弁状態を示す図である。
FIG. 1 is a vertical cross-sectional view of an electromagnetic opening / closing valve according to an embodiment of the present invention, showing a valve closed state.

【図2】図1の電磁開閉弁の高温時における開弁状態を
示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing a valve open state of the electromagnetic opening / closing valve of FIG. 1 at a high temperature.

【図3】図1の電磁開閉弁の低温時における開弁状態を
示す縦断面図である。
FIG. 3 is a vertical cross-sectional view showing a valve open state of the electromagnetic opening / closing valve of FIG. 1 at a low temperature.

【符号の説明】[Explanation of symbols]

10:電磁開閉弁 20:コイル 32:隔壁(ストッパ) 36:ポペット(弁体) 42:第1プランジャ(分割プランジャ) 44:第2プランジャ(分割プランジャ) 46:第1圧縮コイルスプリング(付勢手段) 48:第2圧縮コイルスプリング(付勢手段) 50:段部(ストッパ) 10: electromagnetic on-off valve 20: coil 32: partition wall (stopper) 36: poppet (valve body) 42: first plunger (split plunger) 44: second plunger (split plunger) 46: first compression coil spring (biasing means) ) 48: Second compression coil spring (biasing means) 50: Step (stopper)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コイルに一定の電圧を印加して励磁する
ことにより、プランジャを介して弁体を開弁側へ移動さ
せて流路を開く電磁開閉弁において、 前記コイルの温度低下に伴う電磁力の増大に基づいて、
前記プランジャを閉弁側へ付勢する付勢手段の付勢力に
抗して該プランジャの開弁側への移動量を増大させ、低
温時には高温時よりも弁開度が大きくなるようにしたこ
とを特徴とする電磁開閉弁。
1. An electromagnetic on-off valve that opens a flow path by moving a valve element to a valve opening side through a plunger by applying a constant voltage to a coil to excite the electromagnetic field due to a decrease in temperature of the coil. Based on the increase in power,
The amount of movement of the plunger toward the valve opening side is increased against the urging force of the urging means for urging the plunger toward the valve closing side so that the valve opening degree becomes larger at low temperature than at high temperature. An electromagnetic on-off valve characterized by.
【請求項2】 コイルに一定の電圧を印加して励磁する
ことにより、プランジャを介して弁体を開弁側へ移動さ
せて流路を開く電磁開閉弁において、 前記プランジャの移動方向において該プランジャを複数
に分割し、閉弁側の先端に位置する分割プランジャと前
記弁体とを一体的に移動させて流路を開閉する一方、 前記複数の分割プランジャの閉弁側の移動端をそれぞれ
規定する複数のストッパと、 前記複数の分割プランジャをそれぞれ前記閉弁側へ付勢
して前記ストッパに当接させ、互いに離間した状態に保
持するとともに、前記閉弁側の分割プランジャ程小さな
電磁力で開弁側へ移動することを許容する複数の付勢手
段とを有することを特徴とする電磁開閉弁。
2. An electromagnetic on-off valve that opens a flow path by moving a valve body to a valve-opening side through a plunger by applying a constant voltage to a coil to excite the plunger in the moving direction of the plunger. Is divided into a plurality of parts to integrally open and close the flow path by integrally moving the split plunger located at the tip on the valve closing side and the valve element, while defining the moving ends of the plurality of split plungers on the valve closing side. The plurality of stoppers and the plurality of split plungers are urged toward the valve closing side to abut against the stoppers and are held in a state of being separated from each other, and the electromagnetic force smaller than that of the split plungers on the valve closing side is used. An electromagnetic opening / closing valve, comprising: a plurality of biasing means that allow movement toward the valve opening side.
JP946495A 1995-01-25 1995-01-25 Solenoid valve Pending JPH08200540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP946495A JPH08200540A (en) 1995-01-25 1995-01-25 Solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP946495A JPH08200540A (en) 1995-01-25 1995-01-25 Solenoid valve

Publications (1)

Publication Number Publication Date
JPH08200540A true JPH08200540A (en) 1996-08-06

Family

ID=11721002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP946495A Pending JPH08200540A (en) 1995-01-25 1995-01-25 Solenoid valve

Country Status (1)

Country Link
JP (1) JPH08200540A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245361A (en) * 2003-02-14 2004-09-02 Mitsubishi Electric Corp Solenoid valve
KR101628569B1 (en) * 2014-12-11 2016-06-08 현대자동차주식회사 High pressure solenoid valve
KR102149606B1 (en) * 2019-06-18 2020-08-31 주식회사 유니크 Proportional control solenoid valve
US11649906B2 (en) 2020-11-10 2023-05-16 Hyundai Motor Company Solenoid valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245361A (en) * 2003-02-14 2004-09-02 Mitsubishi Electric Corp Solenoid valve
KR101628569B1 (en) * 2014-12-11 2016-06-08 현대자동차주식회사 High pressure solenoid valve
KR102149606B1 (en) * 2019-06-18 2020-08-31 주식회사 유니크 Proportional control solenoid valve
US11649906B2 (en) 2020-11-10 2023-05-16 Hyundai Motor Company Solenoid valve

Similar Documents

Publication Publication Date Title
US5513673A (en) Electrically modulated pressure regulator valve with variable force solenoid
US5571248A (en) Pressure regulator
US20060086396A1 (en) Electromagnetic hydraulic control valve
US4483369A (en) Linear motor-actuated flow control valve
CA2942531A1 (en) Dual/variable gain oil pump control valve
US4178573A (en) Electrically operated device and valving mechanism employing same
JPH03156167A (en) High-pressure fuel injection device
KR100476246B1 (en) Proportional pressure control valve
JPH08200540A (en) Solenoid valve
JPH06241137A (en) Fuel injection controller for internal combustion engine
US4530374A (en) Linear motor-actuated flow control valve
GB2061015A (en) Direct current solenoid operator
JP2002286152A (en) Bleed type proportional solenoid valve
JPH085430Y2 (en) Proportional flow control valve
JP2937849B2 (en) Proportional control valve
JPH0465272B2 (en)
JPH11280935A (en) Solenoid valve
JPH0246384A (en) Solenoid valve
JP2002310030A (en) Fuel injector
JPH09273653A (en) Solenoid valve
US20020117216A1 (en) Solenoid operated valve with hydraulic dampening
JPS6115313B2 (en)
JP2006022655A (en) Fuel injection valve and method for manufacturing the same
JPH10318407A (en) Solenoid valve
JP2002013662A (en) Solenoid valve