JPH08197612A - Manufacture of thermoplastic resin film - Google Patents

Manufacture of thermoplastic resin film

Info

Publication number
JPH08197612A
JPH08197612A JP7034546A JP3454695A JPH08197612A JP H08197612 A JPH08197612 A JP H08197612A JP 7034546 A JP7034546 A JP 7034546A JP 3454695 A JP3454695 A JP 3454695A JP H08197612 A JPH08197612 A JP H08197612A
Authority
JP
Japan
Prior art keywords
temperature
film
thermoplastic resin
die
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7034546A
Other languages
Japanese (ja)
Other versions
JP3070821B2 (en
Inventor
Kenji Tsunashima
研二 綱島
Katsuya Toyoda
勝也 豊田
Katsutoshi Miyagawa
克俊 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7034546A priority Critical patent/JP3070821B2/en
Publication of JPH08197612A publication Critical patent/JPH08197612A/en
Application granted granted Critical
Publication of JP3070821B2 publication Critical patent/JP3070821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE: To manufacture a thermoplastic resin film having small surface roughness by a method wherein a thermoplastic resin is melted with heat and sent to a flat die, expanded in the cross direction, cooled to a specified temperature, and an extruded melting sheet is stuck to a cooling drum having water liquid film so as to cool and solidify. CONSTITUTION: A thermoplastic resin such as a polyolefin resin and a polyamide resin is melted by heating to a melting completion temperature or higher and sent to a flat die. The resin is expanded in the cross direction at a manifold in the die. Thereafter, the thermoplastic resin is cooled to the melting completion temperature or lower and a down temperature crystallization start temperature or higher at a land of the die and extruded so as to form a melting sheet. The melting sheet is stuck to a cooling drum having water liquid film, cooled, and solidified so as to obtain a desired film. At this time, electrostatic charge is preferably applied to the melting sheet, and the thickness of the water liquid film is set to 0.01-1μm. A surface roughness Ra of a thermoplastic resin film obtained in this way is made to be 1μm or below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性樹脂フイルム
の製造方法に関するものである。更に詳しくは、押出成
形時に起因するフイルムの厚みむらが小さく、しかも、
表面粗さの小さい熱可塑性樹脂フイルムの製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoplastic resin film. More specifically, the uneven thickness of the film caused by extrusion molding is small, and
The present invention relates to a method for producing a thermoplastic resin film having a small surface roughness.

【0002】[0002]

【従来の技術】フイルムの厚みむらの生じる原因は種々
あるが、特に10Hz以下の厚みむら、すなわち、その
厚みむらの波形をフーリエ解析したときの定期的に表わ
れる周期が10Hz以下の厚みむらは、ダイとドラム間
の溶融樹脂の膜振動に起因することが大きいために、高
粘度のポリマーを用いたり、風などの振動原因を取り除
いたりしてきたが、その効果は不充分であった。そこ
で、溶融した熱可塑性樹脂を融解終了温度Tme未満、
降温結晶化温度Tcb以上に冷却して、溶融樹脂の剛性
を上げることにより該溶融樹脂の膜振動に起因する厚み
むらを小さくしようとする提案(いわゆる過冷却押出
法)がなされてきた(例えば、特願平6−70789号
など)。
2. Description of the Related Art There are various causes of uneven thickness of a film. Especially, uneven thickness of 10 Hz or less, that is, a thickness irregularity of 10 Hz or less that appears periodically when Fourier analysis of the waveform of the uneven thickness is performed. Since it is largely due to the film vibration of the molten resin between the die and the drum, a high-viscosity polymer has been used or the cause of vibration such as wind has been removed, but the effect was insufficient. Therefore, the melted thermoplastic resin is melted below the melting end temperature Tme,
Proposals have been made (so-called supercooling extrusion method) to reduce the thickness unevenness due to film vibration of the molten resin by increasing the rigidity of the molten resin by cooling to a temperature lowering crystallization temperature Tcb or higher (for example, Japanese Patent Application No. 6-70789).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
過冷却押出法は、確かに10Hz以下の厚みむらを小さ
くする効果は大きいものの、得られたフイルムの表面が
粗れるという欠点を有していた。そこで本発明は、10
Hz以下の厚みむらを小さくし、しかもフイルム表面粗
さの小さい熱可塑性樹脂フイルムの押出成形方法を提供
することを目的とする。
However, although the above-described supercooling extrusion method has a great effect of reducing the thickness unevenness of 10 Hz or less, it has a drawback that the surface of the obtained film is rough. . Therefore, the present invention is 10
It is an object of the present invention to provide an extrusion molding method for a thermoplastic resin film having a reduced thickness unevenness of Hz or less and having a small film surface roughness.

【0004】[0004]

【課題を解決するための手段】この目的に沿う本発明の
熱可塑性樹脂フイルムの製造方法は、熱可塑性樹脂を融
解終了温度Tme以上に加熱溶融してフラットダイに送
り込み、該ダイ内のマニホールド部で幅方向に拡大した
のち、該ダイのランド部において該熱可塑性樹脂を融解
終了温度Tme未満、降温結晶化開始温度Tcb以上に
冷却して押出された溶融シートを、水の液膜を有した冷
却ドラムに密着冷却固化させることを特徴とするものか
らなる。
According to the method for producing a thermoplastic resin film of the present invention which meets this object, a thermoplastic resin is heated and melted to a melting end temperature Tme or higher and fed into a flat die, and a manifold portion in the die is melted. In the land portion of the die, the thermoplastic resin was cooled to a temperature below the melting end temperature Tme and to a temperature falling crystallization start temperature Tcb or more, and the extruded molten sheet had a water film. It is characterized in that it is closely adhered to a cooling drum to be solidified by cooling.

【0005】以下本発明を詳細に説明する。本発明にお
ける熱可塑性樹脂としては、ポリエチレン、ポリプロピ
レン、ポリメチルペンテンなどのポリオレフィン樹脂、
ナイロン6、ナイロン66などのポリアミド樹脂、ポリ
エチレンテレフタレート、ポリブチレンテレフタレー
ト、ポリエチレン−2,6−ナフタレート、ポリ−1,
4−シクロヘキサンジメチレンテレフタレートなどのポ
リエステル樹脂、その他、ポリアセタール樹脂、ポリフ
ェニレンスルフィド樹脂などを用いることができる。ま
た、これらの樹脂はホモ樹脂であってもよく、結晶性が
損なわれない範囲で共重合またはブレンドであってもよ
い。また、これらの樹脂の中に、公知の各種添加剤、例
えば、酸化防止剤、帯電防止剤、結晶核剤、無機粒子が
添加されていてもよい。
The present invention will be described in detail below. As the thermoplastic resin in the present invention, polyethylene, polypropylene, polyolefin resin such as polymethylpentene,
Polyamide resins such as nylon 6 and nylon 66, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, poly-1,
A polyester resin such as 4-cyclohexanedimethylene terephthalate, a polyacetal resin, a polyphenylene sulfide resin, or the like can be used. Further, these resins may be homo resins, or may be copolymerized or blended within a range not impairing crystallinity. In addition, various known additives such as antioxidants, antistatic agents, crystal nucleating agents, and inorganic particles may be added to these resins.

【0006】本発明における融解終了温度(Tme)、
降温結晶化開始温度(Tcb)はDSCによって決定す
ることができる。DSCとは熱分析で通常用いられる示
差走査熱量測定法のことであり、物質の融解、結晶化、
相転移、熱分解等の状態変化に伴う吸熱、発熱を測定す
る方法である。DSCにて熱可塑性樹脂の昇温時の融解
温度、降温時の結晶化温度を測定する場合、公知の方法
を用いることができるが、ここで注意する点は測定時の
昇温、冷却速度である。例えば、融解温度を測定する場
合、昇温速度が高すぎると融解温度は高温側にずれてし
まう。逆に昇温速度が低すぎると、融解温度は低温側に
ずれてしまう。実際の押出条件を選定する上で、好適な
昇降温速度としては、通常10〜30℃/分である。本
発明においては、20℃/分を採用した。
The melting end temperature (Tme) in the present invention,
The temperature falling crystallization onset temperature (Tcb) can be determined by DSC. DSC is a differential scanning calorimetry method usually used in thermal analysis, and includes melting, crystallization, and
It is a method of measuring endothermic and exothermic heat associated with state changes such as phase transition and thermal decomposition. A known method can be used to measure the melting temperature of the thermoplastic resin at the time of temperature increase and the crystallization temperature at the time of temperature decrease by DSC, but the point to note here is the temperature increase and cooling rate during the measurement. is there. For example, when measuring the melting temperature, the melting temperature shifts to the high temperature side if the rate of temperature rise is too high. On the contrary, if the heating rate is too low, the melting temperature will shift to the low temperature side. In selecting the actual extrusion conditions, a suitable temperature raising / lowering rate is usually 10 to 30 ° C./min. In the present invention, 20 ° C./min is adopted.

【0007】本発明においては、熱可塑性樹脂はDSC
の融解時の吸熱ピークの終了温度(Tme)以上に加熱
して溶融状態にする必要がある。この工程は通常、押出
機内で行われる。樹脂温度が融解時の吸熱ピークの開始
温度(Tmb)以下であれば樹脂は流動性がほとんどな
く、通常の押出機であれば、押出すことができない。ま
た、樹脂温度がTmbよりも高くてもTme未満であれ
ば一部、未溶融の樹脂が残るため、そのままではフィル
タの目詰まり、成形後のフイルムの異物欠点等が生じる
ため好ましくない。従って樹脂の加熱溶融は未溶融のな
い完全な溶融状態にするためにTme以上、好ましくは
(Tme+10℃)以上の温度で行う必要がある。
In the present invention, the thermoplastic resin is DSC.
It is necessary to heat it to a temperature above the end temperature (Tme) of the endothermic peak at the time of melting to bring it into a molten state. This step is usually done in an extruder. If the resin temperature is equal to or lower than the start temperature (Tmb) of the endothermic peak at the time of melting, the resin has almost no fluidity and cannot be extruded by an ordinary extruder. Further, if the resin temperature is higher than Tmb but lower than Tme, unmelted resin remains in part, so that clogging of the filter and foreign matter defects of the film after molding occur as it is, which is not preferable. Therefore, it is necessary to heat and melt the resin at a temperature of Tme or higher, preferably (Tme + 10 ° C.) or higher in order to obtain a completely molten state without unmelting.

【0008】本発明におけるフラットダイとしては、特
に限定はされないが、例えば、澤田慶司著「プラスチッ
クの押出成形とその応用」(誠文堂新光社)に説明され
ているような、内部に円筒状の溝(マニホルド)を有す
るマニホールドダイ(Tダイとも言う)、魚の尾のよう
な形状をしたフィッシュテールダイ、その中間の形状を
したコートハンガーダイのいずれでもよい。フラットダ
イは、通常、溶融樹脂を幅方向に広げるダイホッパと呼
ばれる部分と、樹脂を幅方向に拡げた後、目的の形状に
成形する最終部分であり、一定のスリット間隙を有する
平行部分であるランド部と呼ばれる部分から構成され
る。樹脂はこのランド部を通過した直後に大気に解放さ
れ、冷却ドラム上に押し出される。この際、シート状の
溶融樹脂に静電気を印加してドラム上に密着急冷固化す
る方法、たとえば特公昭37−6142号等に記載され
ている方法が好ましく用いられる。
The flat die in the present invention is not particularly limited, but for example, as described in "Plastic extrusion molding and its application" by Keiji Sawada (Seibundo Shinkosha), it has a cylindrical shape inside. Any of a manifold die having a groove (manifold) (also referred to as a T-die), a fish tail die having a shape like a fish tail, and a coat hanger die having an intermediate shape may be used. The flat die is usually a portion called a die hopper that spreads the molten resin in the width direction and a final portion that is formed into a target shape after the resin is spread in the width direction, and is a parallel portion that has a certain slit gap. It is composed of parts called parts. Immediately after passing through the land portion, the resin is released to the atmosphere and extruded onto the cooling drum. At this time, a method of applying static electricity to the sheet-shaped molten resin to bring it into close contact with the surface of the drum for rapid cooling and solidification, for example, the method described in JP-B-37-6142 is preferably used.

【0009】従来の熱可塑性樹脂の押出成形によるフイ
ルムの製造方法では、押出機内において、融点以上に加
熱溶融された樹脂は、フィルタ、ギアポンプ等を連結す
る加熱されたパイプ中を通りダイに送られる。ダイに送
られた樹脂はダイで目的の形状に成形された後、押し出
される。この押出の際の樹脂温度は、通常、融解終了温
度(Tme)以上である。これに対し本発明では、樹脂
は融解終了温度(Tme)未満、降温結晶化開始温度
(Tcb)以上の温度にまで冷却される。この冷却はダ
イのランド部で行われることが必要である。もし、冷却
が樹脂がダイに入る以前に行われると、粘度が上昇し、
流動性の悪化が生じてしまい、場合によっては固化する
ため、押出異常や流れ異常が生じたり、または、押出が
不可能になることもあり、押出機、フィルタ、ギアポン
プに負荷をかけ、変形または寿命の低下を引き起こすの
で好ましくない。また、ダイ中で冷却するする場合でも
ランド部以前(ダイホッパ部)で冷却を行うことは、樹
脂が目的の形に成形される過程であり、温度むら、流れ
異常を生じる原因となり、厚みむらの悪化を引き起こす
ため、好ましくない。特にフラットダイは樹脂の流路長
が幅方向で異なるため、冷却時間の違いから熱履歴が均
一でなくなり、幅方向の温度むらが生じたりするため、
成形性が悪化したり、十分な厚みむら改善効果が得られ
ないばかりか、逆に厚みむらが悪くなる場合もあるため
好ましくない。
In the conventional method for producing a film by extrusion molding of a thermoplastic resin, the resin which is heated and melted at a temperature higher than the melting point in the extruder is sent to a die through a heated pipe connecting a filter, a gear pump and the like. . The resin sent to the die is molded into a desired shape by the die and then extruded. The resin temperature during this extrusion is usually equal to or higher than the melting end temperature (Tme). On the other hand, in the present invention, the resin is cooled to a temperature below the melting end temperature (Tme) and above the temperature falling crystallization start temperature (Tcb). This cooling needs to occur at the land of the die. If the cooling is done before the resin enters the die, the viscosity will increase,
Since the fluidity deteriorates and it solidifies in some cases, it may cause abnormal extrusion or abnormal flow, or it may become impossible to extrude, applying a load to the extruder, filter, or gear pump to cause deformation or deformation. It is not preferable because it causes a decrease in life. Even in the case of cooling in the die, cooling before the land portion (die hopper portion) is a process in which the resin is molded into a desired shape, which causes temperature unevenness and abnormal flow and causes uneven thickness. It is not preferable because it causes deterioration. Especially in the flat die, since the flow path length of the resin is different in the width direction, the heat history is not uniform due to the difference in cooling time, and temperature unevenness in the width direction may occur.
It is not preferable because not only the moldability is deteriorated, a sufficient effect of improving the uneven thickness is not obtained, but also the uneven thickness is deteriorated.

【0010】これに対し、冷却をダイのランド部で行う
ことは、樹脂が幅方向に拡大され、押し出される形状に
成形された後での冷却となり、均一な冷却が可能とな
る。ランド部はダイ中の最も間隙の狭い部分であり、熱
交換効率が高く好適である。また樹脂は、冷却後、すぐ
に押し出されるため、粘度上昇に伴う濾圧上昇、押出異
常や固化による流れ異常も最小限に抑えることができ
る。
On the other hand, when the cooling is performed at the land portion of the die, the cooling is performed after the resin is expanded in the width direction and molded into a shape to be extruded, and uniform cooling is possible. The land portion is a portion having the smallest gap in the die, and is suitable for high heat exchange efficiency. Further, since the resin is extruded immediately after cooling, it is possible to minimize an increase in filtration pressure due to an increase in viscosity, an abnormal extrusion, and an abnormal flow due to solidification.

【0011】本発明において、ランド部での樹脂の冷却
はTme未満、Tcb以上で行う必要がある。高分子樹
脂の場合、溶融状態にある樹脂をTme未満に冷却して
も短時間では固化しない、いわゆる過冷却の液相状態を
保つことができる。しかも、この状態の樹脂は粘度が高
く、ランド部から押出された後のダイと冷却ドラム間の
膜振動や外乱に対して安定であり、厚みむらの小さなフ
イルムを得ることができる。
In the present invention, it is necessary to cool the resin at the land portion at a temperature lower than Tme and higher than Tcb. In the case of the polymer resin, it is possible to maintain a so-called supercooled liquid phase state in which the resin in a molten state is not solidified in a short time even if it is cooled below Tme. Moreover, the resin in this state has a high viscosity, is stable against film vibration and disturbance between the die and the cooling drum after being extruded from the land portion, and a film having a small thickness unevenness can be obtained.

【0012】樹脂を高粘度化するためには、高分子量化
する方法、増粘剤を添加する方法も考えられる。しかし
ながら、これらの方法はもはや違う樹脂となってしまう
ため好ましくない。これに対し、本発明のダイを用いれ
ば、現行のフイルムの製造に用いている樹脂、装置がそ
のまま使え、しかも厚みむらの少ないフイルムが得られ
るという点で優れている。
In order to increase the viscosity of the resin, a method of increasing the molecular weight and a method of adding a thickener can be considered. However, these methods are not preferable because they result in different resins. On the other hand, the use of the die of the present invention is advantageous in that the resin and apparatus used in the production of the existing film can be used as they are, and a film with less uneven thickness can be obtained.

【0013】また、冷却は樹脂の降温結晶化開始温度
(Tcb)以上までにとどめる必要がある。Tcbより
も低い温度になると樹脂は結晶化し始め、押し出された
フイルムの表面荒れ、押出異常、流れむらを生じたり、
経時で固化し、もはや通常の押出機では押出不可能とな
るため好ましくない。本発明においては、ダイのランド
部で樹脂を融点以下まで冷却するわけであるが、その際
に重要なことは、樹脂を決して固化させないということ
である。つまり、高分子の過冷却状態を利用して、融点
以下であるが、液相状態で押し出すことが重要である。
Further, it is necessary to cool the resin to a temperature lower than the crystallization start temperature (Tcb) of the resin. When the temperature becomes lower than Tcb, the resin begins to crystallize, resulting in surface roughness of the extruded film, abnormal extrusion, uneven flow,
It is not preferable because it solidifies over time and can no longer be extruded by a usual extruder. In the present invention, the resin is cooled down to the melting point or less at the land portion of the die. What is important in this case is that the resin is never solidified. In other words, it is important to use the supercooled state of the polymer to extrude it in the liquid state, although it is below the melting point.

【0014】ダイのランド部の冷却手段としては、特に
限定はしないが、例えば、ランド部に冷却のための空孔
を設け、その中に冷媒を通す方法がある。冷媒として
は、空気、または水など各種液体状の冷媒を用いること
ができ、冷媒の温度、流量をコントロールすることによ
って、所望の温度に設定することができる。
The means for cooling the land portion of the die is not particularly limited, but, for example, there is a method in which holes are provided in the land portion for cooling and a coolant is passed through the holes. As the refrigerant, various liquid refrigerants such as air or water can be used, and the desired temperature can be set by controlling the temperature and flow rate of the refrigerant.

【0015】また、本発明においては、ダイのランド部
の入口における樹脂の温度Tin(℃)とダイのランド
部出口における樹脂の温度Tout(℃)の関係が、T
in>Tout+20℃であることが好ましい。すなわ
ち、樹脂をランド部で冷却するわけであるが、その際
に、冷却の過渡状態で押し出されることが好ましいので
ある。過渡状態であることにより、厚みの厚いエッジ近
傍が、比較的温度が高い状態に残され、エッジ部からの
固化を抑えることが可能になる。Tin≦Tout+2
0℃であると、ランド部で樹脂が十分に冷却され、定常
状態となっており、エッジ部も中央部と同温度になって
しまい、エッジ部からの固化現象が生じ易くなる。
In the present invention, the relationship between the resin temperature Tin (° C.) at the die land inlet and the resin temperature Tout (° C.) at the die land outlet is T
It is preferable that in> Tout + 20 ° C. That is, the resin is cooled at the land portion, but at that time, it is preferable that the resin is extruded in a cooling transient state. Due to the transitional state, the vicinity of the thick edge is left in a relatively high temperature state, and solidification from the edge portion can be suppressed. Tin ≦ Tout + 2
When the temperature is 0 ° C., the resin is sufficiently cooled in the land portion and is in a steady state, the edge portion also has the same temperature as the central portion, and the solidification phenomenon from the edge portion easily occurs.

【0016】かくして押し出された溶融シートを、水の
液膜を有したドラム上に密着冷却固化させる。このよう
なキャスト方法は、英国特許第1,140,175号
や、特公昭63−4492号公報などでよく知られてい
る。水の液膜を介在させる方法としては、種々の方法が
あるが、本発明の場合、特に湿気を含んだ空気をその露
点以下に保たれた冷却ドラム表面に吹き付けて結露させ
る方法が、均一性の点、再現性、および薄膜コートなど
の点で好ましい。本発明の場合、液膜の厚さは0.01
〜1μm、好ましくは、0.02〜0.5μmの範囲が
よい。0.01μm未満では空気の噛み込みによるフイ
ルム表面の荒れが大きくなり、逆に、1μmを越えると
溶融シートとドラムとの密着性が大幅に低下し、厚みむ
らの大きいフイルムしか得られないためである。また、
シートが冷却ドラムから剥離されたあとの冷却体表面上
には水滴が残る場合が多いので、この水滴を完全に除去
する必要がある。除去方法としては、空気吹き付け法と
吸引法の併用法が特に好ましい。
The molten sheet thus extruded is closely cooled and solidified on a drum having a liquid film of water. Such a casting method is well known in British Patent No. 1,140,175 and Japanese Patent Publication No. 63-4492. As a method of interposing a liquid film of water, there are various methods, but in the case of the present invention, a method of blowing moisture-containing air onto a cooling drum surface kept below its dew point to cause dew condensation is uniform. Is preferable, in terms of reproducibility and thin film coating. In the case of the present invention, the thickness of the liquid film is 0.01
˜1 μm, preferably 0.02 to 0.5 μm. If it is less than 0.01 μm, the surface of the film becomes rough due to air entrapment. On the other hand, if it exceeds 1 μm, the adhesion between the molten sheet and the drum is significantly reduced, and only a film with large thickness unevenness can be obtained. is there. Also,
Since water drops often remain on the surface of the cooling body after the sheet is peeled from the cooling drum, it is necessary to completely remove the water drops. As a removing method, a combined method of an air blowing method and a suction method is particularly preferable.

【0017】このようにして上記過冷却押出法で押し出
された溶融シートを、水の液膜を有した冷却ドラムに密
着急冷固化することにより、特に10Hz以下の厚みむ
らの小さい、フイルム表面粗さの小さいフイルムとなる
のである。10Hz以下、好ましくは5Hz以下、さら
に好ましくは1Hz以下の厚みむらのないことが最も好
ましいが、たとえ該領域の厚みむらが認められても、実
用範囲内の周波数での全厚みむらの10%以下であるこ
とが好ましい。
The molten sheet extruded by the above-mentioned supercooling extrusion method is brought into close contact with a cooling drum having a liquid film of water to be rapidly cooled and solidified, so that the film surface roughness having a small thickness unevenness of 10 Hz or less can be obtained. It is a small film. It is most preferable that there be no thickness unevenness of 10 Hz or less, preferably 5 Hz or less, and more preferably 1 Hz or less, but even if thickness unevenness in the region is recognized, it is 10% or less of the total thickness unevenness at a frequency within the practical range. Is preferred.

【0018】また、本発明フイルムの表面粗さRa(中
心線平均粗さ)は、1μm以下、好ましくは0.3μm
以下、更に好ましくは0.1μm以下であるのがよい。
該Raが1μmを越えると、磁気テープ用フイルムの場
合、ドロップアウトが起こり易くなり、また感熱転写リ
ボン用の場合、解像度や印字性に問題が起こり易くな
り、さらに、コンデンサー絶縁用フイルムの場合、絶縁
破壊電圧がばらついたり、その値が小さくなるという欠
点が顕在化するためである。
The surface roughness Ra (center line average roughness) of the film of the present invention is 1 μm or less, preferably 0.3 μm.
Hereafter, it is more preferably 0.1 μm or less.
If the Ra exceeds 1 μm, dropouts are likely to occur in the case of a magnetic tape film, and resolution and printability problems are likely to occur in the case of a thermal transfer ribbon. Furthermore, in the case of a capacitor insulating film, This is because defects such as variations in the dielectric breakdown voltage and reductions in the value become apparent.

【0019】本発明のフイルムの用途は、特に限定はし
ないが、特に磁気テープ用途、感熱転写リボン用途、電
気絶縁用コンデンサー用途などのフイルム厚みの薄い用
途に適している。
The use of the film of the present invention is not particularly limited, but it is particularly suitable for use in thin film thickness such as magnetic tape use, heat-sensitive transfer ribbon use, and electric insulating capacitor use.

【0020】[物性値の評価方法] (1)熱特性 マックサイエンス社製示差走査熱量計DSC3100を
用いて、サンプル5mgを300℃で5分間溶融保持
し、液体窒素で急冷固化した後、室温から昇温速度20
℃/分で昇温した。この時観測される融解吸熱ピークの
開始温度をTmb、ピーク温度をTm、ピーク終了温度
をTmeとした。また、サンプル5mgを300℃で5
分間溶融保持した後、降温速度20℃/分で降温した。
この際観測される降温結晶化発熱ピークの開始温度をT
cb、ピーク温度をTc、ピーク終了温度をTceとし
た。
[Evaluation Method of Physical Properties] (1) Thermal Properties Using a differential scanning calorimeter DSC3100 manufactured by Mac Science Co., 5 mg of a sample was melt-held at 300 ° C. for 5 minutes, rapidly cooled and solidified with liquid nitrogen, and then from room temperature. Temperature rising rate 20
The temperature was raised at ° C / min. The start temperature of the melting endothermic peak observed at this time was Tmb, the peak temperature was Tm, and the peak end temperature was Tme. In addition, 5 mg of the sample at 5 ° C
After melting and holding for 1 minute, the temperature was decreased at a temperature decreasing rate of 20 ° C./minute.
At this time, the starting temperature of the temperature falling crystallization exothermic peak observed is
cb, the peak temperature was Tc, and the peak end temperature was Tce.

【0021】(2)フイルムの厚みむら アンリツ(株)社製フイルムシックネステスタKG60
1Aおよび電子マイクロメータK306を用い、縦方向
に30mm幅、10m長、好ましくは20m長にサンプ
リングしたフイルムを連続的に厚みを測定する。測定長
での厚み最大値Tmax(μm)、最小値Tmin(μ
m)から、 R=Tmax−Tmin を求め、Rと10m長の平均厚みTave(μm)から 厚みむら(%)=R/Tave×100 として求めた。このときの厚みむらが、3%未満のもの
を「○」、3%以上10%未満のものを「△」、10%
以上のものを「×」とした。また、10Hz以下の厚み
むら、すなわち、その厚みむらの波形をフーリエ解析し
たときの、定期的に表われる異常厚みの周期が10Hz
以下の厚みむらが全厚みむらの5%未満のものを
「○」、5%以上の15%未満のものを「△」、15%
以上のものを「×」とした。なお、10Hz以下の厚み
むらを求めるのには、上記フーリエ解析したときの波数
が3(1/m)以下のものを採用してもよい。
(2) Thickness unevenness of film Anritsu Corporation film thickest tester KG60
Using 1A and an electronic micrometer K306, the thickness of a film sampled in the longitudinal direction of 30 mm width, 10 m length, preferably 20 m length is continuously measured. Maximum thickness Tmax (μm) and minimum Tmin (μ
R = Tmax-Tmin was calculated from m), and thickness unevenness (%) = R / Tave × 100 was calculated from R and the average thickness Tave (μm) of 10 m length. At this time, the thickness unevenness is less than 3% is "○", 3% or more and less than 10% is "△", 10%
The above was designated as "x". In addition, the thickness irregularity of 10 Hz or less, that is, the period of the abnormal thickness that appears regularly when the waveform of the thickness irregularity is Fourier analyzed is 10 Hz.
The following thickness unevenness is less than 5% of the total thickness unevenness "○", 5% or more less than 15% is "△", 15%
The above was designated as "x". In order to obtain the thickness unevenness of 10 Hz or less, a wave number of 3 (1 / m) or less in the Fourier analysis may be adopted.

【0022】(3)表面粗さRa JIS−B−601−1976に従い、粗さ曲線からそ
の中心線の方向に測定長さdの部分を抜きとり、この抜
きとり部分の中心線をX軸、縦倍率の方向をY軸とし、
粗さ曲線をY=f(X)で表したとき、次式で与えられ
るRaをμm単位で表したものである。 Ra=1/d∫0 d |f(x)|dx このRaが0.1μm未満のものを「◎」、0.1μm
以上0.3μm未満のものを「○」、0.3μm以上1
μm未満のものを「△」、1μm以上のものを「×」と
した。
(3) Surface Roughness Ra According to JIS-B-601-1976, a portion having a measurement length d is extracted from the roughness curve in the direction of the center line, and the center line of this extracted portion is the X axis, The direction of vertical magnification is the Y-axis,
When the roughness curve is represented by Y = f (X), Ra given by the following equation is represented in μm unit. Ra = 1 / d∫ 0 d | f (x) | dx "⊚" when the Ra is less than 0.1 μm, 0.1 μm
"○" when the thickness is 0.3 μm or more and 0.3 μm or more
Those having a size of less than μm were evaluated as “Δ”, and those having a size of not less than μm were evaluated as “x”.

【0023】(4)樹脂温度 ダイ内の樹脂温度は、測定したい個所に棒状の熱電対を
挿入する孔を開けて、熱電対を挿入し、樹脂の漏れを防
ぐシールを施して測定した。また、ダイのランド部出口
の温度は、吐出される樹脂の温度を接触温度計で直接測
定した。
(4) Resin Temperature The resin temperature in the die was measured by forming a hole into which a rod-shaped thermocouple was inserted at the desired measurement point, inserting the thermocouple, and providing a seal to prevent leakage of the resin. The temperature at the outlet of the land of the die was obtained by directly measuring the temperature of the discharged resin with a contact thermometer.

【0024】(5)水の膜厚 (株)チノー社製、IR−300赤外線式微量水分計を
用いて測定する。検量線は、ドラム上の水を吸い取り紙
に吸収させ、その重量を上記水分計の目盛りに対してプ
ロットし、求めた。
(5) Water film thickness Measured using an IR-300 infrared trace moisture meter manufactured by CHINO CORPORATION. The calibration curve was obtained by absorbing the water on the drum with a paper absorbent and plotting the weight thereof on the scale of the moisture meter.

【0025】[0025]

【実施例】本発明の効果をより理解し易くするために、
以下に実施例、比較例で説明する。 実施例1 熱可塑性樹脂として、固有粘度0.65のポリエチレン
テレフタレート(滑り剤として直径0.25μm真円球
のコロイダルシリカを0.34重量%添加)を用いた。
DSCを用いて熱特性を測定したところ、Tmb:24
0℃、Tm:255℃、Tme:268℃、Tcb:2
03℃、Tc:188℃、Tce:174℃であった。
このポリエチレンテレフタレートのペレットを180℃
で3時間真空乾燥して90mm径の押出機に供給し、2
90℃で溶融させ、Tダイに供給した。Tダイは、幅1
250mm、リップ間隙1mm、ランド長150mmの
ものを用いた。本Tダイのランド部には、幅方向に直径
7mmの空孔を複数あけ、ここに水を流すことにより冷
却可能な構造としてある。ダイホッパ部の温度は290
℃とし、ランド部には、25℃の冷却水を5kg/分に
て通水して冷却した。この状態で樹脂を溶融押出し、ダ
イから押し出された該溶融フイルムに、静電荷を印加し
ながら、結露法により厚さ0.07μmの水膜を形成さ
せた、表面温度15℃の冷却ドラム上で密着冷却固化さ
せ、キャストフイルムを得た。なお、ダイマニホールド
入口の温度は290℃、ランド部入口の樹脂温度は28
9℃、ランド部出口での樹脂温度は245℃であった。
さらに、該キャストフイルムを95℃に保たれた長手方
向ロール延伸機にて4倍延伸し、続いて100℃に保た
れた幅方向延伸機にて4倍延伸し、さらに205℃で幅
方向に3%のリラックス熱処理をした。得られたフイル
ムの厚みは8μmであり、このフイルム特性を、表1に
示した。
EXAMPLES In order to make the effects of the present invention easier to understand,
Examples and comparative examples will be described below. Example 1 As a thermoplastic resin, polyethylene terephthalate having an intrinsic viscosity of 0.65 (0.34% by weight of colloidal silica having a true spherical shape of 0.25 μm in diameter as a slipping agent was added) was used.
When thermal characteristics were measured using DSC, Tmb: 24
0 ° C, Tm: 255 ° C, Tme: 268 ° C, Tcb: 2
It was 03 degreeC, Tc: 188 degreeC, Tce: 174 degreeC.
The polyethylene terephthalate pellets are heated to 180 ° C.
Vacuum dry for 3 hours and feed to an extruder with a diameter of 90 mm.
It was melted at 90 ° C. and supplied to a T die. T-die has a width of 1
The one having a size of 250 mm, a lip gap of 1 mm and a land length of 150 mm was used. The land portion of the T-die has a structure in which a plurality of holes having a diameter of 7 mm are opened in the width direction and water is allowed to flow therethrough to cool the land. The temperature of the die hopper is 290
C. and cooling water of 25.degree. C. was passed through the land portion at 5 kg / min to cool the land portion. The resin was melt-extruded in this state, and a water film having a thickness of 0.07 μm was formed by a condensation method on the molten film extruded from the die while applying an electrostatic charge. The film was closely cooled and solidified to obtain a cast film. The die manifold inlet temperature was 290 ° C and the land inlet resin temperature was 28 ° C.
The resin temperature at the outlet of the land portion was 9 ° C. and 245 ° C.
Further, the cast film was stretched 4 times by a longitudinal roll stretching machine kept at 95 ° C., then stretched 4 times by a width direction stretching machine kept at 100 ° C., and further in the width direction at 205 ° C. A 3% relaxing heat treatment was performed. The thickness of the obtained film was 8 μm, and the film characteristics are shown in Table 1.

【0026】比較例1 実施例1で用いた結露法により厚さ0.07μmの水膜
を形成させた、表面温度15℃の冷却ドラムの代わり
に、乾いた雰囲気下で表面温度25℃に保たれたドラム
を用いる他は、実施例1と全く同様にして厚さ8μmの
二軸延伸フイルムを得た。
Comparative Example 1 Instead of a cooling drum having a surface temperature of 15 ° C. on which a water film having a thickness of 0.07 μm was formed by the condensation method used in Example 1, the surface temperature was kept at 25 ° C. in a dry atmosphere. A biaxially stretched film having a thickness of 8 μm was obtained in exactly the same manner as in Example 1 except that the dripping drum was used.

【0027】比較例2 実施例1で用いた過冷却押出法を用いずに、すなわち、
ダイランド部に冷却水を流さずに、ダイランド部の温度
が、ダイマニホールド部と同じ温度290℃になるよう
にする以外は、実施例1と全く同様にして厚さ8μmの
二軸延伸フイルムを得た。
Comparative Example 2 Without using the supercooled extrusion method used in Example 1, that is,
A biaxially stretched film having a thickness of 8 μm was obtained in exactly the same manner as in Example 1 except that the temperature of the die land portion was set to the same temperature as the die manifold portion, 290 ° C., without flowing cooling water to the die land portion. It was

【0028】比較例3 比較例2で用いた通常押出法と、比較例1で用いた通常
静電印加キャストを用いる他は、実施例1と全く同様に
して、厚さ8μmの二軸延伸フイルムを得た。
Comparative Example 3 A biaxially stretched film having a thickness of 8 μm was prepared in the same manner as in Example 1 except that the normal extrusion method used in Comparative Example 2 and the normal electrostatic cast used in Comparative Example 1 were used. Got

【0029】表1に示すように、過冷却押出法と、水膜
を有したドラム上でキャストする方法とを組み合わせる
ことにより、厚みむらの小さい、表面粗さの小さいフイ
ルムが得られることがわかる。
As shown in Table 1, by combining the supercooling extrusion method and the method of casting on a drum having a water film, it can be seen that a film having a small thickness unevenness and a small surface roughness can be obtained. .

【0030】[0030]

【表1】 [Table 1]

【0031】実施例2 実施例1の口金ランド部出口の温度を245℃から26
0℃に変える他は、実施例1と全く同様にして、厚さ8
μmの二軸延伸フイルムを得た。
Example 2 The temperature at the outlet of the die land portion of Example 1 was changed from 245 ° C to 26 ° C.
Except for changing the temperature to 0 ° C., the thickness is 8
A biaxially stretched film of μm was obtained.

【0032】実施例3、比較例4 実施例1のドラム上の水膜の厚さを0.07μmから
0.6μmおよび1.2μmに変える他は、実施例1と
全く同様にして、厚さ8μmの二軸延伸フイルムを得
た。得られたフイルムの各特性を表2に示す。
Example 3, Comparative Example 4 The thickness of the water film on the drum in Example 1 was changed to 0.0 μm from 0.6 μm and 1.2 μm in the same manner as in Example 1 except that the thickness was changed. An 8 μm biaxially stretched film was obtained. Table 2 shows each characteristic of the obtained film.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】本発明方法によれば、熱可塑性樹脂を融
解終了温度Tme以上に加熱溶融してフラットダイに送
り込み、該フラットダイ内のマニホールド部で幅方向に
拡大したのち、該ダイのランド部において該熱可塑性樹
脂を融解終了温度Tme未満、降温結晶化開始温度Tc
b以上に冷却して押出(過冷却押出法)された溶融シー
トを水の液膜を有した冷却ドラムに密着冷却固化させる
ことにより、次の様な効果を生じる。 (1)厚みむら、特に10Hz以下の厚みむら、すなわ
ち、溶融シートがドラムとダイとの間での膜振動に起因
する厚みむらを解消するか、小さくできる。 (2)しかも、得られたフイルムの表面粗さRaは小さ
く、平滑なフイルムとなる。 (3)熱分解物などに起因する口金スジが発生しにく
く、生産性に優れている。 (4)オリゴマー含有量の少ないフイルムになる。 (5)特に磁気テープ用途、感熱転写リボン用途、電気
絶縁用コンデンサー用途などのフイルム厚みが25μm
以下程度の薄い用途に適している。
According to the method of the present invention, a thermoplastic resin is heated and melted at a melting end temperature Tme or higher and fed into a flat die, and is expanded in the width direction at a manifold portion in the flat die, and then the land of the die is expanded. In the part, the thermoplastic resin is melted at a temperature lower than Tme, and a temperature falling crystallization start temperature Tc.
The following effects are produced by bringing the molten sheet extruded by cooling to b or higher (supercooling extrusion method) into close contact with a cooling drum having a water film of water to solidify by cooling. (1) It is possible to eliminate or reduce the thickness unevenness, particularly the thickness unevenness of 10 Hz or less, that is, the thickness unevenness caused by the film vibration between the molten sheet and the drum. (2) Moreover, the surface roughness Ra of the obtained film is small, and the film becomes smooth. (3) A die streak due to a thermal decomposition product is unlikely to occur, and the productivity is excellent. (4) The film has a low oligomer content. (5) The film thickness is 25 μm, especially for magnetic tape applications, heat-sensitive transfer ribbon applications, and electrical insulation capacitors.
Suitable for thin applications below.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂を融解終了温度Tme以上
に加熱溶融してフラットダイに送り込み、該ダイ内のマ
ニホールド部で幅方向に拡大したのち、該ダイのランド
部において該熱可塑性樹脂を融解終了温度Tme未満、
降温結晶化開始温度Tcb以上に冷却して押出された溶
融シートを、水の液膜を有した冷却ドラムに密着冷却固
化させることを特徴とする熱可塑性樹脂フイルムの製造
方法。
1. A thermoplastic resin is melted by heating to a melting end temperature Tme or higher and fed into a flat die, expanded in the width direction at a manifold portion in the die, and then melted at the land portion of the die. Less than the end temperature Tme,
A method for producing a thermoplastic resin film, characterized in that a molten sheet extruded after being cooled to a temperature falling crystallization start temperature Tcb or higher is adhered to a cooling drum having a liquid film of water to be cooled and solidified.
【請求項2】 前記溶融シートに静電荷を印加する、請
求項1の熱可塑性樹脂フイルムの製造方法。
2. The method for producing a thermoplastic resin film according to claim 1, wherein an electrostatic charge is applied to the molten sheet.
【請求項3】 前記水の液膜の厚みが0.01〜1μm
である、請求項1又は2の熱可塑性樹脂フイルムの製造
方法。
3. The liquid film of water has a thickness of 0.01 to 1 μm.
The method for producing a thermoplastic resin film according to claim 1 or 2.
【請求項4】 熱可塑性樹脂フイルムの表面粗さRaが
1μm以下である、請求項1ないし3のいずれかに記載
の熱可塑性樹脂フイルムの製造方法。
4. The method for producing a thermoplastic resin film according to claim 1, wherein the surface roughness Ra of the thermoplastic resin film is 1 μm or less.
JP7034546A 1995-01-30 1995-01-30 Method for producing thermoplastic resin film Expired - Fee Related JP3070821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7034546A JP3070821B2 (en) 1995-01-30 1995-01-30 Method for producing thermoplastic resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7034546A JP3070821B2 (en) 1995-01-30 1995-01-30 Method for producing thermoplastic resin film

Publications (2)

Publication Number Publication Date
JPH08197612A true JPH08197612A (en) 1996-08-06
JP3070821B2 JP3070821B2 (en) 2000-07-31

Family

ID=12417315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7034546A Expired - Fee Related JP3070821B2 (en) 1995-01-30 1995-01-30 Method for producing thermoplastic resin film

Country Status (1)

Country Link
JP (1) JP3070821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002328A1 (en) * 1997-07-09 1999-01-21 Toray Industries, Inc. Method of producing thermoplastic resin film and apparatus for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002328A1 (en) * 1997-07-09 1999-01-21 Toray Industries, Inc. Method of producing thermoplastic resin film and apparatus for producing the same
US6221301B1 (en) 1997-07-09 2001-04-24 Toray Industries, Inc. Method of producing thermoplastic resin films and apparatus for producing the same

Also Published As

Publication number Publication date
JP3070821B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
JP5130495B2 (en) Polypropylene-based laminated film and package using the same
JPH0247031A (en) Manufacture of microporous film
JPH11105131A (en) Manufacture of simultaneously biaxially oriented film
JP3070821B2 (en) Method for producing thermoplastic resin film
JP3006751B2 (en) Thermoplastic resin film having excellent thickness uniformity and method for producing the same
US5654394A (en) Thermoplastic resin film
JP2871501B2 (en) Extrusion molding method of thermoplastic resin film
JP3562086B2 (en) Flat die for extrusion of thermoplastic resin and method for producing sheet-like material
JP4641673B2 (en) Method for producing polyamide film
JPH08197607A (en) Manufacture of thermoplastic resin film
JP3070823B2 (en) Method for producing thermoplastic resin film
JPH11216759A (en) Manufacture of thermoplastic resin film
JPH09254254A (en) Thermoplastic resin film and its production
JPH11207815A (en) Production of thermoplastic resin film
JPH11254501A (en) Manufacture of thermoplastic resin film
US5242648A (en) Method for preparing biaxially stretched polyether ether ketone film
JPH09141736A (en) Biaxially stretched polyester film and production thereof
JP7287240B2 (en) film roll
JPH04101827A (en) Manufacture of biaxially oriented polyether ether ketone film
JP4258901B2 (en) Thermoplastic resin sheet and extrusion method and production method thereof
JPH11129327A (en) Biaxially drawn film
JP2001170987A (en) Thermoplastic resin film and method for producing the film
JPH06254959A (en) Biaxially stretched polyester film for mold lubrication
EP0008825B1 (en) Production of polyamide material sheet
JPH0752232A (en) Manufacture of ultrathin polyolefin film and sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees