JPH08198670A - Fluorite type zirconia based solid electrolite - Google Patents

Fluorite type zirconia based solid electrolite

Info

Publication number
JPH08198670A
JPH08198670A JP7006292A JP629295A JPH08198670A JP H08198670 A JPH08198670 A JP H08198670A JP 7006292 A JP7006292 A JP 7006292A JP 629295 A JP629295 A JP 629295A JP H08198670 A JPH08198670 A JP H08198670A
Authority
JP
Japan
Prior art keywords
oxygen
alkali metal
solid electrolyte
comparative example
fluorite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7006292A
Other languages
Japanese (ja)
Other versions
JP3760475B2 (en
Inventor
Toshiyuki Mori
利之 森
Toshihito Kuramochi
豪人 倉持
Hiroshi Yamamura
博 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP00629295A priority Critical patent/JP3760475B2/en
Publication of JPH08198670A publication Critical patent/JPH08198670A/en
Application granted granted Critical
Publication of JP3760475B2 publication Critical patent/JP3760475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: To suppress the formation of C type rare earth element compd., to increase the amount of oxygen flaw and to increase oxygen ion concn. by partially replacing a Y site being a tervalent rear earth element with a univalent or bivalent element and forming a solid solution. CONSTITUTION: A precipitate is obtained by adding a precipitating agent to an inorg. salt aq. soln. of a metallic element containing yttrium, an alkali metal, magnesium or barium and zirconium. This precipitate is filtered and dried, and then burned to produce a defective fluorite type solid electrolyte expressed by formula ((Y1-a Ma )x Zr1-x )02-y (M is a univalent alkali metal. Mg and Ba; (a), (x) and (y) are an actual number satisfying 0.30<(a)<0.67; 0.12<(x)<0.35; 0.78<(y)<0.41).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多量の酸素欠陥を有す
るホタル石型ジルコニア系固体電解質材料に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorite-type zirconia-based solid electrolyte material having a large amount of oxygen defects.

【0002】[0002]

【従来の技術】ZrO2はホタル石型化合物に属し、4
価のZrサイトに3価の希土類元素(Y、Yb、Sc
等)を固溶させることにより、酸素欠陥が導入され高い
酸素イオン伝導を示す固体電解質材料となることが知ら
れている(N.Q.Minh,J.Am.Ceram.
Soc.,vol.76,3,563−88(198
8))。
2. Description of the Related Art ZrO 2 belongs to the fluorite type compound, and 4
Trivalent rare earth elements (Y, Yb, Sc)
And the like) are solid-dissolved to form a solid electrolyte material exhibiting high oxygen ion conductivity by introducing oxygen defects (NQ Minh, J. Am. Ceram.
Soc. , Vol. 76, 3, 563-88 (198
8)).

【0003】[0003]

【発明が解決しようとする課題】このような欠陥ジルコ
ニア系固体電解質は、4価のZrのサイトに3価の希土
類元素を置換固溶させることにより、酸素欠陥を生じさ
せているが、酸素欠陥量を増加させるべく3価元素の固
溶量を増加させると、C型希土類化合物の生成や酸素欠
陥の秩序化(又は会合)により、伝導度が低下するため
に、酸素イオン伝導度の向上が難しい状況にあった。
Such a defective zirconia-based solid electrolyte causes oxygen defects by substituting solid solution of trivalent rare earth elements into tetravalent Zr sites. When the solid solution amount of the trivalent element is increased to increase the amount, the conductivity decreases due to the formation of C-type rare earth compound and the ordering (or association) of oxygen defects, so that the oxygen ion conductivity is improved. It was a difficult situation.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意検討を重ねた。その結果、上記した
欠陥ジルコニア系固体電解質において、3価の希土類元
素であるYのサイトをさらに1価又は2価の元素で一部
置換固溶させることにより、Yサイトを平均原子価にお
いて3価以下の低価数とすることで、伝導度低下の要因
となる希土類酸化物とZrO2の固溶体であるC型希土
類化合物の生成を抑制し、酸素欠陥の量を増加させ、か
つ1価又は2価というYに比してイオン半径の大きい元
素を固溶させることで、格子を膨脹させ、酸素イオンの
通過可能な結晶格子内の空間を増大させることによっ
て、高い酸素イオン伝導度を有する固体電解質材料の提
供が可能となることを見出し本発明を完成するに至っ
た。
Means for Solving the Problems The present inventors have conducted extensive studies to solve the above problems. As a result, in the above-mentioned defective zirconia-based solid electrolyte, the Y site, which is a trivalent rare earth element, is partially replaced with a monovalent or divalent element to form a solid solution, so that the Y site has a trivalent average valence. The following low valence suppresses the formation of a C-type rare earth compound, which is a solid solution of rare earth oxide and ZrO 2 , which causes a decrease in conductivity, increases the amount of oxygen vacancies, and increases the valence of 1 or 2. A solid electrolyte having a high oxygen ion conductivity by solid-dissolving an element having a larger ionic radius than Y, which is a valence, to expand the lattice and increase the space in the crystal lattice through which oxygen ions can pass. The inventors have found that it is possible to provide materials, and have completed the present invention.

【0005】すなわち本発明は、下記一般式(1) {(Y1-aaxZr1-x}O2-y (1) (式中、Mは1価のアルカリ金属又はMg若しくはBa
を表し、a、x及びyは0.30<a<0.67、0.
12<x<0.35及び0.078<y<0.41を満
たす実数を表す。)で表される欠陥ホタル石型固体電解
質、及び下記一般式(2) {(Y1-aax(Zr1-bb1-x}O2-y (2) (式中、M、Nは1価のアルカリ金属又はMg若しくは
Baを表し、M≠N。a、x、b及びyは0.30<a
<0.67、0.16<x<0.27、0<b<0.5
及び0.18<y<0.87を満たす実数を表す。)で
表される欠陥ホタル石型固体電解質である。
[0005] The present invention has the following general formula (1) {(Y 1- a M a) x Zr 1-x} O 2-y (1) ( wherein, M represents a monovalent alkali metal or Mg or Ba
Where a, x and y are 0.30 <a <0.67, 0.
Represents a real number that satisfies 12 <x <0.35 and 0.078 <y <0.41. Defective fluorite structure type solid electrolyte represented by), and the following general formula (2) {(Y 1- a M a) x (Zr 1-b N b) 1-x} O 2-y (2) ( Formula In the formula, M and N represent monovalent alkali metal or Mg or Ba, and M ≠ N. A, x, b and y are 0.30 <a.
<0.67, 0.16 <x <0.27, 0 <b <0.5
And a real number satisfying 0.18 <y <0.87. ) Fluorite type solid electrolyte represented by.

【0006】次に本発明を更に詳細に説明する。Next, the present invention will be described in more detail.

【0007】本発明のZrO2系固体電解質は、下記一
般式(1) {(Y1-aaxZr1-x}O2-y (1) (式中、Mは1価のアルカリ金属又はMg若しくはBa
を表し、a、x及びyは0.30<a<0.67、0.
12<x<0.35及び0.078<y<0.41を満
たす実数を表す。)である。
[0007] ZrO 2 based solid electrolyte of the present invention is represented by the following general formula (1) {(Y 1- a M a) x Zr 1-x} O 2-y (1) ( wherein, M is a monovalent Alkali metal or Mg or Ba
Where a, x and y are 0.30 <a <0.67, 0.
Represents a real number that satisfies 12 <x <0.35 and 0.078 <y <0.41. ).

【0008】上記一般式(1)中、Mとして2価のアル
カリ土類金属元素であるSr又はCaを用いるとZrO
2との間にSrZrO3又はCaZrO3を副生成物とし
て生じさせてしまうために、ホタル石単一相からなるZ
rO2系高イオン伝導体の作製ができず、イオン伝導度
が低下するために好ましくない。
In the above general formula (1), if Sr or Ca, which is a divalent alkaline earth metal element, is used as M, ZrO
In order to form SrZrO 3 or CaZrO 3 as a by-product between the two , Z consisting of a fluorite single phase
It is not preferable because the rO 2 -based high ionic conductor cannot be produced and the ionic conductivity is lowered.

【0009】aの値が0.30では、酸素欠陥量が少な
く十分に高い酸素イオン伝導度は得られず、またaの値
が0.67以上では、Yサイトに1価のアルカリ金属元
素又はMg元素若しくはBa元素が固溶しきれず、粒界
に析出し、原料中にわずかに含まれるガラス相と反応し
て粒界における抵抗を高め、電解質全体の酸素イオン伝
導度を低下させるために好ましくない。
When the value of a is 0.30, the amount of oxygen defects is small and a sufficiently high oxygen ion conductivity cannot be obtained. When the value of a is 0.67 or more, a monovalent alkali metal element or The Mg element or the Ba element cannot be completely dissolved, is precipitated at the grain boundary, reacts with the glass phase slightly contained in the raw material to increase the resistance at the grain boundary, and is preferable because it lowers the oxygen ion conductivity of the entire electrolyte. Absent.

【0010】xの値が0.12以下では、酸素欠陥量が
不十分で十分に高い酸素イオン伝導度は得られず、また
xの値が0.35以上では、酸素欠陥量は増加し、Zr
に比してイオン半径の大きいYの固溶量が増えるため格
子は膨脹するが、イオン伝導度は著しく低下するので好
ましくない。この理由については明確に解明されていな
いが、ZrO2系固体電解質の特徴として酸素欠陥の会
合が起こりやすいことが挙げられ、上記の範囲以上では
見掛上酸素欠陥の数が減少し、イオン伝導度が低下する
ものと考えられる。
When the value of x is 0.12 or less, the amount of oxygen defects is insufficient and a sufficiently high oxygen ion conductivity cannot be obtained. When the value of x is 0.35 or more, the amount of oxygen defects increases. Zr
As compared with the above, the amount of solid solution of Y having a large ionic radius increases and the lattice expands, but the ionic conductivity remarkably decreases, which is not preferable. Although the reason for this has not been clearly clarified, it is mentioned that the characteristics of the ZrO 2 -based solid electrolyte are that oxygen vacancy association is likely to occur. It is thought that the degree will decrease.

【0011】yの値は、上記a及びxの値を定める際
に、正電荷と負電荷の値がバランスするように決まる値
であり、0.078〜0.41の値となる。
The value of y is a value determined so as to balance the values of positive charges and negative charges when determining the values of a and x, and is a value of 0.078 to 0.41.

【0012】上記した組成を選択することにより、ホタ
ル石単一相からなるZrO2系高イオン伝導体の作製が
可能となる。
By selecting the above composition, it becomes possible to produce a ZrO 2 type high ionic conductor consisting of a single phase of fluorspar.

【0013】また本発明のZrO2系固体電解質は、下
記一般式(2) {(Y1-aax(Zr1-bb1-x}O2-y (2) (式中、M、Nは1価のアルカリ金属又はMg若しくは
Baを表し、M≠N。a、x及びyは0.30<a<
0.67、0.16<x<0.27、0<b<0.5及
び0.18<y<0.87を満たす実数を表す。)であ
る。
[0013] ZrO 2 based solid electrolyte of the present invention is represented by the following general formula (2) {(Y 1- a M a) x (Zr 1-b N b) 1-x} O 2-y (2) ( In the formula, M and N represent a monovalent alkali metal or Mg or Ba, M ≠ N, and a, x and y are 0.30 <a <.
Represents a real number satisfying 0.67, 0.16 <x <0.27, 0 <b <0.5 and 0.18 <y <0.87. ).

【0014】上記一般式(2)中、M、Nとして2価の
アルカリ土類金属元素であるSr又はCaを用いるとZ
rO2との間にSrZrO3又はCaZrO3を副生成物
として生じさせてしまうために、ホタル石単一相からな
るZrO2系高イオン伝導体の作製ができず、イオン伝
導度が低下するために好ましくない。
In the general formula (2), if Sr or Ca, which is a divalent alkaline earth metal element, is used as M and N, Z
Since SrZrO 3 or CaZrO 3 is produced as a by-product with rO 2, it is not possible to produce a ZrO 2 based high ionic conductor consisting of a fluorite single phase, and the ionic conductivity decreases. Not good for

【0015】aの値が0.30以下では、酸素欠陥量が
少なく十分高い酸素イオン伝導度は得られず、またaの
値が0.67以上では、Yサイトに1価のアルカリ金属
又は2価のMg又はBa元素が固溶しきれず、粒界に析
出し、原料中にわずかに含まれるガラス相と反応して粒
界における抵抗を高め、電解質全体の酸素イオン伝導度
を低下させるために好ましくない。
When the value of a is 0.30 or less, the amount of oxygen defects is small and a sufficiently high oxygen ion conductivity cannot be obtained, and when the value of a is 0.67 or more, a monovalent alkali metal or 2 at the Y site is used. In order to reduce the oxygen ion conductivity of the entire electrolyte by increasing the resistance at the grain boundary by reacting with the glass phase contained in the raw material to a small extent, the valent Mg or Ba element cannot be completely dissolved and precipitates at the grain boundary. Not preferable.

【0016】xの値が0.16以下では、酸素欠陥量が
不十分で、十分高い酸素イオン伝導度は得られず、また
xの値が0.27以上では、酸素欠陥量は増加し、Zr
に比してイオン半径の大きいYの固溶量が増えるため格
子は膨脹するが、著しくイオン伝導度を低下させるため
に好ましくない。イオン伝導度低下の理由としては、Z
rO2系固体電解質の特徴として酸素欠陥の会合が起こ
りやすいことが挙げられ、上記の範囲以上では見掛上酸
素欠陥の数が減少し、イオン伝導度が低下するものと考
えられる。
When the value of x is 0.16 or less, the amount of oxygen defects is insufficient and a sufficiently high oxygen ion conductivity cannot be obtained, and when the value of x is 0.27 or more, the amount of oxygen defects increases. Zr
As compared with the above, the amount of solid solution of Y having a larger ionic radius increases, so that the lattice expands, but it is not preferable because it significantly reduces the ionic conductivity. The reason for the decrease in ionic conductivity is Z
A feature of the rO 2 -based solid electrolyte is that oxygen vacancy association is likely to occur, and it is considered that the number of oxygen vacancies apparently decreases and the ionic conductivity decreases in the above range.

【0017】bの値が0の場合には上記一般式(1)に
該当する。bの値が0.5以上では、Zrサイトに1価
のアルカリ金属元素又は2価のMg元素若しくはBa元
素が固溶しきれず、粒界に析出し、原料中にわずかに含
まれるガラス相と反応して粒界における抵抗を高め、電
解質全体の酸素イオン伝導度を低下させるために好まし
くない。
When the value of b is 0, it corresponds to the above general formula (1). When the value of b is 0.5 or more, the monovalent alkali metal element or the divalent Mg element or Ba element cannot be completely dissolved in the Zr site and precipitates at the grain boundary to form a glass phase slightly contained in the raw material. It is not preferable because it reacts to increase the resistance at the grain boundary and lowers the oxygen ion conductivity of the entire electrolyte.

【0018】yの値は、上記a及びxの値を定める際
に、正電荷と負電荷の値がバランスするように決まる値
であり、0.18〜0.87の値となる。
The value of y is a value determined so as to balance the values of positive charge and negative charge when determining the values of a and x, and is a value of 0.18 to 0.87.

【0019】上記した組成を選択することにより、ホタ
ル石単一相からなるZrO2高イオン伝導体の作製が可
能となる。
By selecting the above composition, it becomes possible to produce a ZrO 2 high ionic conductor composed of a fluorite single phase.

【0020】本発明の合成方法には特に制限はなく、原
料粉末として酸化物を用いて乾式及び湿式混合により混
合したのち焼成する方法、原料として無機塩の水溶液を
使用し沈澱剤としてシュウ酸などを用いることにより炭
酸塩として沈澱物を作製し、この沈澱を濾過、乾燥した
のち焼成する方法や原料としてアルコキシド溶液を使用
するアルコキシド法を用いて、液相混合したのち加水分
解反応により沈澱を作製し、この沈澱を濾過、乾燥した
のち焼成する方法などを用いて合成することができる。
The synthesis method of the present invention is not particularly limited, and a method of mixing oxides as a raw material powder by dry and wet mixing, followed by firing, an aqueous solution of an inorganic salt as a raw material, and oxalic acid as a precipitating agent, etc. A precipitate is prepared as a carbonate by using the above method, and the precipitate is filtered, dried and then calcined, or the alkoxide method is used in which an alkoxide solution is used as a raw material. Then, the precipitate can be synthesized by a method such as filtration, drying, and baking.

【0021】本発明の効果発現の機構については、未だ
十分には解明されていないが、ZrO2に単に3価の希
土類元素を固溶さる場合には、酸素欠陥を増加させると
C型希土類化合物が生成して伝導度を低下させてしまう
が、3価の希土類元素のサイトに1価又は2価のMg又
はBa元素を一部置換固溶させることにより、C型希土
類化合物を生成させることなく、酸素欠陥量を増加さ
せ、あわせて格子体積増大によるボトルネック径増大の
効果により、酸素イオン伝導度が向上する結果となった
ものと考えられる。
The mechanism of the effects of the present invention has not been fully clarified yet, but when a trivalent rare earth element is simply dissolved in ZrO 2 as a solid solution, the C-type rare earth compound is increased by increasing oxygen deficiency. However, by partially replacing the monovalent or divalent Mg or Ba element with the trivalent rare earth element site to form a solid solution, the C type rare earth compound is not generated. It is considered that the oxygen ionic conductivity is improved due to the effect of increasing the amount of oxygen defects and also increasing the bottleneck diameter by increasing the lattice volume.

【0022】[0022]

【実施例】以下、実施例により、本発明を更に詳細に説
明するが、本発明はこれらに限定されるものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0023】実施例1〜13 配合を下記に示す13種類の化学式になるように、酸化
イットリウム粉末(信越化学製)、炭酸セシウム粉末
(キシダ化学製)、炭酸ナトリウム(キシダ化学製)、
炭酸ルビジウム(キシダ化学製)、酸化ジルコニウム粉
末(東ソ−製)、酸化マグネシウム(キシダ化学製)、
炭酸バリウム(キシダ化学製)及び酸化リチウム粉末
(キシダ化学製)をエタノ−ル中においてボ−ルミル混
合したのち、1000℃、1h空気中において仮焼し、
この粉末をペレット状に2t/cm2の静水圧により成
形した。得られた試料を1500℃、4h空気中におい
て焼結することにより立方晶ホタル石単相の焼結体を作
製した。
Examples 1 to 13 Yttrium oxide powder (manufactured by Shin-Etsu Chemical), cesium carbonate powder (manufactured by Kishida Chemical), sodium carbonate (manufactured by Kishida Chemical)
Rubidium carbonate (manufactured by Kishida Chemical), zirconium oxide powder (manufactured by Toso), magnesium oxide (manufactured by Kishida Chemical),
Barium carbonate (manufactured by Kishida Chemical Co., Ltd.) and lithium oxide powder (manufactured by Kishida Chemical Co., Ltd.) were ball-mill mixed in ethanol, and then calcined in air at 1000 ° C. for 1 h,
This powder was formed into pellets by hydrostatic pressure of 2 t / cm 2 . A cubic phase fluorite single-phase sintered body was produced by sintering the obtained sample in air at 1500 ° C. for 4 hours.

【0024】実施例1: {(Y0.5Na0.50.28Zr0.72}O1.72 実施例2: {(Y0.5Cs0.50.32Zr0.68}O1.68 実施例3: {(Y0.5Na0.50.15Zr0.75}O1.65 実施例4: {(Y0.4Na0.60.28Zr0.72}O1.69 実施例5: {(Y0.6Na0.40.28Zr0.72}O1.75 実施例6: {(Y0.5Na0.50.2(Zr0.67Li0.330.8}O
1.40 実施例7: {(Y0.5Cs0.50.2(Zr0.67Rb0.330.8
1.40 実施例8: {(Y0.5Mg0.50.28Zr0.72}O1.79 実施例9: {(Y0.5Ba0.50.28Zr0.72}O1.79 実施例10: {(Y0.5Na0.50.18(Zr0.67Li0.330.82}O
1.41 実施例11: {(Y0.5Na0.50.24(Zr0.67Li0.330.76}O
1.38 実施例12: {(Y0.4Na0.60.2(Zr0.8Li0.20.8}O1.54 実施例13: {(Y0.6Na0.40.2(Zr0.6Li0.40.8}O1.34 ただし、上記の酸素数は正電荷と負電荷のバランスから
計算上求めた値である。
Example 1: {(Y 0.5 Na 0.5 ) 0.28 Zr 0.72 } O 1.72 Example 2: {(Y 0.5 Cs 0.5 ) 0.32 Zr 0.68 } O 1.68 Example 3: {(Y 0.5 Na 0.5 ) 0.15 Zr 0.75 } O 1.65 Example 4: {(Y 0.4 Na 0.6 ) 0.28 Zr 0.72 } O 1.69 Example 5: {(Y 0.6 Na 0.4 ) 0.28 Zr 0.72 } O 1.75 Example 6: {(Y 0.5 Na 0.5 ) 0.2 (Zr 0.67 Li 0.33 ) 0.8 } O
1.40 Example 7: {(Y 0.5 Cs 0.5 ) 0.2 (Zr 0.67 Rb 0.33 ) 0.8 }
O 1.40 Example 8: {(Y 0.5 Mg 0.5 ) 0.28 Zr 0.72 } O 1.79 Example 9: {(Y 0.5 Ba 0.5 ) 0.28 Zr 0.72 } O 1.79 Example 10: {(Y 0.5 Na 0.5 ) 0.18 (Zr 0.67 Li 0.33 ) 0.82 } O
1.41 Example 11: {(Y 0.5 Na 0.5 ) 0.24 (Zr 0.67 Li 0.33 ) 0.76 } O
1.38 Example 12: {(Y 0.4 Na 0.6 ) 0.2 (Zr 0.8 Li 0.2) 0.8} O 1.54 Example 13: {(Y 0.6 Na 0.4 ) 0.2 (Zr 0.6 Li 0.4) 0.8} O 1.34 However, the above oxygen The number is a value calculated from the balance of positive and negative charges.

【0025】得られた焼結体は、白金電極を塗布し、1
000℃において電極を焼き付け処理を施した後、交流
2端子法により複素インピ−ダンスを測定してイオン伝
導度を下記の式(3)により算出した。
The obtained sintered body was coated with a platinum electrode and
After baking the electrode at 000 ° C., the complex impedance was measured by the AC two-terminal method, and the ionic conductivity was calculated by the following formula (3).

【0026】イオン伝導度: logσ=log{Zcosθ/(l・S-1)} (3) (式中、σは伝導度(イオン伝導度はこの値を対数とし
て示す)、Zはインピ−ダンス、θはおくれ角、lはペ
レットの厚み、Sはペレット上の白金電極面積を表
す。) 950℃における伝導度の値を表1に示す。
Ionic conductivity: log σ = log {Z cos θ / (l · S -1 )} (3) (where σ is conductivity (ionic conductivity is expressed as a logarithm of this value) and Z is impedance) , Θ is the lag angle, l is the thickness of the pellet, and S is the area of the platinum electrode on the pellet.) Table 1 shows the values of conductivity at 950 ° C.

【0027】[0027]

【表1】 [Table 1]

【0028】比較例1〜10 配合を下記に示す10種類の化学式になるように、実施
例同様に酸化イットリウム粉末、炭酸セシウム粉末、炭
酸ナトリウム、炭酸ルビジウム、酸化ジルコニウム粉末
及び酸化リチウム粉末をエタノ−ル中においてボ−ルミ
ル混合したのち、1000℃、1h空気中において仮焼
し、この粉末をペレット状に2t/cm2の静水圧によ
り成形した。得られた試料を1500℃、4h空気中に
おいて焼結して試料とした。
Comparative Examples 1 to 10 The yttrium oxide powder, the cesium carbonate powder, the sodium carbonate, the rubidium carbonate, the zirconium oxide powder and the lithium oxide powder were mixed with ethanol in the same manner as in the Examples so that the composition had the following 10 chemical formulas. After mixing with a ball mill in a vacuum oven, the powder was calcined in air at 1000 ° C. for 1 h, and the powder was molded into pellets with a hydrostatic pressure of 2 t / cm 2 . The obtained sample was sintered at 1500 ° C. for 4 hours in air to obtain a sample.

【0029】比較例1: (Y0.16Zr0.82)O1.84 比較例2: {(Y0.25Na0.750.28Zr0.72}O2-y 比較例3: {(Y0.5Na0.50.08Zr0.92}O1.92 比較例4: {(Y0.5Na0.50.35Zr0.65}O1.6 比較例5: {(Y0.9Na0.10.28Zr0.72}O1.83 比較例6: {(Y0.5Cs0.50.05(Zr0.67Li0.330.95}O
1.48 比較例7: {(Y0.5Cs0.50.35(Zr0.45Rb0.550.65}O
2-y 比較例8: {(Y0.5Na0.50.2(Zr0.4Rb0.60.8}O2-y 比較例9: {(Y0.2Na0.80.2(Zr0.67Li0.330.8}O
2-y 比較例10: {(Y0.9Na0.10.2(Zr0.67Li0.330.8}O
1.48 ただし、上記の酸素数は正電荷と負電荷のバランスから
計算上求めた値である。
Comparative Example 1: (Y 0.16 Zr 0.82 ) O 1.84 Comparative Example 2: {(Y 0.25 Na 0.75 ) 0.28 Zr 0.72 } O 2-y Comparative Example 3: {(Y 0.5 Na 0.5 ) 0.08 Zr 0.92 } O 1.92 Comparative Example 4: {(Y 0.5 Na 0.5 ) 0.35 Zr 0.65 } O 1.6 Comparative Example 5: {(Y 0.9 Na 0.1 ) 0.28 Zr 0.72 } O 1.83 Comparative Example 6: {(Y 0.5 Cs 0.5 ) 0.05 (Zr 0.67 Li 0.33 ) 0.95 } O
1.48 Comparative Example 7: {(Y 0.5 Cs 0.5 ) 0.35 (Zr 0.45 Rb 0.55 ) 0.65 } O
2-y Comparative Example 8: {(Y 0.5 Na 0.5 ) 0.2 (Zr 0.4 Rb 0.6 ) 0.8 } O 2-y Comparative Example 9: {(Y 0.2 Na 0.8 ) 0.2 (Zr 0.67 Li 0.33 ) 0.8 } O
2-y Comparative Example 10: {(Y 0.9 Na 0.1 ) 0.2 (Zr 0.67 Li 0.33 ) 0.8 } O
1.48 However, the above oxygen number is a value calculated from the balance of positive and negative charges.

【0030】950℃における伝導度の値を表1に合わ
せて示す。
The conductivity values at 950 ° C. are also shown in Table 1.

【0031】比較例2、比較例7、比較例8及び比較例
9はホタル石単一相ではなく、比較例2は極微量の酸化
ナトリウムとホタル石化合物の混相、比較例7は酸化セ
シウムとホタル石化合物の混相、比較例8は酸化ルビジ
ウムとホタル石化合物の混相、比較例9は極微量の酸化
ナトリウムとホタル石化合物の混相状態であった。した
がって比較例2、7、8及び9は単一相ではないので、
酸素数は不明確であることから上記のように記載した。
また比較例3及び6は立方晶ホタル石構造の他に正方晶
ジルコニア相が共存したものであり、このためイオン伝
導度は低下したものと考えられる。
Comparative Example 2, Comparative Example 7, Comparative Example 8 and Comparative Example 9 are not a single phase of fluorspar, Comparative Example 2 is a mixed phase of an extremely small amount of sodium oxide and a fluorspar compound, and Comparative Example 7 is cesium oxide. The mixed phase of the fluorite compound, Comparative Example 8 was a mixed phase of rubidium oxide and the fluorite compound, and Comparative Example 9 was a mixed phase state of an extremely small amount of sodium oxide and the fluorite compound. Therefore, since Comparative Examples 2, 7, 8 and 9 are not single phase,
Since the oxygen number is unclear, it is described above.
In Comparative Examples 3 and 6, a tetragonal zirconia phase coexisted in addition to the cubic fluorite structure, and it is considered that the ionic conductivity was lowered for this reason.

【0032】[0032]

【発明の効果】以上説明したように、本発明は、多量の
酸素欠陥を有するホタル石型ZrO2系固体電解質に関
するものであり、この酸素欠陥の働きを利用した新規固
体電解質を得ることが可能となる。
INDUSTRIAL APPLICABILITY As described above, the present invention relates to a fluorite-type ZrO 2 type solid electrolyte having a large amount of oxygen defects, and it is possible to obtain a new solid electrolyte utilizing the function of this oxygen defect. Becomes

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1) {(Y1-aaxZr1-x}O2-y (1) (式中、Mは1価のアルカリ金属又はMg若しくはBa
を表し、a、x及びyは0.30<a<0.67、0.
12<x<0.35及び0.078<y<0.41を満
たす実数を表す。)で表される欠陥ホタル石型固体電解
質。
1. A following general formula (1) {(Y 1- a M a) x Zr 1-x} O 2-y (1) ( wherein, M represents a monovalent alkali metal or Mg or Ba
Where a, x and y are 0.30 <a <0.67, 0.
Represents a real number that satisfies 12 <x <0.35 and 0.078 <y <0.41. ) Fluorite type solid electrolyte represented by.
【請求項2】 下記一般式(2) {(Y1-aax(Zr1-bb1-x}O2-y (2) (式中、M、Nは1価のアルカリ金属又はMg若しくは
Baを表し、M≠N。a、x、b及びyは0.30<a
<0.67、0.16<x<0.27、0<b<0.5
及び0.18<y<0.87を満たす実数を表す。)で
表される欠陥ホタル石型固体電解質。
Wherein the following formula (2) {(Y 1- a M a) x (Zr 1-b N b) 1-x} O 2-y (2) ( wherein, M, N is a monovalent Alkali metal or Mg or Ba, M ≠ N, a, x, b and y are 0.30 <a
<0.67, 0.16 <x <0.27, 0 <b <0.5
And a real number satisfying 0.18 <y <0.87. ) Fluorite type solid electrolyte represented by.
JP00629295A 1995-01-19 1995-01-19 Fluorite-type zirconia-based solid electrolyte Expired - Fee Related JP3760475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00629295A JP3760475B2 (en) 1995-01-19 1995-01-19 Fluorite-type zirconia-based solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00629295A JP3760475B2 (en) 1995-01-19 1995-01-19 Fluorite-type zirconia-based solid electrolyte

Publications (2)

Publication Number Publication Date
JPH08198670A true JPH08198670A (en) 1996-08-06
JP3760475B2 JP3760475B2 (en) 2006-03-29

Family

ID=11634314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00629295A Expired - Fee Related JP3760475B2 (en) 1995-01-19 1995-01-19 Fluorite-type zirconia-based solid electrolyte

Country Status (1)

Country Link
JP (1) JP3760475B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1029837A3 (en) * 1999-02-17 2000-09-20 Matsushita Electric Industrial Co., Ltd. Mixed ionic conductor and device using the same
JP2007197315A (en) * 1999-02-17 2007-08-09 Matsushita Electric Ind Co Ltd Mixed ion conductor and device using the same
WO2016103649A1 (en) * 2014-12-23 2016-06-30 Sharp Kabushiki Kaisha Layered oxide materials for batteries

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1029837A3 (en) * 1999-02-17 2000-09-20 Matsushita Electric Industrial Co., Ltd. Mixed ionic conductor and device using the same
EP1281694A1 (en) * 1999-02-17 2003-02-05 Matsushita Electric Industrial Co., Ltd. Mixed ionic conductor and device using the same
EP1284249A1 (en) * 1999-02-17 2003-02-19 Matsushita Electric Industrial Co., Ltd. Mixed ionic conductor and device using the same
US6528195B1 (en) 1999-02-17 2003-03-04 Matsushita Electric Industrial Co., Ltd. Mixed ionic conductor and device using the same
JP2007197315A (en) * 1999-02-17 2007-08-09 Matsushita Electric Ind Co Ltd Mixed ion conductor and device using the same
US7491461B2 (en) 1999-02-17 2009-02-17 Panasonic Corporation Mixed ionic conductor and device using the same
JP4608506B2 (en) * 1999-02-17 2011-01-12 パナソニック株式会社 Mixed ionic conductor and device using the same
WO2016103649A1 (en) * 2014-12-23 2016-06-30 Sharp Kabushiki Kaisha Layered oxide materials for batteries

Also Published As

Publication number Publication date
JP3760475B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
JP6016329B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
WO2017018217A1 (en) Garnet-type oxide sintered body and method for producing same
Langer et al. Synthesis of single phase cubic Al-substituted Li7La3Zr2O12 by solid state lithiation of mixed hydroxides
WO2018139373A1 (en) Method for producing electrode laminate for all-solid-state lithium batteries, electrode composite body for all-solid-state lithium batteries and method for producing same
JP6663685B2 (en) Lithium ion conductive ceramic sintered body and lithium battery
JP2013149493A (en) Lithium ion-conducting material
JP6982613B2 (en) Lithium-ion conductive ceramic materials, lithium-ion conductive ceramics, and lithium batteries
CN113508484A (en) Sulfide solid electrolyte
JP6456241B2 (en) Method for producing lithium-containing composite oxide powder
WO2014038521A1 (en) Solid electrolyte ceramic material
JP6737930B1 (en) Positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery, and method for producing positive-electrode active material for all-solid-state lithium-ion battery
JP7113904B2 (en) Polycrystalline ceramic solid and method for producing polycrystalline ceramic solid
US20060073390A1 (en) Solid electrolyte
JPH08198670A (en) Fluorite type zirconia based solid electrolite
JP6037897B2 (en) Precursor dispersion for lithium ion conductive oxide
US5492871A (en) Superstoichiometric MgAl2 O4 spinel and use thereof, and process for the synthesis thereof
JP2023093557A (en) Titanium-niobium composite oxide and electrode and lithium-ion secondary battery using the same
JP2006134871A (en) Solid electrolyte
JPH092873A (en) Fluorite-type ceria-based solid electrolyte
JP6579318B2 (en) Ion conductive ceramics and method for producing the same
JPH10154523A (en) Defective fluorite type ceria system solid electrolyte
JP3323923B2 (en) Zirconia polycrystalline thin film and method for producing the same
JP6069397B2 (en) Method for producing positive electrode active material for lithium ion battery
JP2007026874A (en) Zirconia-based solid electrolyte and solid oxide fuel cell using this
TW202343868A (en) oxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees