JPH08199265A - Ornamental titanium alloy and its production - Google Patents

Ornamental titanium alloy and its production

Info

Publication number
JPH08199265A
JPH08199265A JP751495A JP751495A JPH08199265A JP H08199265 A JPH08199265 A JP H08199265A JP 751495 A JP751495 A JP 751495A JP 751495 A JP751495 A JP 751495A JP H08199265 A JPH08199265 A JP H08199265A
Authority
JP
Japan
Prior art keywords
powder
sintered
titanium alloy
titanium
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP751495A
Other languages
Japanese (ja)
Inventor
Keisuke Matsushima
圭介 松島
Isao Kuboki
功 久保木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP751495A priority Critical patent/JPH08199265A/en
Publication of JPH08199265A publication Critical patent/JPH08199265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To obtain an ornamental titanium alloy having satisfactory workability and improving specular property, scuffing and wear resistances. CONSTITUTION: Titanium is mixed with 1-3wt.% iron powder and 9-10wt.% niobium powder and the resultant mixture is sintered at 1,300-1,400 deg.C to attain high density. In this state, forming or working is carried out, high hardness is ensured by rapid cooling to 900-950 deg.C and specular property, scuffing and wear resistances are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金により製造さ
れた、装飾用チタン合金に関する。
FIELD OF THE INVENTION The present invention relates to a decorative titanium alloy produced by powder metallurgy.

【0002】[0002]

【従来の技術】商業用純チタンを用いた腕時計などの装
飾品は、純チタンが軟らかいために、研磨しても表面に
小キズが残り、鏡面が出にくい。また、窒化処理によっ
て硬化させても表面状態をそろえるためショットブラス
トを施すことで、グレー色のざらざらな表面状態となっ
ている。一方、チタン合金は高強度のため冷間鍛造がし
にくく、腕時計外装部品などの装飾品への成形では、一
般に熱間鍛造や恒温鍛造を用いているが、寸法精度がで
にくい。
2. Description of the Related Art Decorative items such as wristwatches made of pure titanium for commercial use have small scratches on the surface even after polishing because the pure titanium is soft, and the mirror surface is difficult to appear. In addition, shot blasting is performed in order to make the surface state even when it is hardened by nitriding treatment, so that a rough gray surface state is obtained. On the other hand, titanium alloy is difficult to cold forge because of its high strength, and hot forging or isothermal forging is generally used for forming decorative parts such as wristwatch exterior parts, but it is difficult to obtain dimensional accuracy.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のように
装飾部品、特に腕時計外装部品の材料にステンレス鋼を
使用すると、硬さが低く傷が付き易い、比重が大きく重
い、Niにより皮膚アレルギーを起こす場合がある、海
水に対して完全な耐蝕性がなく錆びる場合がある、とい
う課題があった。また、装飾部品材として商業用純チタ
ンを用いた場合は、軽さ、耐蝕性、皮膚アレルギーの面
では、ステンレス鋼に比べて優れているが、硬化処理に
より表面粗度が悪くなり、表面状態はざらざらなグレー
色に限られてしまう。従って、デザインは単一的にな
り、著しく高級感を損なってしまうという課題があっ
た。
However, when stainless steel is used as a material for decorative parts, particularly wristwatch exterior parts, as in the prior art, it has low hardness and is easily scratched, has a large specific gravity, and has a skin allergy due to Ni. There is a problem that it may occur, or it may not rust completely against seawater and may rust. Also, when commercial pure titanium is used as a decorative component material, it is superior to stainless steel in terms of lightness, corrosion resistance, and skin allergy, but the surface roughness deteriorates due to hardening treatment, and the surface condition It is limited to a rough gray color. Therefore, there is a problem that the design becomes unitary and the high-class feeling is significantly impaired.

【0004】一方、装飾部品材としてチタン合金を用い
た場合は、鏡面を出しやすく高級感が得られるが、高強
度のため冷間鍛造がしにくく、腕時計外装部品などの一
般に熱間鍛造や恒温鍛造を用いているが、寸法精度がで
にくいという課題がある。そこで、本発明の目的は、従
来のこのような課題を解決するため、加工性のよいまま
に、硬度が高く、軽く、生体適合性がよく、耐蝕性がよ
く、かつ鏡面性と耐擦傷性の高いチタン合金を得ること
にある。
On the other hand, when a titanium alloy is used as a decorative component material, a mirror surface can be easily obtained and a high-grade feeling can be obtained. Although forging is used, there is a problem that it is difficult to obtain dimensional accuracy. Therefore, an object of the present invention is to solve such problems in the related art, while maintaining good workability, high hardness, light weight, good biocompatibility, good corrosion resistance, and specularity and scratch resistance. To obtain a titanium alloy of high quality.

【0005】[0005]

【課題を解決するための手段】本発明は、従来のチタ
ン,およびチタン合金の粉末冶金における上記課題を解
決するために、チタン粉末に重量で2%近傍すなわち1
〜3%の鉄粉末と、9.5%近傍すなわち〜10%のニ
オブ粉末を混合した後、1300〜1400℃で焼結
し、そのままの加工性のよい状態で成形加工を行い、そ
の後900〜950℃で加熱後、急冷して焼入れ処理を
行うようにした。
In order to solve the above-mentioned problems in the conventional powder metallurgy of titanium and titanium alloy, the present invention contains titanium powder in an amount of about 2% by weight, that is, 1%.
After mixing ~ 3% iron powder and 9.5% near, i.e. ~ 10% niobium powder, sintering is performed at 1300 to 1400 ° C and molding is performed in the state of good workability, and then 900- After heating at 950 ° C., quenching was performed by quenching.

【0006】[0006]

【作用】上記のように処理することにより、高密度化と
加工性の向上をはかることができるので、鏡面性と耐擦
傷性の高いチタン合金が得られる。
By performing the above treatment, it is possible to increase the density and improve the workability, so that a titanium alloy having high specularity and scratch resistance can be obtained.

【0007】[0007]

【実施例】以下に、この発明の実施例について説明す
る。
Embodiments of the present invention will be described below.

【0008】[0008]

【表1】 [Table 1]

【0009】(実施例1)粉末粒子の大きさが、平均4
5μmの純チタン粉末と、同じく平均45μmの鉄粉末
と平均5μmのニオブ粉末を表1の割合で混合し、7種
類の混合粉を得た。これを50kgf/mm2 の圧力でφ
10mm,厚さ15mmの円柱形に型成形し、成形体を得
た。次に、これらの成形体を1250℃,1350℃,
1450℃で30分間保持し、焼結体を得た。
(Example 1) The average size of powder particles is 4
Pure titanium powder of 5 μm, iron powder of 45 μm on average and niobium powder of 5 μm on average were mixed at the ratio shown in Table 1 to obtain 7 kinds of mixed powder. Φ at a pressure of 50 kgf / mm 2
Molded into a cylindrical shape having a thickness of 10 mm and a thickness of 15 mm to obtain a molded body. Next, these molded bodies were subjected to 1250 ° C, 1350 ° C,
It was kept at 1450 ° C. for 30 minutes to obtain a sintered body.

【0010】図1に各焼結体の相対密度を示す。各焼結
体の相対密度は、1250℃で焼結した場合全ての焼結
体が95%未満であり、組織にもバラツキが生じている
ため、装飾品としての使用に耐えられない。1350
℃,1450℃で焼結した場合は、全ての焼結体が95
%以上であり、組織は均一なα+βの2相組織となり、
十分に装飾品としての使用に耐えられるものであった。
次に1350℃,1450℃で焼結を行った焼結体の加
工性を調べるため、圧延テストを行った。表2に、その
結果を示す。
FIG. 1 shows the relative density of each sintered body. The relative density of each sintered body is less than 95% in all sintered bodies when sintered at 1250 ° C., and there is variation in the structure, so that it cannot be used as a decorative article. 1350
When sintered at ℃, 1450 ℃, all the sintered body is 95
% Or more, the structure becomes a uniform α + β two-phase structure,
It was sufficiently durable to be used as an ornament.
Next, a rolling test was conducted to examine the workability of the sintered body that was sintered at 1350 ° C and 1450 ° C. The results are shown in Table 2.

【0011】[0011]

【表2】 [Table 2]

【0012】表2を見てわかるように、1450℃で焼
結した焼結体よりも、1350℃で焼結した焼結体の方
が降伏強さが低い。さらに、30%の同一な圧延率にお
ける各焼結体の耳割れ発生状況も、1350℃で焼結し
た物の方が少なかった。また、組織を観察すると、14
50℃で焼結を行った焼結体は平均的に粉径が大きい。
よって、1350℃で焼結した焼結体の方が加工性が良
いといえる。一方、鉄粉末の量がふえることで焼結体の
相対密度は上がるものの、加工性は悪くなることがわか
る。また、鉄粉末の量を減らすことやニオブ量を増やす
ことは、密度が上がりにくくなる結果となった。これら
の結果から、鉄粉末1〜3%,ニオブ粉末9〜10%の
混合粉を、焼結温度1300℃〜1400℃で焼結する
ことで、高密度化と加工性を向上させることが可能とな
った。
As can be seen from Table 2, the yield strength of the sintered body sintered at 1350 ° C. is lower than that of the sintered body sintered at 1450 ° C. Further, the occurrence of edge cracks in each sintered body at the same rolling rate of 30% was smaller in the one sintered at 1350 ° C. Also, when observing the tissue,
The sintered body sintered at 50 ° C. has a large average particle size.
Therefore, it can be said that the sintered body sintered at 1350 ° C has better workability. On the other hand, when the amount of iron powder increases, the relative density of the sintered body increases, but the workability becomes poor. Further, reducing the amount of iron powder and increasing the amount of niobium resulted in difficulty in increasing the density. From these results, it is possible to densify and improve workability by sintering a mixed powder of 1 to 3% iron powder and 9 to 10% niobium powder at a sintering temperature of 1300 ° C to 1400 ° C. Became.

【0013】(実施例2)実施例1に記した方法で得ら
れた7つの焼結体のうち、1350℃で焼結したもの
を、750、800、850、900、950、100
0℃でそれぞれ30分加熱し、その温度から水冷による
急冷を行った(焼入れ処理)。
(Example 2) Of the seven sintered bodies obtained by the method described in Example 1, those sintered at 1350 ° C. were 750, 800, 850, 900, 950, 100.
Each was heated at 0 ° C. for 30 minutes, and from that temperature was rapidly cooled by water cooling (quenching treatment).

【0014】図2に焼入れ処理を施した前後の焼結体の
硬さを示す。100Ti(成分A)の硬さは焼入れ温度
を上げても焼結体のままと変わらないが、鉄粉末を含有
する焼結体B,C,D,Eは焼入れ温度を上げていくこ
とで硬さが徐々に増していく。硬さが増すことで傷が付
きにくくなり、装飾品として使用する場合は非常に有効
である。また、鉄粉末とニオブ粉末を含有した焼結体
C,Dはニオブを含有しない焼結体Bより、焼入れ後の
硬さの上がる傾きが大きくなった。しかし、同じように
鉄粉末とニオブ粉末を含有した焼結体Eでは、かえって
硬さの上がる傾きがニオブを含有しない焼結体Bより小
さかった。また、鉄粉末を含有させず、ニオブ粉末のみ
を含有させた焼結体F,Gの硬さは焼入れ温度を上げて
いくことで徐々に増すものの、それほど高くならない。
次に各焼結体に焼入れ処理を行ったものに対して、バフ
研磨による鏡面仕上げを行った。表3に、焼入れ処理後
の各焼結体における鏡面状態の評価結果を示す。
FIG. 2 shows the hardness of the sintered body before and after the quenching treatment. The hardness of 100Ti (component A) remains the same as the sintered body even if the quenching temperature is raised, but the sintered bodies B, C, D and E containing iron powder are hardened by raising the quenching temperature. Is gradually increasing. The increased hardness makes it less likely to be scratched, and is extremely effective when used as a decorative item. Further, the sintered bodies C and D containing the iron powder and the niobium powder showed a larger inclination of increasing hardness after quenching than the sintered body B containing no niobium. However, similarly, in the sintered body E containing the iron powder and the niobium powder, the slope of increase in hardness was smaller than that of the sintered body B containing no niobium. Further, the hardness of the sintered bodies F and G containing no niobium powder but no iron powder gradually increases with increasing quenching temperature, but does not increase so much.
Next, each sintered body was subjected to quenching treatment, and then mirror-finished by buffing. Table 3 shows the evaluation results of the mirror surface state of each sintered body after the quenching treatment.

【0015】[0015]

【表3】 [Table 3]

【0016】100Tiは焼結上がりでは組織がα単相
であり硬さが低いために、研摩後の表面状態はうねりが
生じ、鏡面が得られない。また、焼入れ処理を施しても
組織,及び硬さは大きく変化せず鏡面性は変わらない。
ニオブ粉末のみを含有させたF,G焼結体も、焼入れ処
理を行うことで硬さは徐々に上がるものの、さほど上が
らず鏡面性は得られなかった。また鉄粉末のみを含有さ
せたB粉末は、焼結上がりではβ地に100μm近くの
粗大なα相が析出するため、β相とα相で研摩性に差が
でて鏡面性がやや悪くなっている。しかし焼入れ処理温
度が900℃以上になると、針状のマルテンサイトと残
留β組織になり研摩によるムラがなくなり、良好な鏡面
状態がえられた。
Since 100Ti has an α single phase structure and low hardness after sintering, waviness occurs in the surface state after polishing, and a mirror surface cannot be obtained. Further, even if the quenching treatment is applied, the structure and hardness do not change significantly, and the specularity does not change.
The hardness of the F and G sintered bodies containing only niobium powder gradually increased by the quenching treatment, but the hardness did not so much and the mirror surface property was not obtained. Further, in the B powder containing only the iron powder, a coarse α phase of about 100 μm is precipitated in the β ground after sintering, so that the β phase and the α phase have a difference in the polishing property and the specularity is slightly deteriorated. ing. However, when the quenching treatment temperature was 900 ° C. or higher, needle-like martensite and residual β structure were formed, and unevenness due to polishing disappeared, and a good mirror surface state was obtained.

【0017】一方、鉄粉末とニオブ粉末を含有させた焼
結体C,Dは、焼結上がりでは焼結体F,Gとほぼ変わ
りないが、焼入れ温度800℃位から針状のマルテンサ
イトが析出し、焼入れ温度900℃,950℃ではほと
んどが針状のマルテンサイトと残留β組織になり研摩に
よるムラがなくなり、良好な鏡面状態がえられた。反
面、1000℃になると、粒径が粗大化し、鏡面性がや
や悪くなっていた。焼結体Eについては、焼入れ温度が
850℃位からマルテンサイトが析出し始め、1000
℃でようやく満足できる鏡面性が得られるようになっ
た。
On the other hand, the sintered bodies C and D containing the iron powder and the niobium powder are almost the same as the sintered bodies F and G after the sintering, but needle-like martensite is generated from the quenching temperature of about 800 ° C. At the quenching temperatures of 900 ° C. and 950 ° C., most of the precipitates were acicular martensite and residual β structure, and unevenness due to polishing was eliminated, and a good mirror surface condition was obtained. On the other hand, at 1000 ° C., the grain size was coarsened and the specularity was a little poor. With regard to the sintered body E, martensite begins to precipitate from the quenching temperature of about 850 ° C.
Satisfactory specularity was finally obtained at ℃.

【0018】これらの結果から、焼入れ温度は900〜
1000℃望ましくは900〜950℃で行うことが、
鏡面性の一番得られる条件であることがわかった。実施
例1,2の結果から、チタン粉末に重量で1〜3%の鉄
粉末と重量で9〜10%のニオブ粉末を混合した後(成
分Dに相当)1300℃〜1400℃で焼結し、更に9
00℃〜950℃で焼入れ処理を行うことで、鏡面性と
耐擦傷性の高いチタン合金が得られることとなった。
From these results, the quenching temperature is 900-
1000 ° C., preferably 900 to 950 ° C.
It turned out that this is the condition that gives the best specularity. From the results of Examples 1 and 2, titanium powder was mixed with 1 to 3% by weight of iron powder and 9 to 10% by weight of niobium powder (corresponding to component D) and sintered at 1300 to 1400 ° C. , 9 more
By carrying out the quenching treatment at 00 ° C to 950 ° C, a titanium alloy having high specularity and scratch resistance can be obtained.

【0019】[0019]

【発明の効果】本発明は、従来のチタン,およびチタン
合金の粉末冶金における課題を解決するため、チタン粉
末に重量で1〜3%の鉄粉末と重量で9〜10%のニオ
ブ粉末を混合した後、1300℃〜1400℃で焼結
し、この比較的加工性のよい状態で成形加工を行い、そ
の後900℃〜950℃で加熱後、急冷することにより
高硬度化させることで、硬さが高く、軽く、生体適合性
がよく、耐蝕性がよく、かつ鏡面性と耐擦傷性の高いチ
タン合金を得ることが出来た。
According to the present invention, in order to solve the problems in the conventional powder metallurgy of titanium and titanium alloy, titanium powder is mixed with 1 to 3% by weight of iron powder and 9 to 10% by weight of niobium powder. After that, it is sintered at 1300 ° C to 1400 ° C, molded in this relatively workable state, heated at 900 ° C to 950 ° C, and then rapidly cooled to increase the hardness. It was possible to obtain a titanium alloy having high, light weight, good biocompatibility, good corrosion resistance, and high specularity and scratch resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の圧粉成形品の焼結前、及び焼結後の相
対密度を示した説明図である。
FIG. 1 is an explanatory diagram showing relative densities of a green compact of the present invention before and after sintering.

【図2】本発明の圧粉成形品の焼入れ処理前、及び焼入
れ処理後の硬さを示した説明図である。
FIG. 2 is an explanatory diagram showing hardness before and after quenching of the powder compact of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 チタンに、重量で1〜3%の鉄と、9〜
10%のニオブを含有することを特徴とする装飾用チタ
ン合金。
1. Titanium with 1 to 3% by weight of iron and 9 to
A decorative titanium alloy containing 10% niobium.
【請求項2】 900〜950℃の温度から急冷する焼
き入れ処理を行うことを特徴とする、請求項1記載の装
飾用チタン合金。
2. The decorative titanium alloy according to claim 1, which is subjected to a quenching treatment of quenching from a temperature of 900 to 950 ° C.
【請求項3】 チタン粉末に、重量で1〜3%の鉄粉末
と、9〜10%のニオブ粉末を混合した粉を、圧粉成形
後に1300〜1400℃で焼結したことを特徴とす
る、請求項1記載の装飾用チタン合金の製造方法。
3. A powder obtained by mixing 1 to 3% by weight of iron powder and 9 to 10% by weight of niobium powder with titanium powder, and sintering the powder at 1300 to 1400 ° C. after compacting. A method for producing a decorative titanium alloy according to claim 1.
JP751495A 1995-01-20 1995-01-20 Ornamental titanium alloy and its production Pending JPH08199265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP751495A JPH08199265A (en) 1995-01-20 1995-01-20 Ornamental titanium alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP751495A JPH08199265A (en) 1995-01-20 1995-01-20 Ornamental titanium alloy and its production

Publications (1)

Publication Number Publication Date
JPH08199265A true JPH08199265A (en) 1996-08-06

Family

ID=11667895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP751495A Pending JPH08199265A (en) 1995-01-20 1995-01-20 Ornamental titanium alloy and its production

Country Status (1)

Country Link
JP (1) JPH08199265A (en)

Similar Documents

Publication Publication Date Title
JP3083225B2 (en) Manufacturing method of titanium alloy decorative article and watch exterior part
US5820707A (en) Composite article, alloy and method
EP0750684A1 (en) Composite article, alloy and method
WO1997037049A1 (en) High strength titanium alloy, product made therefrom and method for producing the same
JP3225263B2 (en) Titanium decorative member and its curing method
EP0863223A1 (en) Surface-hardened titanium material, surface hardening method of titanium material, watchcase decoration article, and decoration article
US9382607B2 (en) Composite article and method
JPH0762466A (en) Ornamental titanium alloy and its ornament
EP3475013B1 (en) Methods of forming an oxide layer on a metal body
US10865468B2 (en) Methods of forming an oxide layer on a metal body
JPH08199265A (en) Ornamental titanium alloy and its production
JPH1017961A (en) High strength titanium alloy, product thereof and production of the same product
JP3471092B2 (en) Decorative titanium alloy and its ornaments
EP0416929B1 (en) Process for treating a titanium alloy or article made therefrom
JPH0635638B2 (en) Cemented carbide for precision dies and coated cemented carbide for precision dies
JPH07100846B2 (en) Method for producing titanium alloy having mirror surface
JP2003148490A (en) Method for manufacturing thrust type ball bearing race
JPH0743478A (en) External component for watch and its manufacture method
JP2987314B2 (en) Method for hardening platinum or platinum alloy, and method for hardening palladium or palladium alloy
JP2002262909A (en) Decoration part and its manufacture
JPH01127640A (en) Alloy member for decoration
JPH1017962A (en) High strength titanium alloy, product thereof and production of the same product
JPH0971855A (en) Carbohardened table ware and production thereof
JPH10280125A (en) Titanium material, hardening of its surface and production thereof
JPH10195612A (en) Method for hardening metallic ornamental member