JPH08199159A - Excavation additive for shield-tunneling method - Google Patents

Excavation additive for shield-tunneling method

Info

Publication number
JPH08199159A
JPH08199159A JP3019195A JP3019195A JPH08199159A JP H08199159 A JPH08199159 A JP H08199159A JP 3019195 A JP3019195 A JP 3019195A JP 3019195 A JP3019195 A JP 3019195A JP H08199159 A JPH08199159 A JP H08199159A
Authority
JP
Japan
Prior art keywords
water
clay
polymer
weight
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3019195A
Other languages
Japanese (ja)
Other versions
JP3523702B2 (en
Inventor
Akira Tamura
明 田村
Hiroshi Kosuge
宏 小菅
Hitoshi Fujiyoshi
均 藤由
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Cytec Ltd
Original Assignee
Mitsui Cytec Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Cytec Ltd filed Critical Mitsui Cytec Ltd
Priority to JP3019195A priority Critical patent/JP3523702B2/en
Publication of JPH08199159A publication Critical patent/JPH08199159A/en
Application granted granted Critical
Publication of JP3523702B2 publication Critical patent/JP3523702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To produce excavation additive for mud-pressure shield-tunneling method enabling stable excavation of even a bed containing ground-water having high salt-content. CONSTITUTION: This excavation additive for mud-pressure shield-tunneling method is a slurry composition produced by incorporating a clay suspension with 0.05-1.0wt.% of a thickening agent obtained by compounding a highly water-absorbing polymer with an anionic water-soluble polymer having a molecular weight of >=1,000,000 and <20,000,000 at a weight ratio of 4:1 to 1:4. The additive may further be incorporated with a water-soluble polymer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に礫が多い土質の地
盤を泥土圧式シールド工法で掘削するときの堀削添加材
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for excavation when excavating soil, which is particularly rich in gravel, by a mud pressure shield method.

【0002】さらに詳しくは、地下水塩分濃度が高い地
層でも安定して掘削できる添加材に関するものである。
More specifically, the present invention relates to an additive material which can be stably excavated even in a formation having a high salt concentration in groundwater.

【0003】[0003]

【従来の技術】地下鉄などの坑道構築や下水道管渠の敷
設方法としてシールド工法があり、各種の工法が使用さ
れているが、近年、土圧式シールド工法が比較的使用さ
れている。
2. Description of the Related Art There is a shield construction method as a method of constructing a tunnel such as a subway or a construction of a sewer pipe, and various construction methods are used. In recent years, an earth pressure type shield construction method is relatively used.

【0004】土圧式シールド工法は土木学会トンネル標
準示方書(シールド編)同解説第13条に示されている
ように機械式密閉型シールドの一種である。
The earth pressure type shield construction method is a kind of mechanical sealed shield as shown in Article 13 of the same commentary on standard specifications of the Japan Society of Civil Engineers (Shield edition).

【0005】土圧式シールドの掘削/土留めは、カッタ
ーヘッドにて掘削した土砂をチャンバー内に充満させ、
このチャンバー内土圧により切羽の安定を図りながら掘
進し、チャンバー内からシールド機内へ通ずるスクリュ
ーコンベアにより排土することにより行われる。
For excavation / retaining of earth pressure type shield, the chamber is filled with earth and sand excavated by a cutter head.
It is carried out by excavating while stabilizing the face by the earth pressure in the chamber and discharging the soil by the screw conveyer that leads from the chamber to the shield machine.

【0006】しかし、土質によっては掘削土砂の流動性
や止水性が不足する場合があり、掘削土砂に作泥土材や
泥漿などの掘削添加材を注入し、掘削土砂を止水性と流
動性ある土砂に変換して、変換土砂の土圧によって切羽
の安定を図らなければならない。
However, depending on the soil quality, the fluidity and water stopping property of the excavated earth and sand may be insufficient. Therefore, the excavated earth and sand is injected with an additive material such as mud mud material and sludge, so that the excavated earth and sand has water stopping property and fluidity. And the stability of the face must be ensured by the earth pressure of the converted earth and sand.

【0007】このように非泥土性の掘削土砂に掘削添加
材を添加し、シールド機カーター後部の練り混ぜ翼など
で攪拌し、塑性流動性と不透水性を持つ泥土に変換して
スクリューコンベアや排土管によって排土する方式が、
泥土圧式シールドあるいは泥漿シールドと呼ばれている
工法である。
In this way, the drilling additive is added to the non-mud excavated earth and sand, and the mixture is agitated by a mixing blade or the like at the rear part of the shield machine carter to be converted into mud having plastic fluidity and impermeability, and then screw conveyor or The method of removing soil using an earth removal pipe is
It is a construction method called mud pressure shield or mud shield.

【0008】砂礫層などでも圧密度の高く地盤構成が安
定している場合は、切羽が安定に保たれ順調に掘削でき
る事例が多いが、滞水性の巨礫層や玉石層などの地盤の
場合は、きわめて透水性が高く、土の内部摩擦角も大き
いことが多いので坑内への出水や切羽崩壊の問題を生じ
ることが多い。
When the soil density is high and the ground structure is stable even in a gravel layer, etc., there are many cases where the face can be kept stable and excavation can be performed smoothly, but in the case of a ground such as a water-bearing boulder layer or cobblestone layer. , It is extremely water-permeable and the internal friction angle of the soil is often large, which often causes problems such as flooding of the mine and face collapse.

【0009】そのため、切羽周辺に止水性のよい掘削添
加材を注入して地盤を形成させることが重要な鍵となっ
ている。
Therefore, it is an important key to form a ground by injecting a drilling additive having good water shuttability around the face.

【0010】さらに、掘削添加材の粘性が不足すると砂
や礫などの大きな土粒子を取り囲むためのバインダー効
果が不足するので、土砂が材料分離を生じやすく流動性
を失って閉塞を生じることがあるので、掘削土砂に粘性
を与えて塑性流動性を維持することも重要である。
Further, if the viscosity of the excavating additive is insufficient, the binder effect for enclosing large soil particles such as sand and gravel is insufficient, so that the soil is liable to cause material separation and loses its fluidity to cause clogging. Therefore, it is also important to give viscosity to the excavated soil to maintain plastic fluidity.

【0011】従来このような地盤の掘削においては、止
水性のよい高吸水性樹脂を掘削添加材に使用する工法が
あり、例えば、特開昭61―211491号公報ではビ
ーズ状の100〜200ミクロン程度の大きさの高吸水
性樹脂を切羽に注入し、間隙水を吸収し掘削土砂の流動
性を改良する方法が、また、特開平4―136398号
公報では、逆相乳化重合物を主体とする作泥剤水溶液を
切羽に注入する方法、さらに、特開平4―185691
号公報では粒径が10ミクロン以下と50ミクロン以下
に分布する高吸水性樹脂を切羽に注入する方法などが開
示されている。
Conventionally, in such excavation of the ground, there is a method of using a highly water-absorbent resin having a good water-stopping property as an excavating additive material. For example, in JP-A-61-211491, a bead-shaped 100 to 200 micron is used. A method of injecting a moderately high water-absorbent resin into a face to absorb pore water to improve the fluidity of excavated sediment is disclosed in Japanese Patent Laid-Open No. 4-136398, in which a reverse phase emulsion polymer is mainly used. A method of injecting an aqueous mud-making agent solution into a face, and further, JP-A-4-185691
The publication discloses a method of injecting a highly water-absorbent resin having a particle size of 10 μm or less and 50 μm or less into a face.

【0012】しかし、上記のような方法で高吸水性樹脂
を使用した場合、それぞれ特徴、効果は発現するが、特
に滞水砂礫層の場合、掘削添加材の注入量を増加させて
も吸水力が足りず、スクリューコンベアからの掘削土砂
が噴発する場合がある。
[0012] However, when the super absorbent resin is used by the above-mentioned method, the characteristics and effects are exhibited, but especially in the case of the water retention gravel layer, even if the injection amount of the drilling additive is increased, the water absorption capacity is increased. There is a case where the excavated earth and sand from the screw conveyor may erupt because there is not enough space.

【0013】特に地下水圧の高い地層や地下水の塩分濃
度の高い地層では、ベントナイト系などの高濃度の泥漿
でないと掘削が不可能な例が多かった。
Particularly in a formation having a high groundwater pressure and a formation having a high salinity of groundwater, there are many cases in which excavation cannot be performed unless the concentration is high, such as bentonite.

【0014】[0014]

【発明が解決しようとする課題】泥土圧式シールド工法
では、非泥土性の掘削土砂に掘削添加材を添加し、シー
ルド機カーター後部の練り混ぜ翼などで攪拌し、塑性流
動性と不透水性を持つ泥土に変換してスクリューコンベ
アや排土管によって排土する方式であるが、本発明は、
滞水層や地下水塩分濃度が高い地層でも安定して掘削で
きる泥土圧式シールド工法用掘削添加材を提供するもの
である。
In the mud pressure type shield construction method, a drilling additive is added to non-mud excavating earth and sand, and the mixture is agitated by a mixing blade or the like at the rear part of the shield machine carter to improve plastic fluidity and impermeability. It is a method of converting the soil to have mud and discharging it with a screw conveyor or a discharge pipe, but the present invention is
It is intended to provide a drilling additive material for a mud pressure type shield construction method, which enables stable drilling even in an aquifer or a formation having a high groundwater salt concentration.

【0015】地下水塩分濃度としては、通常0.1〜3
重量%、多くは0.5〜1.0重量%のものである。
The groundwater salinity is usually 0.1 to 3
% By weight, often 0.5 to 1.0% by weight.

【0016】また、近年、省力化のため、掘削土砂をズ
リトロで立坑まで輸送し、さらにバケットで吊り上げる
方式より、配管中をポンプ圧送や真空減圧輸送する方式
が増加しているが、その場合にも、水や礫が分離しにく
い掘削添加材を提供するものである。
Further, in recent years, in order to save labor, the method of pumping pumping or vacuum depressurizing the inside of the pipe is increasing, as compared with the method of transporting the excavated sand to the shaft by the slitter and further lifting it with the bucket. Also provides drilling additives that are difficult to separate water and gravel.

【0017】従来、掘削添加材に用いる粘土懸濁液の粘
性調整には主にベントナイトが使用されていた。
Conventionally, bentonite has been mainly used for adjusting the viscosity of clay suspensions used as drilling additives.

【0018】ベントナイトはよく知られているように、
モンモリロナイトを主成分とする代表的な結晶性鉱物の
一つであり、通常、正および負の電荷を共有しており、
比表面積もきわめて大きい。そのため、常温で水を吸い
込んで膨れ上り、ちょっとした力学的刺激を加えると、
ゲルがゾルに変化するチキソトロピー挙動を示すもので
ある。
Bentonite, as is well known,
It is one of the representative crystalline minerals whose main component is montmorillonite, and usually shares positive and negative charges,
The specific surface area is also very large. Therefore, if you inhale water at room temperature and swell up and apply a little mechanical stimulation,
It shows a thixotropic behavior in which the gel changes to a sol.

【0019】ベントナイトが持つこのような特有の粘性
が掘削土砂の塑性流動化に有効であるが、滞水層や礫率
が大きい砂礫層の場合にはベントナイトの使用量を多く
しなければならない。
Such a unique viscosity of bentonite is effective for plasticizing fluidization of excavated soil, but the amount of bentonite used must be increased in the case of an aquifer layer or a gravel layer having a high gravel rate.

【0020】また、地下水中の塩分濃度が高い場合に
は、ベントナイトの膨潤力が低下して懸濁液の粘度が高
くならないので、さらに多量のベントナイトを配合しな
ければならない問題があった。
Further, when the salt concentration in groundwater is high, the swelling power of bentonite is lowered and the viscosity of the suspension does not increase, so that there is a problem that a larger amount of bentonite must be blended.

【0021】また、ベントナイト泥水の増粘助剤として
使用されることのあるカルボキシメチルセルロースなど
の半合成高分子系の増粘剤類も、やはり地下水塩分濃度
が高いと増粘の効果が得られない問題があった。
Further, semi-synthetic polymer type thickeners such as carboxymethyl cellulose, which are sometimes used as thickening aids for bentonite mud, also cannot obtain thickening effect when the groundwater salt concentration is high. There was a problem.

【0022】すでに、塩類が存在するベントナイト泥水
の粘性を改良する方法として、特開昭59―15476
号公報や特開昭60―106689号公報及び、特開昭
59―15409号公報が開示されているが、これらの
方法による粘土懸濁液の濃度は低く、その粘性も低いの
で、掘削土砂の含水比が大きくなり泥状土化してしまい
建設汚泥として産業廃棄物処理しなければならなくなる
などの問題があった。
As a method for improving the viscosity of bentonite mud containing salts, JP-A-59-15476 has been used.
Japanese Patent Laid-Open No. 60-106689 and Japanese Patent Laid-Open No. 59-15409 are disclosed. However, since the concentration of the clay suspension obtained by these methods is low and its viscosity is low, There was a problem that the water content became so large that it became mud-like soil and industrial waste had to be treated as construction sludge.

【0023】次に、止水性を目的とした高吸水性樹脂を
使用するシールド工法が、特開昭57―108394号
公報に開示されているが、一般に、高分子電解質の一種
である高吸水性樹脂も塩類が多量に存在すると樹脂の吸
水膨潤能力が極端に低下し期待する大きさに粒子が膨潤
せず、粘土懸濁液の粘性調整効果が失われ、土砂の流動
性改良効果が得られない場合が多い。
Next, a shield construction method using a highly water-absorbent resin for the purpose of waterproofing is disclosed in JP-A-57-108394. Generally, a highly water-absorbent resin which is a kind of polymer electrolyte is used. If a large amount of salt is present in the resin, the water absorption and swelling capacity of the resin will be extremely reduced, the particles will not swell to the expected size, the effect of adjusting the viscosity of the clay suspension will be lost, and the effect of improving the fluidity of sediment will be obtained. Often not.

【0024】これに対して、高分子凝集剤などに使用さ
れる水溶性高分子は、高吸水性樹脂よりも耐塩性が強い
ものがあり、泥土圧式シールド工法用の掘削添加材とし
て特開昭60―133084号公報や特開平3―131
400号公報に、凝集効果を利用して使用する方法が開
示されている。
On the other hand, some water-soluble polymers used for polymer flocculants and the like have stronger salt resistance than superabsorbent resins, and they are used as an excavating additive for a mud pressure shield construction method. 60-133084 and JP-A-3-131
Japanese Unexamined Patent Publication No. 400 discloses a method of using by utilizing the aggregation effect.

【0025】しかし、高濃度、高粘度の粘土懸濁液で使
用すると、凝集力が強すぎてフロックを形成し、粘土分
が沈降したり塊状化して、粘性を調整できない問題があ
った。
However, when used in a high-concentration, high-viscosity clay suspension, there was a problem that the cohesive force was too strong to form flocs, and the clay content settled or agglomerated, and the viscosity could not be adjusted.

【0026】また、このように凝集力が強過ぎると、掘
削土砂に混合した場合にも砂分や礫分、特に礫分が泥土
分から分離して、シールド機チャンバー内やスクリュー
コンベア内が不均一状態となり、連続的に排土ができず
閉塞状態を生じるなどの問題があった。
When the cohesive force is too strong as described above, the sand content and the gravel content, especially the gravel content, are separated from the mud content even when mixed with the excavated soil, resulting in unevenness in the shield machine chamber and the screw conveyor. However, there was a problem that the soil could not be discharged continuously and a closed state occurred.

【0027】このように水溶性高分子単独では、粘土粒
子の凝集力が強すぎるので濃度を下げると増粘能力が小
さく、粘土懸濁液の比重を粘土量で調整することができ
ず、高濃度、高比重の泥漿添加材を作ることができず、
滞水層や地下水塩分濃度が高い地層の場合に利用するこ
とができなかった。
As described above, when the water-soluble polymer alone is used, the cohesive force of the clay particles is too strong, and therefore the viscosity increasing ability is small when the concentration is lowered, and the specific gravity of the clay suspension cannot be adjusted by the amount of clay, and thus the high viscosity cannot be obtained. We couldn't make a slurry additive with high density and high specific gravity,
It could not be used in the case of aquifers or formations with high groundwater salinity.

【0028】[0028]

【課題を解決するための手段】滞水層や地下水塩分濃度
が高い地層を泥土圧式シールド工法で掘削する場合、従
来の水溶性高分子系増粘剤や高吸水性樹脂では粘土懸濁
液の増粘効果が小さくなり掘削土砂の塑性流動化が困難
であった。
[Means for Solving the Problems] When excavating an aquifer or a formation having a high salt concentration in groundwater by the mud pressure shield method, conventional water-soluble polymer thickeners and superabsorbent resins are used as clay suspension solutions. The thickening effect became small and it was difficult to plasticize excavated soil.

【0029】本発明者らはこれらの点を考慮して鋭意研
究した結果、高吸水性高分子と分子量100万以上20
00万未満のアニオン性水溶性高分子を組み合わせるこ
とにより、高濃度、高比重、高粘性の掘削添加材を作液
することができ、上記地層においても水や礫などの分離
がなく安定な掘削が可能であり、掘削土砂のポンプ圧送
等も容易に行えることを見いだし、本発明に達したもの
である。
The inventors of the present invention have conducted extensive studies in consideration of these points, and as a result, have found that the superabsorbent polymer has a molecular weight of 1,000,000 or more.
By combining less than, 000,000 anionic water-soluble polymers, it is possible to produce high-concentration, high-specific-gravity, high-viscosity drilling additive material, and stable drilling without separation of water or gravel in the above formations. The present invention has been completed, and it was found that the pumping of excavated soil and the like can be easily performed, and the present invention has been achieved.

【0030】すなわち、本発明は高吸水性高分子と分子
量100万以上2000万未満のアニオン性水溶性高分
子を重量比4:1〜1:4、好ましくは3:2〜2:3
(高吸水性樹脂が80〜20重量%、好ましくは60〜
40重量%)で配合した増粘剤を粘土懸濁液(通常粘土
濃度は5〜60重量%程度)に0.05〜1.0重量%
添加してなる泥漿組成物であることを特徴とする泥土圧
式シールド工法用の掘削添加材に関するものである。
That is, in the present invention, the superabsorbent polymer and the anionic water-soluble polymer having a molecular weight of 1,000,000 or more and less than 20,000,000 are in a weight ratio of 4: 1 to 1: 4, preferably 3: 2 to 2: 3.
(80 to 20% by weight of super absorbent resin, preferably 60 to
0.05 to 1.0% by weight of a thickening agent mixed in 40% by weight to a clay suspension (usually the clay concentration is about 5 to 60% by weight).
The present invention relates to a drilling additive material for a mud pressure type shield construction method, which is a slurry composition added.

【0031】以下本発明を詳しく説明する。まず、本発
明に使用する高吸水性高分子及び分子量100万以上2
000万未満のアニオン性水溶性高分子について説明す
る。
The present invention will be described in detail below. First, a super absorbent polymer used in the present invention and a molecular weight of 1,000,000 or more 2
The anionic water-soluble polymer of less than 10 million will be described.

【0032】本発明に使用する高吸水性高分子は、水と
接触せしめた場合、水を吸収して数倍から千倍近くに膨
潤するが、水には溶解しないものである。
The superabsorbent polymer used in the present invention absorbs water and swells up to several times to about 1,000 times when brought into contact with water, but it does not dissolve in water.

【0033】例えば、澱粉―ポリアクリロニトリルまた
は澱粉―メタクリレートグラフト共重合体部分加水物、
ポリアクリロニトリルやビニルエステル―エチレン系不
飽和カルボン酸共重合体の部分加水分解物、スルフォン
化スチレン等親水基を導入したオレフィン系ポリマー、
ポリスチレンオキサイド、ポリビニルアルコール、ポリ
ビニルピロリドン、ポリアクリル酸ソーダ、ポリアクリ
ルアミド、カルボキシメチルセルロース、ポリアクリル
酸ソーダ―ポリアクリルアミド共重合体、プルラン等水
溶性高分子化合物の放射線照射物やメチレンビスアクリ
ルアミド、ジクロール酢酸、エピクロルヒドリン、アル
デヒド類等架橋剤による架橋物、親水基の一部を親油基
で置換したもの、イソブチレンと無水マレイン酸との共
重合物などを使用することができる。
For example, starch-polyacrylonitrile or starch-methacrylate graft copolymer partial hydrolyzate,
Polyacrylonitrile and vinyl ester-partial hydrolysates of ethylenically unsaturated carboxylic acid copolymers, olefin polymers that have introduced hydrophilic groups such as sulfonated styrene,
Polystyrene oxide, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylic acid soda, polyacrylamide, carboxymethyl cellulose, polyacrylic acid soda-polyacrylamide copolymer, irradiation products of water-soluble polymer compounds such as pullulan and methylenebisacrylamide, dichloracetic acid, It is possible to use a crosslinked product with a crosslinking agent such as epichlorohydrin or an aldehyde, a product in which a part of the hydrophilic group is replaced with a lipophilic group, a copolymer of isobutylene and maleic anhydride, and the like.

【0034】通常、高吸水性高分子には粉状のものや、
例えば特開昭62―211491号公報等において紹介
されているビーズ状のものが多いが、本発明において
は、粒径10μm以下の油中水型高吸水性高分子が好ま
しい。
Usually, the super absorbent polymer is in the form of powder or
For example, many of them are in the form of beads which are introduced in JP-A-62-211491, but in the present invention, a water-in-oil type super absorbent polymer having a particle size of 10 μm or less is preferable.

【0035】製造方法は例えば特開昭63―90537
公報、特開昭63―90510号公報等において紹介さ
れていて既知のものであり、水溶性ビニルモノマーと架
橋剤とを含む水溶液を、疎水性界面活性剤を含む有機分
散媒中に注入して乳化させたあと、ラジカル重合触媒に
より重合させ、得られたエマルジョンにさらに親水性界
面活性剤を添加することにより製造される。
The manufacturing method is described in, for example, JP-A-63-90537.
JP-A-63-90510 and the like are known and known, and an aqueous solution containing a water-soluble vinyl monomer and a crosslinking agent is injected into an organic dispersion medium containing a hydrophobic surfactant. It is produced by emulsifying and then polymerizing with a radical polymerization catalyst, and further adding a hydrophilic surfactant to the obtained emulsion.

【0036】粒径10ミクロン超では油中水型高吸水性
高分子の貯蔵安定性が低い。粒径は10ミクロン以下、
好ましくは1〜10ミクロンである。
If the particle size exceeds 10 microns, the storage stability of the water-in-oil superabsorbent polymer is low. Particle size is less than 10 microns,
It is preferably 1 to 10 microns.

【0037】次に、本発明に用いる分子量100万以上
2000万未満のアニオン性水溶性高分子は耐塩性を高
めるために用いられ、形成する水溶性ビニルモノマーと
しては、(a)アニオン性、(b)ノニオン性でいずれ
も水溶性のものが使用できる。その具体例は次のとうり
である。
Next, the anionic water-soluble polymer having a molecular weight of 1,000,000 or more and less than 20,000,000 used in the present invention is used for enhancing salt resistance, and the water-soluble vinyl monomer to be formed is (a) anionic, ( b) Nonionic and water-soluble ones can be used. A specific example is as follows.

【0038】(a)アニオン性モノマー (メタ)アクリル酸、2―アクリルアミド―2―メチル
プロパンスルホン酸、ビニルスルホン酸、スチレンスル
ホン酸、イタコン酸、マレイン酸、フマール酸、アリー
ルスルホン酸およびその塩。
(A) Anionic monomer (meth) acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, vinylsulfonic acid, styrenesulfonic acid, itaconic acid, maleic acid, fumaric acid, arylsulfonic acid and salts thereof.

【0039】(b)ノニオン性モノマー (メタ)アクリルアミド、ビニルメチルエーテル、ビニ
ルエチルエーテルなど
(B) Nonionic monomer (meth) acrylamide, vinyl methyl ether, vinyl ethyl ether, etc.

【0040】以上説明した水溶性ビニルモノマーの1種
または2種以上を重合原料とし、ラジカル発生剤、紫外
線、放射線等により共重合した重合体が、本発明におい
て有効である。または、(メタ)アクリルアミドの単独
で重合させた後、加水分解により本発明の水溶性高分子
とする事も可能である。
A polymer obtained by copolymerizing one or more of the water-soluble vinyl monomers described above as a polymerization raw material with a radical generator, ultraviolet rays, radiation, etc. is effective in the present invention. Alternatively, the water-soluble polymer of the present invention can be obtained by polymerizing (meth) acrylamide alone and then hydrolyzing it.

【0041】これらの重合形態は、水溶液重合、懸濁重
合、油中水型逆相エマルション重合などがあるが、好ま
しくは油中水型逆相エマルション重合法により調製する
ものである。これらの製法は例えば特公昭52―394
17号公報において紹介されていて既知のものである。
These polymerization forms include aqueous solution polymerization, suspension polymerization, water-in-oil type reverse phase emulsion polymerization, etc., but preferably prepared by a water-in-oil type reverse phase emulsion polymerization method. These manufacturing methods are described in, for example, Japanese Patent Publication No. 52-394
It is introduced in Japanese Patent Publication No. 17 and is known.

【0042】水溶性高分子中に含まれるアニオン性モノ
マーの割合としては、10〜90mol%、好ましくは
20〜50mol%である。10mol%未満だと増粘
力が不足し、90mol%以上だと耐水性、耐塩性の効
果が小さくなり十分な掘削添加材を提供することができ
ない。
The proportion of the anionic monomer contained in the water-soluble polymer is 10 to 90 mol%, preferably 20 to 50 mol%. If it is less than 10 mol%, the thickening power is insufficient, and if it is 90 mol% or more, the effects of water resistance and salt resistance are reduced, and a sufficient drilling additive cannot be provided.

【0043】本発明に使用する粘土は、土木工業に用い
られる山粘土およびベントナイトが使用できる。
As the clay used in the present invention, mountain clay and bentonite used in the civil engineering industry can be used.

【0044】山粘土とは、シールド工法用の加重材など
として用いられる山粘土であり、比重を必要としたり、
粘性を調整したりするための基本材として使用されるも
のである。
The mountain clay is a mountain clay used as a weighting material for the shield construction method, and requires specific gravity,
It is used as a basic material for adjusting viscosity.

【0045】山粘土は、鉱物組成が変化に富んでいるい
わゆる雑粘土のことを言い、他に、瓦用粘土、セメント
用粘土、建材用粘土等にも使用されているものである。
The mountain clay is a so-called miscellaneous clay having a wide variety of mineral compositions, and is also used for roof tile clay, cement clay, building material clay and the like.

【0046】数多くのものが市販されているが、それら
の含有粘土鉱物の種類は、例えば、市販されているカオ
リナイト及びイライトを主成分とする山粘土の例として
「木節粘土(SCP―S)」や「SCP―A」(いずれ
もベントナイト産業(株)製)がある。
Many kinds are commercially available. The types of clay minerals contained in them are, for example, "Kibushi Clay (SCP-S)" as an example of commercially available mountain clay mainly containing kaolinite and illite. ) ”And“ SCP-A ”(both manufactured by Bentonite Industry Co., Ltd.).

【0047】また、市販されているモンモリロナイト及
びカオリナイトを主成分とする山粘土の例として「笠岡
粘土」(カサネン工業(株)製)が挙げられる。
An example of commercially available mountain clay containing montmorillonite and kaolinite as main components is "Kasaoka clay" (produced by Kasanen Kogyo Co., Ltd.).

【0048】次にベントナイトとしては石油掘削泥水や
土木基礎工事用泥水に使用されるベントナイトが使用で
きる。数多くのものが市販されているが、モンモリロナ
イト含有量が多く、水和、水膨潤性が大きいNa―モン
モリロナイトを多く含む山形産およびアメリカワイオミ
ング州産のものが好ましい。
As bentonite, bentonite used for oil drilling mud or mud for civil engineering foundation work can be used. Although many products are commercially available, those from Yamagata and Wyoming, USA, which contain a large amount of Na-montmorillonite, which has a high montmorillonite content and a high hydration and water swelling property, are preferred.

【0049】本発明においては、泥漿組成物に、さらに
0.05〜1.0重量%の水溶性高分子を添加してもよ
い。
In the present invention, 0.05 to 1.0% by weight of a water-soluble polymer may be added to the slurry composition.

【0050】本発明に用いる水溶性高分子としては、耐
塩性をさらに高めるために用いるもので、泥水添加剤と
して使用されている天然高分子、半合成高分子及び合成
高分子が使用できる。
The water-soluble polymer used in the present invention is used to further enhance salt resistance, and natural polymers, semi-synthetic polymers and synthetic polymers used as muddy water additives can be used.

【0051】このうち増粘剤として一般的である、キサ
ンタンガム、メチルセルロース、カルボキシメチルセル
ロース、ヒドロキシプロピルメチルセルロース、ヒドロ
キシエチルセルロース、ポリアニオニックセルロース、
澱粉、グアーガム、グアーガム誘導体、ポリアクリル酸
塩、アクリルアミド/アクリル酸塩共重合体、ポリエチ
レンオキサイド及び、ポリビニルアルコール等が使用で
きる。
Of these, xanthan gum, methyl cellulose, carboxymethyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose, polyanionic cellulose, which are common as thickeners,
Starch, guar gum, guar gum derivative, polyacrylate, acrylamide / acrylate copolymer, polyethylene oxide, polyvinyl alcohol and the like can be used.

【0052】ただしアニオン性のものは、100万未
満、好ましくは5〜100万未満、さらに好ましくは5
0万程度のものである。
However, the anionic one is less than 1 million, preferably 5 to less than 1 million, and more preferably 5
It is about 100,000.

【0053】[0053]

【作用】本発明は、高吸水性高分子と分子量100万以
上2000万未満のアニオン性水溶性高分子を重量比
4:1〜1:4で配合してなる増粘剤を粘土懸濁液に添
加した泥漿組成物である泥土圧式シールド工法用の掘削
添加材に関するものである。
The present invention provides a clay suspension containing a thickener prepared by mixing a super absorbent polymer and an anionic water-soluble polymer having a molecular weight of 1,000,000 or more and less than 20,000,000 in a weight ratio of 4: 1 to 1: 4. The present invention relates to a drilling additive for a mud pressure shield method, which is a slurry composition added to.

【0054】本発明の添加材をシールド工法用に用いる
場合の注入量は掘削土砂の容積に対して通常5〜150
vol%程度を用いる。
When the additive material of the present invention is used for the shield construction method, the injection amount is usually 5 to 150 relative to the volume of excavated earth and sand.
About vol% is used.

【0055】[0055]

【実施例】まず本発明に係る高吸水性高分子及び分子量
100万以上2000万未満のアニオン性水溶性高分子
の製造例について説明する。
EXAMPLES First, production examples of the superabsorbent polymer and the anionic water-soluble polymer having a molecular weight of 1,000,000 or more and less than 20,000,000 according to the present invention will be described.

【0056】[0056]

【製造例1 高吸水性高分子の製造例1】水溶性ビニル
モノマーとして100mol%アンモニア中和アクリル
酸54%水溶液683g及び架橋剤としてのN’N―メ
チレンビスアクリルアミド0.15gに、t―BHP
(t―ブチルハイドロパーオキサイド)0.02gと蒸
留水91gをあらかじめ混合して水性相を作った。
[Production Example 1 Production Example 1 of superabsorbent polymer] 683 g of a 100 mol% ammonia-neutralized acrylic acid 54% aqueous solution as a water-soluble vinyl monomer and 0.15 g of N'N-methylenebisacrylamide as a cross-linking agent were added to t-BHP.
An aqueous phase was prepared by previously mixing 0.02 g of (t-butyl hydroperoxide) and 91 g of distilled water.

【0057】これに有機分散媒(パラフィン64重量
%、ナフテン35重量%、芳香族炭化水素1重量%の割
合で含有)240gにソルビタンモノオレエート18g
を加えた油性相を混合し、ホモジナイザーで乳化した。
To this, 240 g of an organic dispersion medium (containing 64% by weight of paraffin, 35% by weight of naphthene and 1% by weight of aromatic hydrocarbon) and 18 g of sorbitan monooleate.
The oily phase added with was mixed and emulsified with a homogenizer.

【0058】乳化後4つ口フラスコに移し、攪拌しなが
らN2パージし脱気した。N2パージしながらメタ重亜硫
酸ナトリウム水溶液を滴下して、温度60℃で重合させ
た。
After emulsification, the mixture was transferred to a four-necked flask, and was degassed by purging with N 2 while stirring. An aqueous solution of sodium metabisulfite was added dropwise while purging with N 2 to polymerize at a temperature of 60 ° C.

【0059】重合後、ポリオキシエチレンラウリルエー
テルを27g添加して、油中水型高吸水性高分子(高分
子―A)を得た。得られた高分子の粘度は500センチ
ポアズ(cP)/25℃(B型粘度計、No.2ロー
タ、12rpm)、平均粒子径1.9μmであった。吸
水倍率は約350倍/水道水であった。
After the polymerization, 27 g of polyoxyethylene lauryl ether was added to obtain a water-in-oil type super absorbent polymer (polymer-A). The viscosity of the obtained polymer was 500 centipoise (cP) / 25 ° C. (B-type viscometer, No. 2 rotor, 12 rpm), and the average particle diameter was 1.9 μm. The water absorption ratio was about 350 times / tap water.

【0060】[0060]

【製造例2 高吸水性高分子の製造例2】水溶性ビニル
モノマーとして100mol%アンモニア中和アクリル
酸54%水溶液683g及び架橋剤としてのテトラエチ
レングリコールジメタクリレート0.07gに、t―B
HP(t―ブチルハイドロパーオキサイド)0.02g
と蒸留水91gをあらかじめ混合して水性相を作った。
[Production Example 2 Production Example 2 of super absorbent polymer] 683 g of a 100 mol% ammonia-neutralized 54% aqueous acrylic acid solution as a water-soluble vinyl monomer and 0.07 g of tetraethylene glycol dimethacrylate as a crosslinking agent were added with t-B.
HP (t-butyl hydroperoxide) 0.02g
And 91 g of distilled water were premixed to form an aqueous phase.

【0061】これに有機分散媒(パラフィン64重量
%、ナフテン35重量%、芳香族炭化水素1重量%の割
合で含有)240gにソルビタンモノオレエート18g
を加えた油性相を混合し、ホモジナイザーで乳化した。
240 g of an organic dispersion medium (containing paraffin 64% by weight, naphthene 35% by weight, aromatic hydrocarbon 1% by weight) and sorbitan monooleate 18 g.
The oily phase added with was mixed and emulsified with a homogenizer.

【0062】乳化後4つ口フラスコに移し、攪拌しなが
らN2パージし脱気した。N2パージしながらメタ重亜硫
酸ナトリウム水溶液を滴下して、温度60℃で重合させ
た。
After emulsification, the mixture was transferred to a four-necked flask, purged with N 2 and deaerated while stirring. An aqueous solution of sodium metabisulfite was added dropwise while purging with N 2 to polymerize at a temperature of 60 ° C.

【0063】重合後、ポリオキシエチレンラウリルエー
テルを27g添加して、油中水型高吸水性高分子(高分
子―B)を得た。得られた高分子の粘度は420cp/
25℃(B型粘度計、No.2ロータ、12rpm)、
平均粒子径2.3μmであった。吸水倍率は約370倍
/水道水であった。
After the polymerization, 27 g of polyoxyethylene lauryl ether was added to obtain a water-in-oil type super absorbent polymer (polymer-B). The viscosity of the obtained polymer is 420 cp /
25 ° C (B-type viscometer, No. 2 rotor, 12 rpm),
The average particle size was 2.3 μm. The water absorption ratio was about 370 times / tap water.

【0064】[0064]

【製造例3 アニオン性水溶性高分子の製造例1】アク
リル酸ナトリウム35%水溶液75.2g、アクリルア
ミド50%水溶液357.7gに、t―BHP(t―ブ
チルハイドロパーオキサイド)0.02gと蒸留水16
7gをあらかじめ混合して水性相を作った。
Production Example 3 Production Example 1 of anionic water-soluble polymer: Distillation with 0.02 g of t-BHP (t-butyl hydroperoxide) in 75.2 g of 35% aqueous solution of sodium acrylate and 357.7 g of 50% aqueous solution of acrylamide. Water 16
7 g was premixed to make the aqueous phase.

【0065】これに有機分散媒(パラフィン64重量
%、ナフテン35重量%、芳香族炭化水素1重量%の割
合で含有)194gにソルビタンモノオレート15gを
加えた油性相を混合し、ホモジナイザーで乳化した。乳
化後4つ口フラスコに移し、攪拌しながらN2パージし
脱気した。
194 g of an organic dispersion medium (containing 64% by weight of paraffin, 35% by weight of naphthene and 1% by weight of aromatic hydrocarbon) and 15 g of sorbitan monooleate were mixed with an oily phase and emulsified with a homogenizer. . After emulsification, the mixture was transferred to a 4-necked flask, and was degassed by purging with N 2 while stirring.

【0066】N2パージしながらメタ重亜硫酸ナトリウ
ム水溶液を滴下して、温度50℃で重合させた。重合
後、ポリオキシエチレンラウリルエーテルを16g添加
して、油中水型アニオン性水溶性高分子(高分子―C)
を得た。
An aqueous solution of sodium metabisulfite was added dropwise while purging with N 2 , and polymerization was carried out at a temperature of 50 ° C. After polymerization, 16 g of polyoxyethylene lauryl ether was added to give a water-in-oil type anionic water-soluble polymer (polymer-C).
I got

【0067】得られた高分子は固形分濃度34.0%
で、平均粒子径2.1μmであった。水に溶解してウベ
ローデ粘度計により重量平均分子量を測定したところ、
約1200万であった。
The obtained polymer has a solid content of 34.0%.
The average particle size was 2.1 μm. When it was dissolved in water and the weight average molecular weight was measured with an Ubbelohde viscometer,
It was about 12 million.

【0068】[0068]

【製造例4 アニオン性水溶性高分子の製造例2】アク
リル酸ナトリウム35%水溶液228g、アクリルアミ
ド50%水溶液281gに、t―BHP(t―ブチルハ
イドロパーオキサイド)0.02gと蒸留水91gをあ
らかじめ混合して水性相を作った。
[Production Example 4 Production Example 2 of anionic water-soluble polymer] To 228 g of a 35% aqueous solution of sodium acrylate and 281 g of a 50% aqueous solution of acrylamide, 0.02 g of t-BHP (t-butyl hydroperoxide) and 91 g of distilled water were previously prepared. Mixed to make an aqueous phase.

【0069】これに有機分散媒(パラフィン64重量
%、ナフテン35重量%、芳香族炭化水素1重量%の割
合で含有)194gにソルビタンモノオレート15gを
加えた油性相を混合し、ホモジナイザーで乳化した。
194 g of an organic dispersion medium (containing 64% by weight of paraffin, 35% by weight of naphthene and 1% by weight of aromatic hydrocarbon) and 15 g of sorbitan monooleate were mixed with an oily phase and emulsified with a homogenizer. .

【0070】乳化後4つ口フラスコに移し、攪拌しなが
らN2パージし脱気した。N2パージしながらメタ重亜硫
酸ナトリウム水溶液を滴下して、温度50℃で重合させ
た。
After emulsification, the mixture was transferred to a four-necked flask, and was degassed by purging with N 2 while stirring. An aqueous solution of sodium metabisulfite was added dropwise while purging with N 2 to polymerize at a temperature of 50 ° C.

【0071】重合後、ポリオキシエチレンラウリルエー
テルを16g添加して、油中水型アニオン性水溶性高分
子(高分子―D)を得た。得られた高分子は固形分濃度
26.4%で、平均粒子径2.3μmであった。水に溶
解してウベローデ粘度計により重量平均分子量を測定し
たところ、約1800万であった。
After the polymerization, 16 g of polyoxyethylene lauryl ether was added to obtain a water-in-oil type anionic water-soluble polymer (polymer-D). The obtained polymer had a solid content concentration of 26.4% and an average particle diameter of 2.3 μm. When dissolved in water and measured for weight average molecular weight with an Ubbelohde viscometer, it was about 18 million.

【0072】[0072]

【実施例1】上記製造例1から4で製造した高吸水性高
分子(高分子―A及び―B)とアニオン性水溶性高分子
(高分子―C及び―D)を混合して第1表の増粘剤を得
た。
Example 1 The superabsorbent polymers (polymers-A and -B) prepared in Production Examples 1 to 4 and the anionic water-soluble polymer (polymers-C and -D) were mixed to prepare a first mixture. A thickener in the table was obtained.

【0073】各種増粘剤を、固形分濃度0.9wt%と
なるように各種塩濃度の溶解水に溶解し、B型粘度計/
25℃、12rpmの条件で溶解液粘度を測定し耐塩性
および増粘性を比較した。表で示されるように、アニオ
ン性水溶性高分子の割合が多い方が、高塩濃度で粘度の
低下が少なく、増粘効果の低下が少ないことがわかる。
Various thickeners were dissolved in dissolved water having various salt concentrations so that the solid content concentration was 0.9 wt%, and the B-type viscometer /
The solution viscosity was measured under the conditions of 25 ° C. and 12 rpm to compare salt resistance and viscosity increase. As shown in the table, it is understood that the higher the proportion of the anionic water-soluble polymer is, the less the viscosity is reduced at a high salt concentration and the less the thickening effect is reduced.

【0074】[0074]

【実施例2】主要鉱物がカオリナイトとモンモリロナイ
トで、メチレンブルー吸着量:23.8meq/100
g、粒度:200メッシュ以上86〜95%、250メ
ッシュ以上90%の商品名「笠岡粘土」(カサネン工
業)で作液した懸濁液に混合し、それを掘削添加材とし
て礫率85%の試験土砂に混合してスランプを測定し
た。
[Example 2] Main minerals are kaolinite and montmorillonite, and methylene blue adsorption amount: 23.8 meq / 100
g, particle size: 200-mesh or more 86-95%, 250-mesh or more 90%, mixed with a suspension made with the trade name "Kasaoka Clay" (Kasanen Kogyo), and used as a drilling additive with a gravel rate of 85% The slump was measured by mixing with the test soil.

【0075】試験土砂の組成は、礫分(最大粒径20m
mの川砂)を85wt%、細砂分(最大粒径5mmの川
砂)が12wt%、シルト・粘土分(最大粒径2mmの
珪砂を2wt%及び上記粘土を1wt%)を3wt%を
配合して用いた。
The composition of the test soil was gravel (maximum particle size 20 m
85 wt% of the m sand), 12 wt% of the fine sand content (river sand with a maximum particle size of 5 mm), 3 wt% of silt and clay content (2 wt% of silica sand with a maximum particle size of 2 mm and 1 wt% of the above clay). Used.

【0076】含水比は10%となるように調整し、土砂
中に塩濃度が0.2%となるようにNaClを添加し
た。
The water content was adjusted to 10%, and NaCl was added to the earth and sand so that the salt concentration was 0.2%.

【0077】掘削添加材の25℃における粘度はビスコ
テスター(VT―04型)[リオン(株)製]にて測定
した。また、比重は泥水比重試験器(マッドバランス)
で測定した。
The viscosity of the drilling additive material at 25 ° C. was measured with a Visco Tester (VT-04 type) manufactured by Rion Co., Ltd. The specific gravity is a muddy water specific gravity tester (Mud balance).
It was measured at.

【0078】上記の掘削添加材を試験土砂に種々の注入
率(土砂に対する泥漿混合割合で容積百分率で示す)で
混合した時の混合土砂の性状評価は、JIS A 11
01のコンクリートのスランプ試験方法に従って行っ
た。
The property evaluation of the mixed sediment when the above-mentioned drilling additive was mixed with the test sediment at various injection ratios (slurry mixing ratio with respect to the sediment is shown in volume percentage) was conducted according to JIS A 11
No. 01 concrete slump test method.

【0079】掘削添加材の組成及びスランプ試験結果を
第2表に示した。増粘剤―3および―4は土砂の分離が
少なく、注入率に応じて土砂の軟らかさや流動性を調整
することができることがわかる。
The composition of the drilling additives and the slump test results are shown in Table 2. It can be seen that the thickeners-3 and-4 hardly separate the sediment, and can adjust the softness and fluidity of the sediment depending on the injection rate.

【0080】[0080]

【実施例3】この発明による掘削添加材を用いて、シー
ルド外径2600mmの泥土圧式シールド工法工事現場
において管渠延長150mの掘削を行った。掘削した地
盤は玉石混じりの礫率66%の滞水砂礫層であった。
[Embodiment 3] Using the drilling additive according to the present invention, drilling with a pipe extension of 150 m was carried out at a mud earth pressure type shield construction method construction site having a shield outer diameter of 2600 mm. The ground that was excavated was an aquifer gravel layer with a cobble ratio of 66%.

【0081】a)土質条件 土質名称:玉石混じり砂礫層、 最大粒径:400mm 土質:礫分 66% 砂分 26% シルト・粘土分 8% N値:30から50 含水比:15% 透水係数:2.0×10-2 cm/secA) Soil conditions Soil name: Cobblestone mixed gravel layer, maximum particle size: 400 mm Soil type: gravel content 66% Sand content 26% Silt / clay content 8% N value: 30 to 50 Water content ratio: 15% Water permeability coefficient: 2.0 x 10-2 cm / sec

【0082】b)掘削結果 実施例1の増粘剤No.3の配合で作液した掘削添加材
を圧送ポンプ(チューブポンプ)によりシールド機に送
り、吐出口から切羽に注入しながら掘削した。
B) Excavation Results Thickener No. 1 of Example 1 The drilling additive made with the composition of 3 was sent to a shield machine by a pressure feed pump (tube pump), and was drilled while injecting it into the face from the discharge port.

【0083】この時、シールド機チャンバー内及びスク
リューコンベア内をこの混合掘削土砂によって充満し、
混合掘削土砂の泥土圧により切羽の緩み土圧及び地下水
圧と対抗させて掘進した。
At this time, the inside of the shield machine chamber and the inside of the screw conveyor were filled with this mixed excavated earth and sand,
The mud pressure of the mixed excavated soil excavated against the loose earth pressure of the face and the groundwater pressure.

【0084】掘削添加材の注入率は30%から50%で
注入を行ったところ、排出時のスランプ値は平均15c
mであり礫の分離もなく初期掘進を終了した。
When the injection rate of the drilling additive was 30% to 50%, the slump value at the time of discharge was 15c on average.
It was m and there was no separation of gravel and the initial excavation was completed.

【0085】続いて土砂圧送用のポンプ(ダブルピスト
ンポンプ、シリンダー径:φ180)を設置し、坑外ま
で連続的に搬出した。
Subsequently, a pump for pumping earth and sand (double piston pump, cylinder diameter: φ180) was installed and continuously carried out to the outside of the mine.

【0086】途中、巨礫の多い著しく海水の流入した地
盤の区間が約50mあったので、増粘剤No.3にキサ
ンタンガムを1kg添加して掘削を行った。排出作業は
管内閉塞もなく順調にトンネル掘削が終了し、排出土砂
は非産業廃棄物の残土として埋め立てように再利用し
た。
On the way, there was a section of the ground in which seawater inflowed remarkably with a lot of boulders for about 50 m. Excavation was performed by adding 1 kg of xanthan gum to No. 3. For the discharge work, the tunnel excavation was completed without any blockage in the pipe, and the discharged sand was reused as landfill as non-industrial waste.

【0087】[0087]

【表1】 [Table 1]

【0088】[0088]

【表2】 [Table 2]

【0089】*1)シールド用SCP―A粘土、#25
0、(ベントナイト産業(株))真比重:2.65、p
H:5.9、主要粘土鉱物:カオリナイトとイライト、
メチレンブルー吸着量:9.4meq/100g *2)クニゲルV1、(クニミネ工業(株))山形産ベ
ントナイト、粒度250メッシュ、pH:9.5、主成
分:SiO2 65〜75%、Al23 14〜17% *3)ビスコテスターVT―04型、回転数62.5r
pm *4)掘削添加材の土砂に対する混合割合(容量百分
率) *5)混合土砂の塑性流動状態(目視判断、×:不均一
で流動性ない、△:やや不均一だが流動性ある、○:均
一で流動性よい)
* 1) SCP-A clay for shield, # 25
0, (Bentonite Industry Co., Ltd.) True specific gravity: 2.65, p
H: 5.9, main clay minerals: kaolinite and illite,
Adsorption amount of methylene blue: 9.4 meq / 100 g * 2) Kunigel V1, (Kunimine Industry Co., Ltd.) Yamagata bentonite, particle size 250 mesh, pH: 9.5, main component: SiO 2 65-75%, Al 2 O 3 14-17% * 3) Viscotester VT-04 type, rotation speed 62.5r
pm * 4) Mixing ratio of excavated additive material to sediment (volume percentage) * 5) Plastic flow state of mixed sediment (visual judgment, ×: non-uniform and non-fluid, △: slightly non-uniform but fluid, ○: Uniform and good fluidity)

【0090】[0090]

【発明の効果】実施例で示したように本発明によれば、
滞水層や地下水塩分濃度が高い地層を泥土圧式シールド
工法で掘削する場合、従来の水溶性高分子系増粘剤や高
吸水性樹脂では粘土懸濁液の増粘効果が小さくなり掘削
土砂の塑性流動化が困難であったが、本発明を使用する
ことにより増粘剤の増粘効果の低下を抑えたまま、耐塩
性を向上して掘削土砂を塑性流動化させて安定に掘削を
進めるため高濃慶、高比重、高粘性の掘削添加材を作液
することができ、閉塞や粉発などの問題を生じることな
く掘削することが可能である。
According to the present invention as shown in the embodiments,
When excavating an aquifer or a stratum with a high salt concentration in groundwater by the mud pressure shield method, the thickening effect of the clay suspension becomes small with the conventional water-soluble polymer thickener or superabsorbent resin Although it was difficult to plasticize fluidization, by using the present invention, while suppressing the decrease in the thickening effect of the thickener, salt resistance is improved to plastically fluidize the excavated earth and sand for stable excavation. Therefore, it is possible to make a drilling additive with high concentration, high specific gravity and high viscosity, and it is possible to drill without causing problems such as blockage and dust generation.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高吸水性高分子と分子量100万以上2
000万未満のアニオン性水溶性高分子を重量比4:1
〜1:4で配合してなる増粘剤を粘土懸濁液に0.05
〜1.0重量%添加した泥漿組成物である泥土圧式シー
ルド工法用の掘削添加材。
1. A superabsorbent polymer and a molecular weight of 1,000,000 or more 2.
Weight ratio of less than 10 million anionic water-soluble polymer is 4: 1
Approximately 1: 4 of thickening agent added to clay suspension in 0.05
A drilling additive for a mud pressure shield construction method, which is a slurry composition added by 1.0 wt%.
【請求項2】 高吸水性高分子と分子量100万以上2
000万未満のアニオン性水溶性高分子を重量比3:2
〜2:3で配合してなる増粘剤を粘土懸濁液に0.05
〜1.0重量%添加した泥漿組成物である請求項1記載
の泥土圧式シールド工法用の掘削添加材。
2. A super absorbent polymer and a molecular weight of 1,000,000 or more 2.
Weight ratio of less than 10 million anionic water-soluble polymer 3: 2
~ 2: 3 thickening agent blended in clay suspension to 0.05
The drilling additive material for the mud pressure type shield construction method according to claim 1, wherein the drilling additive material is a slurry composition added by about 1.0% by weight.
【請求項3】 高吸水性高分子及び、分子量100万以
上2000万未満のアニオン性水溶性高分子が、粒径1
0ミクロン以下の油中水型エマルションからなることを
特徴とする請求項1記載の泥土圧式シールド工法用の掘
削添加材。
3. The particle size of the super absorbent polymer and the anionic water-soluble polymer having a molecular weight of 1,000,000 or more and less than 20,000,000 are 1
The drilling additive material for the mud pressure shield construction method according to claim 1, which is composed of a water-in-oil emulsion of 0 micron or less.
【請求項4】 請求項1に記載の組成物に、ポリアクリ
ル酸塩またはカルボキシメチルセルロース等の水溶性高
分子からなる群より選ばれた、少なくとも1つの成分を
0.05〜1.0重量%添加した泥漿組成物である泥土
圧式シールド工法用の掘削添加材。
4. The composition according to claim 1, and 0.05 to 1.0% by weight of at least one component selected from the group consisting of water-soluble polymers such as polyacrylic acid salts and carboxymethyl cellulose. A drilling additive for the mud pressure shield method, which is the added slurry composition.
【請求項5】 請求項1記載の粘土が山粘土及び/また
はベントナイトである請求項1及び請求項4に記載の泥
土圧式シールド工法用の掘削添加材。
5. The excavating additive for the mud pressure shield construction method according to claim 1 or 4, wherein the clay according to claim 1 is mountain clay and / or bentonite.
JP3019195A 1995-01-27 1995-01-27 Drilling additives for shield method Expired - Lifetime JP3523702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3019195A JP3523702B2 (en) 1995-01-27 1995-01-27 Drilling additives for shield method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3019195A JP3523702B2 (en) 1995-01-27 1995-01-27 Drilling additives for shield method

Publications (2)

Publication Number Publication Date
JPH08199159A true JPH08199159A (en) 1996-08-06
JP3523702B2 JP3523702B2 (en) 2004-04-26

Family

ID=12296871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3019195A Expired - Lifetime JP3523702B2 (en) 1995-01-27 1995-01-27 Drilling additives for shield method

Country Status (1)

Country Link
JP (1) JP3523702B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136587A (en) * 2000-11-02 2002-05-14 Lion Corp Disperse auxiliary agent and skin external adhesive composition
JP2006182962A (en) * 2004-12-28 2006-07-13 Daicel Chem Ind Ltd Additive for soil-pressed shield process
JP2014156546A (en) * 2013-02-15 2014-08-28 Waseda Univ Swellable high-water-absorption polymer stabilizing liquid composition for shielding method and execution method using the same
JP2020033437A (en) * 2018-08-29 2020-03-05 テクニカ合同株式会社 Method for preventing sticking, adhesion or fastening of sand and fluidized treatment soil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136587A (en) * 2000-11-02 2002-05-14 Lion Corp Disperse auxiliary agent and skin external adhesive composition
JP2006182962A (en) * 2004-12-28 2006-07-13 Daicel Chem Ind Ltd Additive for soil-pressed shield process
JP2014156546A (en) * 2013-02-15 2014-08-28 Waseda Univ Swellable high-water-absorption polymer stabilizing liquid composition for shielding method and execution method using the same
JP2020033437A (en) * 2018-08-29 2020-03-05 テクニカ合同株式会社 Method for preventing sticking, adhesion or fastening of sand and fluidized treatment soil

Also Published As

Publication number Publication date
JP3523702B2 (en) 2004-04-26

Similar Documents

Publication Publication Date Title
EP0997515B1 (en) Polymeric earth support fluid compositions and method for their use
US5407909A (en) Earth support fluid composition and method for its use
US3371712A (en) Composition and method of agglomerating and stabilizing particulate matter by chemical treatment
CN102439109B (en) Methods of using fluid loss additives comprising micro gels
US20030104949A1 (en) Composition for use in sealing a porous subterranean formation, and methods of making and using
CA2612121C (en) Methods and materials for zonal isolation
US3286475A (en) Method of agglomerating and stabilizing particulate matter by chemical treatment
CZ370898A3 (en) Clay-free biologically degradable drilling fluid and the use thereof
JPH0643463B2 (en) Raw material composition for the production of polymeric ampholytes for aqueous drilling fluids
WO2009047480A1 (en) Wellbore fluid
Koh et al. Recent advances of modified polyacrylamide in drilling technology
JPH11188392A (en) Modification/solidification method of mud earth, mud water, or sludge of high water content
JP3523702B2 (en) Drilling additives for shield method
CN113583639B (en) Drilling fluid system for deep well drilling and preparation method thereof
JPH08199160A (en) Excavation additive
AU687354B2 (en) Earth support fluid composition and method for its use
Jefferis et al. Polymer systems for fluid supported excavations
JPH071000A (en) Treatment of poor soil
JP2996454B2 (en) Mud material for propulsion method
JP2003327989A (en) Powder lubricant and mud adding material for civil engineering use containing the same
JPH06207167A (en) Production of aqueous solution of slurry-making agent
CN1196762C (en) Stable slurry for digging, its preparing method and digging method
CA2140125C (en) Earth support fluid composition and method for its use
JP2829549B2 (en) Lubricants for civil engineering
AU2005291642B2 (en) Method for de- watering a slurry

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040209

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 11

EXPY Cancellation because of completion of term