JPH08197083A - Method for controlling intermittently-aerated activated sludge process - Google Patents

Method for controlling intermittently-aerated activated sludge process

Info

Publication number
JPH08197083A
JPH08197083A JP7010265A JP1026595A JPH08197083A JP H08197083 A JPH08197083 A JP H08197083A JP 7010265 A JP7010265 A JP 7010265A JP 1026595 A JP1026595 A JP 1026595A JP H08197083 A JPH08197083 A JP H08197083A
Authority
JP
Japan
Prior art keywords
orp
aeration
tank
value
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7010265A
Other languages
Japanese (ja)
Other versions
JP3260574B2 (en
Inventor
Kazuyuki Tsumura
和志 津村
Koji Yamamoto
康次 山本
Yutaka Mori
豊 森
Yasunari Sasaki
康成 佐々木
Akiko Ogura
明子 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Unitika Ltd
Original Assignee
Fuji Electric Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Unitika Ltd filed Critical Fuji Electric Co Ltd
Priority to JP01026595A priority Critical patent/JP3260574B2/en
Publication of JPH08197083A publication Critical patent/JPH08197083A/en
Application granted granted Critical
Publication of JP3260574B2 publication Critical patent/JP3260574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: To prevent the lowering of the phosphorus removal rate in a two-tank intermittent aeration method by adjusting the set detecting time of a first ORP (oxidation-reduction potential) crooked point of a succeeding cycle based on the absolute value of the value measured by a first ORP meter when one cycle of treating stage is finished. CONSTITUTION: As for the measured ORP value sent from a first ORP meter 6a, the absolute value of the measured ORP value when one cycle of treating stage is finished is calculated by a controller 9. The absoulte value of the measured ORP value is preset for the absolute value. When the absolute value of the measured ORP value in the preceding treating stage is larger than the set absolute value, the discharge of phosphorus is judged to be increased, and the set detecting time of the first ORP crooked point of the succeeding cycle is prolonged. Conversely, when the discharge is judged to be decreased, the detecting time of the ORP crooked point is shortened. Consequently, nitrogen and phosphorus are stably removed even when the load is widely fluctuated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水や生活排水を生物
学的に処理する方法であり、特に排水中の窒素およびリ
ンを除去するプロセスの制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for biologically treating sewage and domestic wastewater, and more particularly to a method for controlling a process for removing nitrogen and phosphorus in wastewater.

【0002】[0002]

【従来の技術】下水や生活排水の処理は有機物除去が主
体であり、活性汚泥法に代表される生物学的処理法が一
般に用いられてきた。しかし近年になって、湖沼等の閉
鎖性水域では富栄養化が大きな問題となり、この原因と
なる窒素、リンの除去が重要となってきた。そのため、
有機物に加えて窒素、リンを除去できる処理法が活性汚
泥法の改良法として開発されてきており、代表的な方法
としてA2 O法(嫌気−無酸素−好気法)、回分式活性
汚泥法、間欠曝気式活性汚泥法(以下、間欠曝気法と略
称する)等が挙げられる。これらの方法は、微生物が好
気条件、嫌気条件に交互におかれ有機物、窒素、リンの
除去が行なわれる。
2. Description of the Related Art Sewage and domestic wastewater are mainly treated to remove organic substances, and a biological treatment method represented by an activated sludge method has been generally used. However, in recent years, eutrophication has become a major problem in closed water areas such as lakes and marshes, and the removal of nitrogen and phosphorus, which cause this, has become important. for that reason,
A treatment method capable of removing nitrogen and phosphorus in addition to organic substances has been developed as an improved method of the activated sludge method. Typical methods include the A 2 O method (anaerobic-anoxic-aerobic method) and batch activated sludge. Method, intermittent aeration type activated sludge method (hereinafter, abbreviated as intermittent aeration method) and the like. In these methods, microorganisms are alternately subjected to aerobic and anaerobic conditions to remove organic matter, nitrogen and phosphorus.

【0003】ここで、窒素、リンの除去を目的とする下
水処理について、その原理を簡単に述べる。下水中の有
機物は活性汚泥を構成する微生物の食物となり分解除去
される。窒素は好気性の条件下で、硝化菌の働きにより
NH4 −N(アンモニア性窒素)がNO3 −N(硝酸性
窒素)に酸化され、次いで嫌気性の条件下で脱窒菌の働
きによりNO3 −NがN2 (窒素ガス)に還元されて除
去される。硝化、脱窒の関係を整理すると次のようにな
る。
Here, the principle of sewage treatment for the purpose of removing nitrogen and phosphorus will be briefly described. Organic matter in the sewage is decomposed and removed as food for the microorganisms that make up the activated sludge. Nitrogen oxidizes NH 4 —N (ammoniacal nitrogen) to NO 3 —N (nitrate nitrogen) under the aerobic condition by the action of nitrifying bacteria, and then NO under the anaerobic condition by the action of denitrifying bacteria. 3- N is reduced to N 2 (nitrogen gas) and removed. The relationship between nitrification and denitrification can be summarized as follows.

【0004】 反応 窒素の形態変化 反応条件 微生物 硝化反応 アンモニア性窒素→硝酸性窒素 好気性(溶存酸素あり) 硝化菌 脱窒反応 硝酸性窒素 →窒素ガス 嫌気性(溶存酸素なし) 脱窒菌 リンは曝気槽の運転条件を好気性、嫌気性に交互に変え
ることにより、細胞内にリンを多量に蓄積する性質を持
つ活性汚泥をつくりだし、この活性汚泥を利用して除去
する。即ち、この活性汚泥は嫌気性条件でリンを放出
し、好気性条件でリンを吸収する性質があるため、好気
性条件でリンの吸収を行ない、リンを多量に吸収した活
性汚泥を余剰汚泥として処理系から除くことにより脱リ
ンを行なう。この関係は下記のように整理することがで
きる。
Reaction nitrogen morphological change Reaction conditions Microorganism Nitrification reaction Ammonium nitrogen → Nitrate nitrogen Aerobic (with dissolved oxygen) Nitrifying bacteria Denitrification reaction Nitric acid nitrogen → Nitrogen gas Anaerobic (without dissolved oxygen) Denitrifying bacteria Phosphorus is aerated By alternately changing the operating conditions of the tank to aerobic or anaerobic, activated sludge having a property of accumulating a large amount of phosphorus in the cell is produced, and the activated sludge is removed by utilizing this activated sludge. That is, since this activated sludge has the property of releasing phosphorus under anaerobic conditions and absorbing phosphorus under aerobic conditions, it absorbs phosphorus under aerobic conditions, and the activated sludge that has absorbed a large amount of phosphorus is treated as excess sludge. Dephosphorization is performed by removing it from the processing system. This relationship can be organized as follows.

【0005】 反応 槽内のリン濃度 反応条件 リン除去 リンの放出 増加 嫌気性(溶存酸素なし) ─ リンの吸収 減少 好気性(溶存酸素あり) 活性汚泥抜き出し このように窒素、リンの除去においては、好気性、嫌気
性の2条件が不可欠であるが、厳密には脱窒のための嫌
気性条件と脱リンのための嫌気性条件とは異なってお
り、間欠曝気法では脱窒が終了し槽内にNO3 −Nに起
因する酸素分子がなくなった後で活性汚泥からのリンの
放出が起こり、これが次の曝気工程におけるリンの吸収
につながっている。
Phosphorus concentration in the reaction tank Reaction conditions Phosphorus removal Phosphorus release Increase Anaerobic (No dissolved oxygen) -Phosphorus absorption Decrease Aerobic (Dissolved oxygen) Activated sludge extraction In this way, in the removal of nitrogen and phosphorus, Two conditions, aerobic and anaerobic, are indispensable. Strictly speaking, the anaerobic condition for denitrification and the anaerobic condition for dephosphorization are different. Release of phosphorus from the activated sludge occurs after the elimination of oxygen molecules due to NO 3 —N in the interior, which leads to absorption of phosphorus in the subsequent aeration step.

【0006】間欠曝気法は好気条件、嫌気条件の比率を
時間的に設定でき、しかも既存の施設にも比較的容易に
適用できることから注目されている方法であり、本発明
者らは従来の間欠曝気法を大幅に改善する方法として、
排水が流入する第1曝気槽と、この第1曝気槽に直列に
連結した第2曝気槽の二つの曝気槽を用い、その後段に
最終沈澱池を設けた装置と、その制御方法(以下、2槽
式間欠曝気法とする)を特開平6─55190号公報に
より開示している。
The intermittent aeration method is a method that has attracted attention because the ratio of aerobic conditions and anaerobic conditions can be set in terms of time and can be applied to existing facilities relatively easily. As a method to greatly improve the intermittent aeration method,
An apparatus equipped with a first aeration tank into which waste water flows and a second aeration tank connected in series to the first aeration tank, and a final settling tank at the subsequent stage, and its control method (hereinafter A two-tank intermittent aeration method is disclosed in JP-A-6-55190.

【0007】以下にその概要を図4と図5(a),
(b)を参照して説明する。図4は特開平6─5519
0号公報に記載の間欠曝気法及び制御システムを説明す
るための要部構成を示す模式図であり、図4では、水お
よび空気の経路を実線の矢印、制御信号系統を点線の矢
印で表わしてあり、この装置は主として、下水1が流入
し活性汚泥によって有機物、窒素、リンが除去される第
1曝気槽2aと第2曝気槽2b、重力沈降によって活性
汚泥が分離され処理水3が得られる最終沈澱池4、沈降
した活性汚泥を第1曝気槽2aに返送する返送汚泥ポン
プ5から構成してある。第1曝気槽2aと第2曝気槽2
bの容積比はおよそ1:1であり、処理水の滞留時間の
合計は最終沈澱池4も含めて16〜32時間である。制
御系は第1曝気槽2a内の酸化還元電位を測定する第1
のORP計6a、第2曝気槽2b内の酸化還元電位を測
定する第2のORP計6b、およびこれらORPの値に
基づいて第1曝気ブロワ7a、第2曝気ブロワ7b、第
1攪拌ポンプ8a、第2攪拌ポンプ8bへの制御信号を
出力する制御装置9からなっている。
The outline is shown in FIGS. 4 and 5 (a) below.
This will be described with reference to (b). FIG. 4 shows JP-A-6-5519.
It is a schematic diagram which shows the principal part structure for demonstrating the intermittent aeration method and control system of Unexamined-Japanese-Patent No. 0, and the path of water and air is represented by the solid line arrow in FIG. 4, and a control signal system is represented by the dotted line arrow. This device is mainly equipped with a first aeration tank 2a and a second aeration tank 2b in which sewage 1 flows in and organic matter, nitrogen and phosphorus are removed by activated sludge, and activated sludge is separated by gravity sedimentation to obtain treated water 3. It comprises a final settling tank 4 and a returning sludge pump 5 for returning the settled activated sludge to the first aeration tank 2a. First aeration tank 2a and second aeration tank 2
The volume ratio of b is about 1: 1, and the total residence time of the treated water including the final settling tank 4 is 16 to 32 hours. The control system measures the redox potential in the first aeration tank 2a.
ORP meter 6a, a second ORP meter 6b for measuring the redox potential in the second aeration tank 2b, and a first aeration blower 7a, a second aeration blower 7b, and a first stirring pump 8a based on these ORP values. , And a control device 9 for outputting a control signal to the second stirring pump 8b.

【0008】このような装置系における運転制御の基本
的な考えかたは、排水が流入する第1曝気槽2aと、こ
の第1曝気槽に直列に連結した第2曝気槽2bの二つの
曝気槽を用い、第1曝気槽2aで硝化、脱窒を一定時間
に制御することにより、リン放出時間を確保し、第2曝
気槽2bでは硝化、脱窒を行なうとともに、リン放出を
防止しつつ制御の1周期を所定の時間に維持し、高い窒
素、リン除去率を得ることにある。具体的な方法を、制
御に伴うORPの変化とともに、図5(a)、(b)を
併用参照して説明する。図5(a)、(b)は、制御を
実施中に、任意のタイミングで曝気開始時間を零点とし
て、時間の経過に伴うORPの変化を示したものであ
り、図5(a)は第1曝気槽2aのORP、図5(b)
は第2曝気槽2bのORPのそれぞれ時間経過に対する
関係線図である。
The basic idea of operation control in such an apparatus system is that two aeration tanks, a first aeration tank 2a into which waste water flows and a second aeration tank 2b connected in series to the first aeration tank, are provided. By controlling nitrification and denitrification in the first aeration tank 2a for a certain period of time, the phosphorus release time is secured, and in the second aeration tank 2b, nitrification and denitrification are performed, and the phosphorus release is controlled while being prevented. It is to maintain one cycle for a predetermined time and obtain a high nitrogen and phosphorus removal rate. A specific method will be described with reference to FIGS. 5A and 5B together with a change in ORP due to control. FIGS. 5 (a) and 5 (b) show changes in ORP with the passage of time, with the aeration start time being a zero point at an arbitrary timing during execution of control, and FIG. 1 ORP of aeration tank 2a, FIG. 5 (b)
[Fig. 3] is a relational diagram with respect to each time passage of ORP of the second aeration tank 2b.

【0009】はじめに、第1曝気槽2aの制御方法につ
いて述べる。硝化とリン吸収を行なう曝気時間をTe
脱窒時間をTf とし、Te とTf の和である時間Tg
あらかじめ設定した時間Tgsと一致するように、曝気時
間Te を調節する。ここで第1のORP計6aのORP
の変化を見ると、脱窒終了後に屈曲点Aが出現してお
り、屈曲点Aを検出することによって時間Tg を測定
し、TgsとTg の差に基づいて曝気時間Te を調節す
る。その結果、後述のように1周期はほぼTds 時間に
維持されているため、リン放出時間がTds−Tgsとして
確保されることになる。
First, a method of controlling the first aeration tank 2a will be described. The aeration time for nitrification and phosphorus absorption is T e ,
The denitrification time is T f, and the aeration time T e is adjusted so that the time T g, which is the sum of T e and T f , matches the preset time T gs . Here, the ORP of the first ORP total 6a
The bending point A appears after the end of denitrification, the time T g is measured by detecting the bending point A, and the aeration time T e is adjusted based on the difference between T gs and T g. To do. As a result, since one cycle is maintained at about T ds time as described later, the phosphorus release time is secured as T ds −T gs .

【0010】第2曝気槽2bの制御方法は次のとおりで
ある。硝化とリン吸収のための曝気時間をTb 、脱窒が
進行する攪拌時間をTC とし、Tb とTC の和である時
間T d があらかじめ設定した時間Tdsと一致するよう
に、曝気時間Tb を調節し、併せて時間Td 後1周期が
終了したとして、第1曝気槽2a、第2曝気槽2bを同
時に曝気状態に復帰させる。これは、第2のORP系6
bのORPの変化から屈曲点Bを検出して時間Td を測
定し、TdsとTd の差に基づいて曝気時間Tb を調節す
ることにより行なう。この結果、脱窒が終了すると直ち
に曝気状態となるため、第2曝気槽2bにおいてリンが
放出されることなく、高い窒素、リン除去率が得られ
る。
The control method of the second aeration tank 2b is as follows.
is there. The aeration time for nitrification and phosphorus absorption is Tb, Denitrification
The stirring time to progress is TCAnd TbAnd TCWhen is the sum of
Interval T dIs a preset time TdsTo match
Aeration time TbAnd adjust the time TdOne more cycle
Assuming the end, the first aeration tank 2a and the second aeration tank 2b are
Sometimes it returns to aeration. This is the second ORP system 6
The bending point B is detected from the change in ORP of b, and the time TdMeasure
Set, TdsAnd TdAeration time T based on the difference betweenbAdjust
By doing. As a result, as soon as denitrification is completed,
As a result of the aeration, the phosphorus in the second aeration tank 2b
High release rate of nitrogen and phosphorus without being released
It

【0011】[0011]

【発明が解決しようとする課題】しかしながら、生物学
的脱リン法には、なお解決しなければならない次のよう
な問題がある。その一つは、流入原水中の有機物濃度が
低い場合、リン除去率が低下することである。これは、
有機物濃度が低い場合、嫌気工程においてリン放出量が
低下し、その結果好気工程においてリン吸収が不良とな
って起きる現象である。したがって、例えば下水が多量
の雨水を含んでいる場合は、有機物濃度が低下してリン
除去率も低下する現象が発生する。もう一つは、上記の
場合とは逆に、流入原水中の有機物濃度が極端に高い場
合、リン除去率が低下することである。これは、有機物
濃度が極端に高い場合、嫌気工程においてリン放出量が
増加し、その結果好気工程時間内にリンが吸収しきれな
くなって起こる現象である。この方式の制御方法は、既
に述べたように、処理工程の1周期の間に、窒素、リン
の除去工程を配分する運転を行なっているので、通常流
入する下水の有機物負荷変動に対しては対応が可能であ
り、良好な処理水質が得られる。しかし、上記のような
有機物負荷変動が極端に大きい場合は、リン除去率が悪
化することがある。
However, the biological dephosphorization method still has the following problems to be solved. One is that the phosphorus removal rate decreases when the concentration of organic matter in the inflowing raw water is low. this is,
When the organic matter concentration is low, the amount of phosphorus released decreases in the anaerobic process, resulting in poor phosphorus absorption in the aerobic process. Therefore, for example, when the sewage contains a large amount of rainwater, a phenomenon occurs in which the concentration of organic substances decreases and the phosphorus removal rate also decreases. The other is that, contrary to the above case, the phosphorus removal rate decreases when the organic matter concentration in the inflowing raw water is extremely high. This is a phenomenon that occurs when the concentration of organic substances is extremely high, the amount of phosphorus released increases in the anaerobic process, and as a result, phosphorus cannot be completely absorbed within the aerobic process time. As described above, the control method of this system performs the operation of distributing the nitrogen and phosphorus removal steps during one cycle of the treatment step, so that the organic matter load fluctuation of the inflowing sewage is normally prevented. It is possible to deal with it, and good treated water quality can be obtained. However, when the organic load fluctuation is extremely large as described above, the phosphorus removal rate may deteriorate.

【0012】本発明は上述の点に鑑みてなされたもので
あり、その目的はリンの除去率の低下を防止することが
できる2槽式間欠曝気法による下水処理プロセスの制御
方法を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a method for controlling a sewage treatment process by a two-tank type intermittent aeration method capable of preventing a reduction in the removal rate of phosphorus. It is in.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の2槽式間欠曝気法の運転を次のように行
なう。第1の方法は、第1曝気槽に設置した第1のOR
P計の1サイクル終了時点における測定値の絶対値と、
あらかじめ定めたORP値の絶対値との差をとり、その
差に基づいて、次サイクルにおける第1のORP計のO
RP屈曲点検出時間の設定値を変化させる。
In order to solve the above problems, the operation of the two-tank type intermittent aeration method of the present invention is performed as follows. The first method is the first OR installed in the first aeration tank.
The absolute value of the measured value at the end of one cycle of the P meter,
The difference between the predetermined ORP value and the absolute value is calculated, and based on the difference, the O of the first ORP meter in the next cycle is determined.
The set value of the RP bending point detection time is changed.

【0014】第2の方法は、第1曝気槽に設置した第1
のORP計のORP屈曲点検出時のORP値と現在のサ
イクルの終了時点におけるORP値との差(ΔORP)
をとり、そのΔORPと、あらかじめ定めたΔORPと
の差に基づき、次サイクルにおける第1のORP計のO
RP屈曲点検出時間の設定値を変化させる。第3の方法
は、第1曝気槽に設置した第1のORP計の1サイクル
終了時点における測定値の絶対値を求め、その絶対値が
あらかじめ定めた絶対値以下となれば、次サイクルにお
ける第1のORP計のORP屈曲点検出後に、第1曝気
槽に有機物を添加する。
The second method is the first method installed in the first aeration tank.
Difference between the ORP value of the ORP meter at the time of detecting the ORP bending point and the ORP value at the end of the current cycle (ΔORP)
Then, based on the difference between the ΔORP and a predetermined ΔORP, the O of the first ORP meter in the next cycle is taken.
The set value of the RP bending point detection time is changed. The third method is to obtain the absolute value of the measured value of the first ORP meter installed in the first aeration tank at the end of one cycle, and if the absolute value is less than or equal to a predetermined absolute value, After detecting the ORP bending point of the ORP meter of No. 1, an organic substance is added to the first aeration tank.

【0015】第4の方法は、第2の方法と同様にΔOR
Pを求め、ΔORPがあらかじめ定めた値以下のとき、
次サイクルにおける第1のORP計のORP屈曲点検出
後に、第1曝気槽に有機物を添加する。第5の方法は、
第1曝気槽に設置した第1のORP計の1サイクル終了
時点における測定値の絶対値を求め、その絶対値があら
かじめ定めた絶対値の上限値以上または下限値以下のと
き、第2曝気槽にリンと反応して難溶性の化合物をつく
る凝集剤を添加する。
The fourth method, like the second method, is ΔOR.
P is calculated, and when ΔORP is less than or equal to a predetermined value,
After detecting the ORP bending point of the first ORP meter in the next cycle, an organic substance is added to the first aeration tank. The fifth method is
When the absolute value of the measured value at the end of one cycle of the first ORP meter installed in the first aeration tank is obtained, and the absolute value is equal to or more than the upper limit or the lower limit of the predetermined absolute value, the second aeration tank A flocculant that reacts with phosphorus to form a sparingly soluble compound is added to.

【0016】第6の方法は、第2の方法と同様にΔOR
Pを求め、ΔORPがあらかじめ定めた上限値以上また
は下限値以下のとき、第2曝気槽にリンと反応して難溶
性の化合物をつくる凝集剤を添加する。
The sixth method, like the second method, is ΔOR.
When P is determined and ΔORP is equal to or higher than a predetermined upper limit value or lower than a predetermined lower limit value, a flocculant which reacts with phosphorus to form a sparingly soluble compound is added to the second aeration tank.

【0017】[0017]

【作用】本発明の第1の方法は、第1曝気槽に設置した
第1のORP計の1サイクルの終了時点におけるORP
測定値の絶対値に基づき、次サイクルにおける第1曝気
槽の第1のORP屈曲点検出時間の設定値を調節する。
例えば1サイクル終了時点における第1のORP計のO
RP測定値の絶対値が150mVのとき、あらかじめ設
定したORPの絶対値200mVと比較し、その差に応
じて次サイクルにおける第1曝気槽のORP屈曲点検出
時間の設定値を小さくする。また設定したORPの絶対
値より大きい場合は、ORP屈曲点検出時間の設定値を
大きくする。本発明による第1曝気槽の制御は、まず所
定の時間曝気を行った後、撹拌工程に移行するが、この
撹拌工程ではまず脱窒反応が進行し、脱窒反応が終了し
た後、リンの放出が行われる。このリンの放出速度につ
いては、供給される有機物の量によって変動し、有機物
の量が多い場合は速くなり、少ない場合は遅くなる傾向
がある。したがって、有機物供給量が多過ぎる場合はリ
ンの放出量が過大となり、所定の曝気時間ではリンを吸
収できなくなり、リン除去率が低下する。また有機物供
給量が少ない場合はリンの放出量が小さくなり、その結
果リンの吸収も弱くなってリン除去率が低下がする。即
ち、安定したリン除去を行うためには、第1曝気槽にお
けるリンの放出量は適当な量を確保することが重要であ
る。また、ORP計の測定値はリンの放出量を判断する
指標であり、ORP値が低い程リンの放出量は多い。そ
こで上述したように、1サイクル終了時点の第1のOR
P計のORP値の絶対値がその設定値より大きい場合
は、ORP屈曲点検出時間の設定値を大きくすることに
より、リン放出時間を少なくしてリン放出量を抑える。
また、ORP値の絶対値がその設定値より小さい場合
は、ORP屈曲点検出時間の設定値を小さくすることに
より、リン放出時間を多くしてリン放出量を増加させ
る。このように、ORP屈曲点検出時間の設定値を変化
させることによって、リン放出時間を変化させ、適当な
リン放出量を確保する。
The first method of the present invention is the ORP at the end of one cycle of the first ORP meter installed in the first aeration tank.
The set value of the first ORP inflection point detection time of the first aeration tank in the next cycle is adjusted based on the absolute value of the measured value.
For example, the O of the first ORP meter at the end of one cycle
When the absolute value of the RP measured value is 150 mV, it is compared with the preset absolute value of ORP of 200 mV, and the set value of the ORP bending point detection time of the first aeration tank in the next cycle is reduced according to the difference. If it is larger than the set absolute value of ORP, the set value of the ORP bending point detection time is increased. In the control of the first aeration tank according to the present invention, first, aeration is performed for a predetermined time, and then the process proceeds to a stirring process. In this stirring process, first, the denitrification reaction proceeds, and after the denitrification reaction ends, phosphorus is removed. Release is done. The release rate of phosphorus varies depending on the amount of the organic substance supplied, and tends to increase when the amount of the organic substance is large and slow when the amount of the organic substance is small. Therefore, when the supply amount of the organic matter is too large, the release amount of phosphorus becomes excessively large, the phosphorus cannot be absorbed in a predetermined aeration time, and the phosphorus removal rate decreases. Further, when the supply amount of organic matter is small, the release amount of phosphorus becomes small, and as a result, the absorption of phosphorus becomes weak and the phosphorus removal rate decreases. That is, in order to perform stable phosphorus removal, it is important to secure an appropriate amount of phosphorus released in the first aeration tank. Further, the measurement value of the ORP meter is an index for judging the release amount of phosphorus, and the lower the ORP value, the higher the release amount of phosphorus. Therefore, as described above, the first OR at the end of one cycle
When the absolute value of the ORP value of the P meter is larger than the set value, the set value of the ORP inflection point detection time is increased to shorten the phosphorus release time and suppress the phosphorus release amount.
When the absolute value of the ORP value is smaller than the set value, the set value of the ORP inflection point detection time is set to be small to increase the phosphorus release time and increase the phosphorus release amount. In this way, by changing the set value of the ORP inflection point detection time, the phosphorus release time is changed, and an appropriate phosphorus release amount is secured.

【0018】本発明の第2の方法は、第1曝気槽に設置
した第1のORP計の測定値を用いて、次サイクルにお
ける第1曝気槽のORP屈曲点検出時間の設定値を調節
することでは第1の方法とほぼ同様であるが、ORP屈
曲点検出時間の設定値を計算する方法が第1の方法とは
異なる。即ち、第1のORP計のORP屈曲点検出時の
ORP値と、現サイクルの終了時点のORP値との差を
求め、その差に基づいて、ORP屈曲点検出時間の設定
値を変化させる。
In the second method of the present invention, the set value of the ORP bending point detection time of the first aeration tank in the next cycle is adjusted by using the measurement value of the first ORP meter installed in the first aeration tank. This is almost the same as the first method, but the method of calculating the set value of the ORP bending point detection time is different from the first method. That is, the difference between the ORP value at the time of detecting the ORP bending point of the first ORP meter and the ORP value at the end point of the current cycle is obtained, and the set value of the ORP bending point detection time is changed based on the difference.

【0019】本発明の第3の方法は、第1曝気槽に設置
した第1のORP計の1サイクルの終了時点におけるO
RP測定値の絶対値を求め、例えばその値が50mVの
とき、これをあらかじめ定めた絶対値の下限のしきい値
100mVと比較し、しきい値以下と判定して、次のサ
イクルにおける第1のORP計のORP屈曲点検出後
に、第1曝気槽に有機物を添加する。1サイクル終了時
点におけるORP測定値の絶対値が小さい場合には、第
1の方法で述べたように、リンの放出量が少なく、有機
物供給量が不足していると判断することができる。そこ
で、有機物の供給量が不足とならない限界条件のORP
値の絶対値を過去の運転実績から求め、これをしきい値
として設定しておくことにより、そのしきい値以下では
有機物を添加、しきい値以上では不添加と判定すること
ができる 本発明の第4の方法は、第3の方法と基本的には同様で
あるが、異なる点は有機物添加、不添加の判断に、第1
のORP計のORP屈曲点検出時のORP値と現サイク
ルの終了時点のORP値との差を用いることである。
The third method of the present invention is the O 2 at the end of one cycle of the first ORP meter installed in the first aeration tank.
The absolute value of the RP measurement value is obtained. For example, when the value is 50 mV, it is compared with a predetermined lower limit threshold value 100 mV of the absolute value, and it is determined that it is less than or equal to the threshold value. After detecting the ORP inflection point of the ORP meter, the organic substance is added to the first aeration tank. When the absolute value of the ORP measurement value at the end of one cycle is small, as described in the first method, it can be determined that the phosphorus release amount is small and the organic substance supply amount is insufficient. Therefore, the ORP of the limit condition that the supply amount of organic substances does not become insufficient
By determining the absolute value of the value from the past operation record and setting it as a threshold value, it is possible to determine that the organic substance is added below the threshold value and not added above the threshold value. The fourth method is basically the same as the third method, except that the first method is the same as the first method.
The difference between the ORP value of the ORP meter at the time of detecting the ORP bending point and the ORP value at the end of the current cycle is used.

【0020】本発明の第5の方法は、第1曝気槽に設置
した第1のORP計の1サイクルの終了時点におけるO
RP測定値の絶対値を求め、例えば、その値が50mV
のとき、これをあらかじめ定めた絶対値の下限のしきい
値100mV、および上限のしきい値300mVと比較
し、下限値以下と判定して、次のサイクルで第2曝気槽
に、リンと反応して難溶性の化合物をつくる凝集剤を添
加する。また上限のしきい値以上の場合も同様である。
1サイクル終了時点におけるORP測定値の絶対値が小
さい場合には、リンの放出量が少なくリン除去率が低下
すると判断することができ、1サイクル終了時点におけ
るORP測定値の絶対値が大きい場合には、リンの放出
量が過大となりリン除去率が低下すると判断することが
できる。そこで、リン除去が悪化しない限界条件のOR
P値の絶対値をそれぞれ過去の運転実績から求め、これ
をしきい値の上限、下限として設定しておくことにより
上下限のしきい値の範囲外では凝集剤を添加し、上下限
のしきい値の範囲内では凝集剤を添加する必要はないと
判定することができる。
In the fifth method of the present invention, O at the end of one cycle of the first ORP meter installed in the first aeration tank
Obtain the absolute value of the RP measurement value, for example, the value is 50 mV
At this time, this is compared with a predetermined absolute lower limit threshold value of 100 mV and an upper limit threshold value of 300 mV, and it is determined that it is less than or equal to the lower limit value, and reacts with phosphorus in the second aeration tank in the next cycle. Then, a flocculant which forms a sparingly soluble compound is added. The same applies when the value is equal to or higher than the upper limit threshold.
When the absolute value of the ORP measurement value at the end of one cycle is small, it can be determined that the amount of released phosphorus is small and the phosphorus removal rate decreases, and when the absolute value of the ORP measurement value at the end of one cycle is large. It can be judged that the amount of released phosphorus becomes excessive and the phosphorus removal rate decreases. Therefore, the OR of the marginal conditions that does not deteriorate the phosphorus removal
The absolute value of the P value is calculated from the past operation results, and the P value is set as the upper limit and the lower limit of the threshold value. It can be determined that it is not necessary to add a coagulant within the threshold range.

【0021】本発明の第6の方法は、第5の方法と基本
的には同様であるが、異なる点は凝集剤の添加、不添加
の判断に第1のORP計のORP屈曲点検出時のORP
値と現サイクルの終了時点のORP値との差を用いるこ
とである。以上の制御方法によれば、原水の流入負荷変
動のが激しい場合に起こるリン除去率の悪化を防止する
ことができ、安定したリン除去が可能となる。
The sixth method of the present invention is basically the same as the fifth method, except that when the addition or non-addition of the coagulant is determined, the ORP bending point of the first ORP meter is detected. ORP
The difference between the value and the ORP value at the end of the current cycle. According to the above control method, it is possible to prevent the deterioration of the phosphorus removal rate that occurs when the fluctuation of the inflow load of raw water is severe, and it is possible to perform stable phosphorus removal.

【0022】[0022]

【実施例】以下、本発明の実施例を図面を参照して説明
する。まず、本発明の第1の方法について述べる。第1
の方法が適用される2槽式間欠曝気法の装置および制御
システムは、図5に示す模式図と同様の構成であるか
ら、ここでは装置およびORP変化図の図示を省略し、
再び図4,図5を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings. First, the first method of the present invention will be described. First
The device and control system of the two-tank intermittent aeration method to which the method of (3) is applied have the same configuration as the schematic diagram shown in FIG. 5, so the illustration of the device and ORP change diagram is omitted here,
It will be described with reference to FIGS. 4 and 5 again.

【0023】第1の方法は、第1のORP計6aから制
御装置9に送られるORPの測定値について、処理工程
の1サイクル終了時点におけるのORP測定値の絶対値
Oを計算し、このO値に対して、あらかじめORP測定
値の絶対値Os を設定しておき、前回の処理工程におけ
る1サイクル終了時点におけるORP測定値の絶対値を
n-1 として、On-1 >Os のときはリン放出量が増加
すると判断し、次サイクルの図6(a)のA点[以下、
第1のORP屈曲点とする]の検出時間の設定値Tgs
大きくする。On-1 <Os のときはリン放出量が減少す
ると判断し、次工程での第1のORP屈曲点検出時間の
設定値Tgsを小さくする。 具体的に第1のORP屈曲
点検出時間の設定値Tgsを調節する方法は下記(1)式
による。
In the first method, the absolute value O of the ORP measurement value at the end of one cycle of the processing step is calculated for the ORP measurement value sent from the first ORP meter 6a to the control device 9, and this O The absolute value O s of the ORP measurement value is set in advance for the value, and the absolute value of the ORP measurement value at the end of one cycle in the previous processing step is set to O n-1 , and O n-1 > O s. When it is, it is judged that the phosphorus release amount increases, and point A in FIG.
Set as first ORP inflection point] detection time set value T gs is increased. When O n-1 <O s , it is determined that the phosphorus release amount decreases, and the set value T gs of the first ORP bending point detection time in the next step is reduced. Specifically, the method of adjusting the set value T gs of the first ORP bending point detection time is based on the following equation (1).

【0024】 Tgs=Tgs0 +K1 (On-1 −Os ) (1) 但し、 Tgs:次工程における第1のORP屈曲点検
出時間の設定値 K1 :比例定数 On-1 :現工程における1サイクル終了時のORP絶対
値 Os :1サイクル終了時のORP絶対値の設定値 Tgs0 :1サイクル終了時のORP絶対値Os の時の第
1のORP屈曲点検出時間の設定値 Tgsには上限及び、下限の設定時間を設けておき、その
範囲内で変化させる。この演算は制御装置9で行なうこ
とができる。
T gs = T gs0 + K 1 (O n-1 −O s ) (1) where T gs : Set value of first ORP bending point detection time in next process K 1 : Proportional constant O n-1 : ORP absolute value O s at the end of one cycle in the current process: Set value of ORP absolute value at the end of one cycle T gs0 : First ORP inflection point detection time at the ORP absolute value O s at the end of one cycle The setting value T gs of is set with an upper limit and a lower limit setting time, and is changed within that range. This calculation can be performed by the controller 9.

【0025】ここで、第1のORP屈曲点の検出時間の
設定値Tgsを変化させる理由について説明する。既に述
べたように、2槽式間欠曝気法に用いる第1曝気槽2a
では、好気工程にリン吸収が行なわれ、嫌気工程で第1
のORP屈曲点を検出した後、リンの放出が行なわれ
る。一般にリンの放出量は嫌気状態におけるORP値が
低い程多く、高い程少ないことが知られており、例えば
第1曝気槽2aにおいて、最も嫌気状態にある1サイク
ル終了時点でのORP値が通常よりも低く、絶対値にす
ると高い場合、第1曝気槽2aにおけるリン放出量が大
きいと判断することができる。この放出量が大き過ぎる
と、第1曝気槽2aおよび第2曝気槽2bの好気工程の
時間内では、放出したリンを完全に吸収しきれなくな
り、処理水中にリンが残存し、処理水質が悪化する。そ
こで、第1曝気槽2aのORP屈曲点検出時間の設定値
を大きくすることにより、リンの放出時間を短くし放出
量を抑える。このとき、窒素の除去に配分される時間が
長くなるので、窒素除去に対しても効率的である。
Here, the reason why the set value T gs of the detection time of the first ORP bending point is changed will be described. As described above, the first aeration tank 2a used in the two-tank type intermittent aeration method
Then, phosphorus absorption is performed in the aerobic process and the first in the anaerobic process.
After detecting the ORP inflection point of, the release of phosphorus is performed. In general, it is known that the lower the ORP value in the anaerobic state is, the higher the phosphorus release amount is, and the higher the ORP value is, the lower the ORP value is. If it is also low and the absolute value is high, it can be determined that the phosphorus release amount in the first aeration tank 2a is large. If this amount of release is too large, the released phosphorus cannot be completely absorbed within the time of the aerobic process of the first aeration tank 2a and the second aeration tank 2b, and phosphorus remains in the treated water, resulting in a treated water quality. Getting worse. Therefore, by increasing the set value of the ORP bending point detection time of the first aeration tank 2a, the phosphorus release time is shortened and the release amount is suppressed. At this time, the time allotted to the removal of nitrogen becomes long, so that the removal of nitrogen is also efficient.

【0026】これとは逆に、1サイクル終了時点のOR
P値が通常よりも高く、絶対値にすると低い場合、第1
曝気槽2aにおけるリン放出量が少ないと判断すること
ができる。このような場合、好気工程におけるリンの吸
収が不良となり、処理水質が悪化する。そこで、第1曝
気槽2aの第1のORP屈曲点の検出時間の設定値を小
さくすることにより、リンの放出時間を大きくしてリン
放出量を増加させ、リン吸収が不良となるのを防止す
る。この場合、第1曝気槽2aの第1のORP屈曲点の
検出時間の設定値を小さくするので、窒素除去に費やす
時間が少なくなるが、一般にこのような現象は原水の有
機物負荷が低い場合に発生し、このときには窒素負荷も
低いので、この操作により窒素除去率が低下することは
ない。
On the contrary, the OR at the end of one cycle
If the P value is higher than normal and lower in absolute value, the first
It can be determined that the amount of phosphorus released in the aeration tank 2a is small. In such a case, absorption of phosphorus in the aerobic process becomes poor, and the quality of treated water deteriorates. Therefore, by decreasing the set value of the detection time of the first ORP inflection point of the first aeration tank 2a, the release time of phosphorus is increased and the amount of phosphorus release is increased to prevent poor phosphorus absorption. To do. In this case, since the set value of the detection time of the first ORP inflection point of the first aeration tank 2a is made small, the time spent for nitrogen removal is reduced, but generally, such a phenomenon occurs when the organic load of raw water is low. Since this occurs, the nitrogen load is also low at this time, so the nitrogen removal rate does not decrease due to this operation.

【0027】したがって、あらかじめ、平均的な負荷条
件での1サイクル終了時点のORP絶対値及び、第1の
ORP屈曲点検出時間の設定値を決めておけば、測定し
た第1のORP計のORP値に対応した第1曝気槽2a
のORP屈曲点検出時間の設定値を決定することがで
き、結果的に安定した窒素、リン除去が可能となる。ま
た、ORP値の絶対値に替えて、ORP値そのものを用
いてもよく、これは単に数値的な扱いを変えたのみであ
り、これまで説明した方法と同様に取り扱うことができ
る。
Therefore, if the ORP absolute value at the end of one cycle under the average load condition and the set value of the first ORP bending point detection time are determined in advance, the measured ORP of the first ORP meter is determined. First aeration tank 2a corresponding to the value
The setting value of the ORP inflection point detection time can be determined, and as a result, stable nitrogen and phosphorus removal can be achieved. Also, the ORP value itself may be used instead of the absolute value of the ORP value, and this is merely a numerical treatment that can be handled in the same manner as the methods described above.

【0028】次に本発明の第2の方法を説明する。第2
の方法は、基本的に第1の方法と同様であり、第1のO
RP屈曲点検出時間の設定値の計算に用いる指標が異な
るのみであるから、この点についてのみ説明する。第2
の方法では、第1のORP計6aから制御装置9に送ら
れるORPの測定値について、現在の処理サイクルの第
1のORP屈曲点を検出した時点のORP値と、現サイ
クル終了時点のORP値との差(ΔORP)を計算し、
このΔORPを利用して、次サイクルの第1のORP屈
曲点検出時間の設定値を調節することにより行なわれ
る。
Next, the second method of the present invention will be described. Second
Is basically the same as the first method, and the first O
Only the index used for the calculation of the set value of the RP bending point detection time is different, and therefore only this point will be described. Second
In the method described above, regarding the ORP measurement value sent from the first ORP meter 6a to the control device 9, the ORP value at the time when the first ORP inflection point of the current processing cycle is detected and the ORP value at the end of the current cycle. And the difference (ΔORP) with
This ΔORP is used to adjust the set value of the first ORP bending point detection time in the next cycle.

【0029】具体的に第1のORP屈曲点検出時間の設
定値Tgsを調節する方法は下記(2)式による。 Tgs=Tgs1 +K2 (ΔORPn-1 −ΔORPs ) (2) 但し、Tgs:次工程における第1のORP屈曲点検出時
間の設定値 K2 :比例定数 ΔORPn-1 :現工程における屈曲点検出時点のORP
値とサイクル終了時のORP値との差 ΔORPs :屈曲点検出時点のORP値とサイクル終了
時のORP値との差の設定値 Tgs1 :ΔORPs のときの第1のORP屈曲点検出時
間の設定値 Tgsには上限及び、下限の設定時間を設けておき、その
範囲内で変化させる。この演算は制御装置9で行なう。
Specifically, the method of adjusting the set value T gs of the first ORP bending point detection time is based on the following equation (2). T gs = T gs1 + K 2 (ΔORP n-1 −ΔORP s ) (2) where T gs : set value of first ORP bending point detection time in next process K 2 : proportional constant ΔORP n-1 : current process At the time of detection of bending point in
Value and the ORP value at the end of the cycle ΔORP s : Set value of the difference between the ORP value at the time of detecting the inflection point and the ORP value at the end of the cycle T gs1 : The first ORP inflection point detection time at the time of ΔORP s The setting value T gs of is set with an upper limit and a lower limit setting time, and is changed within that range. This calculation is performed by the controller 9.

【0030】即ち、ΔORPが通常より大きい場合、リ
ン放出量が大きく、ΔORPが通常より小さい場合、リ
ン放出量が小さくなると判断することができる。図1
は、し尿、食堂排水、石鹸水、水道水、酢酸ナトリウム
等を混合した調製下水を用い、本発明者らが図4に示す
装置により、これまでに行なってきた連続制御実験にお
いて得られたデータから、縦軸にリン放出による第1曝
気槽2aのPO4−P濃度の増加、横軸にΔORPをプ
ロットしたグラフである。図1からΔORPが大きい
程、リンの放出は多く、ΔORPが小さい程、リン放出
が少ないことがわかる。
That is, it can be determined that the phosphorus release amount is large when ΔORP is larger than usual and the phosphorus release amount is small when ΔORP is smaller than usual. FIG.
The data obtained in the continuous control experiments conducted so far by the present inventors using the apparatus shown in FIG. 4 using prepared sewage obtained by mixing human waste, cafeteria drainage, soap water, tap water, sodium acetate, etc. Is a graph in which the vertical axis plots the increase of the PO4-P concentration in the first aeration tank 2a due to phosphorus release, and the horizontal axis plots ΔORP. It can be seen from FIG. 1 that the greater ΔORP is, the more phosphorus is released, and the smaller ΔORP is, the less phosphorus is released.

【0031】次に本発明の第3の方法を説明する。図2
は第3の方法が適用される2槽式間欠曝気法の装置およ
び制御システムの要部構成を示す模式図である。図2の
図4と共通する部分には同一符号を用いてあり、矢印線
の扱いも図4と同じである。図2において、この装置は
図4に示した装置と基本的に同じであるが、異なる点は
有機物添加ポンプ10と有機物貯留槽11を備えている
ことにある。
Next, the third method of the present invention will be described. Figure 2
[Fig. 3] is a schematic diagram showing a main configuration of a device and a control system of a two-tank type intermittent aeration method to which a third method is applied. 2 that are common to those in FIG. 4 are denoted by the same reference numerals, and the handling of arrow lines is also the same as in FIG. In FIG. 2, this device is basically the same as the device shown in FIG. 4, but is different in that an organic material addition pump 10 and an organic material storage tank 11 are provided.

【0032】第3の方法では、第1のORP計6aから
制御装置9に送られるORPの測定値について、処理工
程の1サイクル終了時点におけるORP測定値の絶対値
Oを計算し、このO値に対して、あらかじめORP測定
値の絶対値の下限値OL を設定しておき、前回の処理工
程における1サイクル終了時点におけるORP測定値の
絶対値をOn-1 として、On-1 <OL となったとき、リ
ン放出量が少なく、有機物の供給量が不足していると判
断し、次のサイクルより、第1のORP計の第1のOR
P屈曲点検出後に、有機物を有機物添加ポンプ10を用
いて第1曝気槽2aに添加する。その添加量は通常の有
機物負荷と、下限値OL のときの有機物負荷を、あらか
じめ実験的に求めておくことにより決定することができ
る。
In the third method, for the ORP measurement value sent from the first ORP meter 6a to the controller 9, the absolute value O of the ORP measurement value at the end of one cycle of the processing step is calculated, and this O value is calculated. On the other hand, the lower limit value O L of the absolute value of the ORP measurement value is set in advance, and the absolute value of the ORP measurement value at the end point of one cycle in the previous processing step is set to O n-1 , and O n-1 < When it becomes O L , it is judged that the phosphorus release amount is small and the supply amount of organic matter is insufficient, and from the next cycle, the first OR of the first ORP meter is determined.
After detecting the P bending point, the organic substance is added to the first aeration tank 2a using the organic substance addition pump 10. The addition amount can be determined by experimentally obtaining the normal organic load and the organic load at the lower limit value O L in advance.

【0033】この演算は制御装置9で行なわれ、判定結
果に基づいて、制御装置9から有機物添加ポンプ10
に、起動の信号が自動的に送られる。添加する有機物と
しては、酢酸や微生物に摂取されやすく、比較的高いリ
ン放出速度が得られる糖類等の生物易分解性有機物をも
ちいるのが好適である。有機物添加の停止は次のように
行なう。あらかじめORP測定値の絶対値の上限値OH
を設定しておき、この上限値を数回連続して超えた時点
で、次の処理サイクルより有機物の添加を停止する。
This calculation is carried out by the controller 9, and based on the result of the judgment, the controller 9 causes the organic substance addition pump 10 to operate.
Then, the start signal is automatically sent. As the organic substance to be added, it is preferable to use biodegradable organic substances such as saccharides that are easily ingested by acetic acid and microorganisms and can obtain a relatively high phosphorus release rate. Stopping the addition of organic substances is performed as follows. Upper limit O H of the absolute value of the advance ORP measurements
Is set, and when the upper limit value is continuously exceeded several times, the addition of the organic substance is stopped from the next processing cycle.

【0034】また第3の方法では、第1曝気槽2a内に
有機物を添加することになるが、有機物は第2曝気槽2
bにおいても分解除去されるので、処理水中の有機物濃
度が高くなることはない。したがって、適切なリン放出
に最低限必要な有機物が供給されているときの1サイク
ル終了時のORP測定値の絶対値を、下限値OL として
あらかじめ実験的に求めておくことにより、1サイクル
終了時のORP測定値の絶対値から有機物注入時期を決
定することができ、結果的にリン除去率の低下を防止す
ることができる。
In the third method, the organic substance is added to the first aeration tank 2a, but the organic substance is added to the second aeration tank 2a.
Since it is also decomposed and removed in b, the organic matter concentration in the treated water does not increase. Therefore, the absolute value of the ORP measurement value at the end of one cycle when the minimum amount of organic substances required for proper phosphorus release is supplied is experimentally determined as the lower limit value O L in advance to complete one cycle. The organic substance injection timing can be determined from the absolute value of the ORP measurement value at that time, and as a result, the reduction of the phosphorus removal rate can be prevented.

【0035】次に本発明の第4の方法を説明する。第4
の方法は、基本的に第3の方法と同様であるが、有機物
の添加、不添加の判断に、現在の処理サイクルのORP
屈曲点検出時点のORP値と、そのサイクル終了時点の
ORP値との差(ΔORP)を用いる点が異なるのみで
ある。またΔORPについては、第2の方法の説明に述
べた通りである。
Next, the fourth method of the present invention will be described. Fourth
The method is basically the same as the third method, but the ORP of the current treatment cycle is used to judge the addition or non-addition of organic substances.
The only difference is that the difference (ΔORP) between the ORP value at the time of detecting the bending point and the ORP value at the end of the cycle is used. Further, ΔORP is as described in the explanation of the second method.

【0036】次に本発明の第5の方法を説明する。図3
は第5の方法が適用される2槽式間欠曝気法の装置およ
び制御システムの要部構成を示す模式図である。図3の
図2と共通する部分には同一符号を用いてあり、矢印線
の扱いも図2と同じである。図3において、この装置は
図2に示した装置と基本的に同じであるが、異なる点は
有機物添加ポンプ10と有機物貯留槽11を設置するこ
となく、凝集剤添加ポンプ12と凝集剤貯留槽13を備
えていることにある。
Next, the fifth method of the present invention will be described. FIG.
[Fig. 6] is a schematic diagram showing a main part configuration of an apparatus and a control system of a two-tank type intermittent aeration method to which a fifth method is applied. 2 that are common to FIG. 2 are denoted by the same reference numerals, and the handling of arrow lines is also the same as in FIG. In FIG. 3, this device is basically the same as the device shown in FIG. 2, except that the coagulant addition pump 12 and the coagulant reservoir tank are installed without the organic substance addition pump 10 and the organic substance reservoir tank 11. 13 is equipped.

【0037】第5の方法では、第1のORP計6aから
制御装置9に送られるORPの測定値について、処理工
程の1サイクルの終了時点におけるORP測定値の絶対
値Oを計算し、このOに対して、あらかじめORP測定
値の絶対値の下限値OL および上限値OH をそれぞれ設
定しておき、前回の処理工程の1サイクル終了時点にお
けるORP測定値の絶対値をOn-1 として、On-1 <O
L またはOn-1 >OHのとき、On-1 <OL の場合は、
有機物供給量が不足してリン放出量が少なくなり、リン
除去が悪化すると判断し、On-1 >OH の場合は、有機
物供給量が過剰でリン放出量が過大となり、リン除去が
悪化すると判断し、次サイクルより、リンと反応して難
溶性の化合物をつくる凝集剤を、凝集剤添加ポンプ12
を用いて凝集剤貯留槽13から第2曝気槽2bに添加
し、リン除去を行なう。
In the fifth method, with respect to the ORP measurement value sent from the first ORP meter 6a to the controller 9, the absolute value O of the ORP measurement value at the end of one cycle of the processing step is calculated, and this O respect, may be set the lower limit value O L and the upper limit value O H of the absolute value of the advance ORP measurements, respectively, the absolute value of the ORP measurements at the end of one cycle time of the previous processing steps as O n-1 , O n-1 <O
When L or O n-1> O H, in the case of O n-1 <O L,
Phosphorus emission is reduced organic material supply amount is insufficient, determines that the phosphorus removal is deteriorated, in the case of O n-1> O H, phosphorous emissions excessive organic matter supply amount becomes excessive, phosphorus removal is worsened Then, from the next cycle, the aggregating agent adding pump 12 is used to change the aggregating agent that reacts with phosphorus to form a sparingly soluble compound.
Is added to the second aeration tank 2b from the flocculant storage tank 13 to remove phosphorus.

【0038】この演算は制御装置9で行なわれ、判定結
果に基づいて起動の信号が制御装置9から凝集剤添加ポ
ンプ12に自動的に送られる。なお、リン除去のために
凝集剤を曝気槽に添加する方法は、一般的に行なわれて
いる同時凝集法として知られているので、凝集剤の添加
量、種類等は同時凝集法の条件に従うのがよい。凝集剤
添加の停止は次のように行なう。処理工程の1サイクル
終了時点におけるORP測定値の絶対値が、数回連続し
て上下限値OH 、OL の間の範囲に復帰した時点で、次
のサイクルより凝集剤の添加を停止する。
This calculation is performed by the controller 9, and a start signal is automatically sent from the controller 9 to the coagulant addition pump 12 based on the determination result. The method of adding the coagulant to the aeration tank for removing phosphorus is known as a commonly-used coagulation method. Therefore, the addition amount, type, etc. of the coagulant follow the conditions of the coagulation method. Is good. Stopping the addition of the coagulant is performed as follows. The absolute value of the ORP measurements at the end of one cycle time of the processing steps, the upper and lower limit values O H consecutively several times, when it returns to a range between O L, and stops the addition of the agent from the next cycle .

【0039】したがって、1サイクル終了時のORP測
定値の絶対値から凝集剤注入時期を決定し、結果的にリ
ン除去率の低下を防止することができる。次に本発明の
第6の方法を説明する。第6の方法は、基本的に第5の
方法と同様であるが、凝集剤の添加、不添加の判断に現
在の処理サイクルのORP屈曲点検出時点のORP値
と、そのサイクル終了時点のORP値との差(ΔOR
P)を用いる点が異なるのみである。またΔORPにつ
いては第2の方法の説明において述べた通りである。
Therefore, the coagulant injection timing can be determined from the absolute value of the ORP measurement value at the end of one cycle, and as a result, the phosphorus removal rate can be prevented from decreasing. Next, a sixth method of the present invention will be described. The sixth method is basically the same as the fifth method, except that the addition or non-addition of the coagulant is determined by determining the ORP value at the ORP inflection point detection point of the current treatment cycle and the ORP value at the end point of the cycle. Difference from the value (ΔOR
The only difference is that P) is used. Further, ΔORP is as described in the explanation of the second method.

【0040】[0040]

【発明の効果】生物学的脱リン法では、流入原水中の有
機物濃度が低い場合、または流入原水中の有機物濃度が
極端に高い場合、リン除去率が低下するという問題があ
るが、2槽式間欠曝気法の制御方法は、処理サイクルの
1周期の間に窒素、リン除去工程を配分するような運転
を行なっているので、通常流入する下水の有機物負荷変
動に対しては、対応が可能で良好な処理水質が得られ
る。しかしながら、上記のような有機物負荷変動が極端
に大きい場合、リン除去が悪化することがある。本発明
の方法は、この問題に対処するためになされたものであ
り、以下の利点を有する。
EFFECT OF THE INVENTION In the biological dephosphorization method, there is a problem that the phosphorus removal rate decreases when the organic matter concentration in the inflowing raw water is low or when the organic matter concentration in the inflowing raw water is extremely high. Since the control method of the intermittent aeration method operates so as to distribute the nitrogen and phosphorus removal steps during one cycle of the treatment cycle, it is possible to cope with the fluctuation of the organic matter load of the sewage that normally flows in. Good quality of treated water can be obtained. However, when the organic load fluctuation as described above is extremely large, the phosphorus removal may be deteriorated. The method of the present invention has been made to address this problem and has the following advantages.

【0041】本発明の第1の方法は、第1曝気槽に設置
した第1のORP計の1サイクル終了時点における測定
値の絶対値に基づいて、第1のORP屈曲点検出時間の
設定値を変化させ、リン放出時間を調節する。第2の方
法では第1のORP計のORP屈曲点検出時のORP測
定値と、現サイクルの終了時点における第1のORP計
のORP測定値との差に基づいて、第1のORP計のO
RP屈曲点検出時間の設定値を変化させ、リン放出時間
を調節する。
The first method of the present invention is based on the absolute value of the measured value at the end of one cycle of the first ORP meter installed in the first aeration tank, and the set value for the first ORP bending point detection time. To regulate the phosphorus release time. In the second method, based on the difference between the ORP measurement value of the first ORP meter at the time of detecting the ORP bending point and the ORP measurement value of the first ORP meter at the end of the current cycle, O
The set value of the RP inflection point detection time is changed to adjust the phosphorus release time.

【0042】この結果、第1、第2の方法では、第1曝
気槽でのリン放出量は常に適当量が確保され、リンの吸
収および放出が良好な状態で進行し、高いリン除去率を
維持することができる。本発明の第3の方法は、第1曝
気槽に設置した第1のORP計の1サイクル終了時点に
おける測定値の絶対値を求め、その絶対値があらかじめ
定めた値以下であれば、有機物供給量が不足と判定し
て、第1のORP計のORP屈曲点を検出した後、第1
曝気槽に有機物を添加する。第4の方法では、第1のO
RP計のORP屈曲点検出時のORP測定値と、現サイ
クルの終了時点における第1のORP計のORP測定値
との差を求め、その差があらかじめ定めた値以下であれ
ば、有機物を添加する。
As a result, in the first and second methods, an appropriate amount of phosphorus release in the first aeration tank is always secured, absorption and release of phosphorus proceed in good condition, and a high phosphorus removal rate is achieved. Can be maintained. In the third method of the present invention, the absolute value of the measured value at the end of one cycle of the first ORP meter installed in the first aeration tank is determined, and if the absolute value is equal to or less than a predetermined value, the organic substance is supplied. After determining that the amount is insufficient and detecting the ORP bending point of the first ORP meter,
Add organics to the aeration tank. In the fourth method, the first O
Obtain the difference between the ORP measurement value of the RP meter at the time of detecting the ORP bending point and the ORP measurement value of the first ORP meter at the end of the current cycle. If the difference is less than a predetermined value, add an organic substance. To do.

【0043】この結果、第3、第4の方法では、リンの
放出に十分な有機物が供給されるため、リンの放出およ
び吸収が良好な状態で進行し、高いリン除去率を維持す
ることができる。本発明の第5の方法は、第1曝気槽に
設置した第1のORP計の1サイクル終了時点における
測定値の絶対値を求め、その絶対値があらかじめ定めた
下限値以下または上限値以上であれば、第2曝気槽にリ
ンと反応して難溶性の化合物をつくる凝集剤を添加す
る。第6の方法では、第1のORP計のORP屈曲点検
出時のORP測定値と、現サイクルの終了時点における
第1のORP計のORP測定値との差を求め、その差が
あらかじめ定めた下限値以下または上限値以上であれ
ば、凝集剤を添加する。
As a result, in the third and fourth methods, since sufficient organic matter is supplied to release phosphorus, the release and absorption of phosphorus proceed in a good state, and a high phosphorus removal rate can be maintained. it can. The fifth method of the present invention is to obtain the absolute value of the measured value at the end of one cycle of the first ORP meter installed in the first aeration tank, and if the absolute value is less than or equal to the predetermined lower limit value or more than the upper limit value. If present, a flocculant that reacts with phosphorus to form a sparingly soluble compound is added to the second aeration tank. In the sixth method, the difference between the ORP measurement value of the first ORP meter at the time of detecting the ORP bending point and the ORP measurement value of the first ORP meter at the end of the current cycle is calculated, and the difference is predetermined. If it is below the lower limit or above the upper limit, a flocculant is added.

【0044】この結果、第5、第6の方法では、凝集剤
の添加によりリンが除去されるため、第1〜第4の方法
と同様に高いリン除去率を維持することができる。以上
の如く、本発明の方法によれば 流入下水の有機物負荷
変動が大きい場合でも、窒素除去に影響を及ぼすことな
く、安定なリン除去が可能となる。
As a result, in the fifth and sixth methods, since phosphorus is removed by adding the coagulant, a high phosphorus removal rate can be maintained as in the first to fourth methods. As described above, according to the method of the present invention, stable phosphorus removal can be performed without affecting the nitrogen removal even when the organic matter load fluctuation of the inflowing sewage is large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるΔORPとリン放出による第1
曝気槽のPO4−P濃度増加の関係を示すグラフ
FIG. 1 is the first of the present invention by ΔORP and phosphorus release.
The graph which shows the relationship of PO4-P concentration increase of the aeration tank

【図2】本発明の第3の制御方法が適用される下水処理
装置の要部構成を示す模式図
FIG. 2 is a schematic diagram showing a main configuration of a sewage treatment apparatus to which a third control method of the present invention is applied.

【図3】本発明の第5の制御方法が適用される下水処理
装置の要部構成を示す模式図
FIG. 3 is a schematic diagram showing a main configuration of a sewage treatment apparatus to which a fifth control method of the present invention is applied.

【図4】本発明者らが出願中の間欠曝気法の制御方法が
適用される下水処理装置の要部構成を示す模式図
FIG. 4 is a schematic diagram showing a configuration of main parts of a sewage treatment apparatus to which the control method of the intermittent aeration method applied by the present inventors is applied.

【図5】本発明者らが出願中の間欠曝気法の制御方法に
おける第1曝気槽、第2曝気槽のORPの変化を示し、
(a)は第1曝気槽のORP、(b)は第2曝気槽のO
RPのそれぞれ時間経過に対する関係線図
FIG. 5 shows changes in ORP of the first aeration tank and the second aeration tank in the control method of the intermittent aeration method which the present inventors applied for,
(A) is ORP of the first aeration tank, (b) is O of the second aeration tank
Relationship diagram of RP with time

【符号の説明】[Explanation of symbols]

1 下水 2a 第1曝気槽 2b 第2曝気槽 3 処理水 4 最終沈殿池 5 返送汚泥ポンプ 6a 第1のORP計 6b 第2のORP計 7a 第1曝気ブロワ 7b 第2曝気ブロワ 8a 第1攪拌ポンプ 8b 第2攪拌ポンプ 9 制御装置 10 酢酸添加ポンプ 11 酢酸貯留槽 12 凝集剤添加ポンプ 13 凝集剤貯留槽 1 Sewage 2a First aeration tank 2b Second aeration tank 3 Treated water 4 Final sedimentation tank 5 Return sludge pump 6a First ORP meter 6b Second ORP meter 7a First aeration blower 7b Second aeration blower 8a First stirring pump 8b Second stirring pump 9 Control device 10 Acetic acid addition pump 11 Acetic acid storage tank 12 Flocculant addition pump 13 Flocculant storage tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 豊 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 佐々木 康成 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 小倉 明子 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yutaka Mori, 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Fuji Electric Co., Ltd. No. 1 in Fuji Electric Co., Ltd. (72) Inventor Akiko Ogura No. 1 Shinden Tanabe, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】第1のORP計を設置した第1曝気槽と、
この第1曝気槽に直列に連結し第2のORP計を設置し
た第2曝気槽を備え、排水を第1曝気槽へ流入させて、
前記二つの曝気槽において曝気を行なう好気状態と、曝
気を停止して攪拌を行なう嫌気状態を交互に繰り返して
処理を行なった後、この処理水を最終沈殿池から放流さ
せ、沈澱汚泥は曝気槽へ返送するとともに余剰汚泥を抜
き出し、排水中の窒素、リンを除去する間欠曝気式活性
汚泥法の制御方法において、処理工程の1サイクル終了
時点における第1のORP計の測定値の絶対値に基づ
き、第1のORP計のORP屈曲点の検出時間の設定値
を調節することを特徴とする間欠曝気式活性汚泥法の制
御方法。
1. A first aeration tank provided with a first ORP meter,
A second aeration tank, which is connected in series to the first aeration tank and has a second ORP meter installed, is provided with the waste water flowing into the first aeration tank,
After performing treatment by alternately repeating the aerobic state where aeration is performed in the two aeration tanks and the anaerobic state where aeration is stopped and stirring is performed, the treated water is discharged from the final settling tank, and the settled sludge is aerated. In the control method of the intermittent aeration type activated sludge method that removes nitrogen and phosphorus in wastewater while returning to the tank and removing excess sludge, the absolute value of the measurement value of the first ORP meter at the end of one cycle of the treatment process Based on the above, a control method for an intermittent aeration type activated sludge method, which comprises adjusting a set value of a detection time of an ORP inflection point of a first ORP meter.
【請求項2】第1のORP計を設置した第1曝気槽と、
この第1曝気槽に直列に連結し第2のORP計を設置し
た第2曝気槽を備え、排水を第1曝気槽へ流入させて、
前記二つの曝気槽において曝気を行なう好気状態と、曝
気を停止して攪拌を行なう嫌気状態を交互に繰り返して
処理を行なった後、この処理水を最終沈殿池から放流さ
せ、沈澱汚泥は曝気槽へ返送するとともに余剰汚泥を抜
き出し、排水中の窒素、リンを除去する間欠曝気式活性
汚泥法の制御方法において、第1のORP計のORP屈
曲点検出時のORP測定値と、現在の処理サイクルの終
了時点における第1のORP計のORP測定値との差に
基づき、第1のORP計のORP屈曲点検出時間の設定
値を調節することを特徴とする間欠曝気式活性汚泥法の
制御方法。
2. A first aeration tank provided with a first ORP meter,
A second aeration tank, which is connected in series to the first aeration tank and has a second ORP meter installed, is provided with the waste water flowing into the first aeration tank,
After performing treatment by alternately repeating the aerobic state where aeration is performed in the two aeration tanks and the anaerobic state where aeration is stopped and stirring is performed, the treated water is discharged from the final settling tank, and the settled sludge is aerated. In the control method of the intermittent aeration type activated sludge method that removes nitrogen and phosphorus in wastewater while returning to the tank and removing excess sludge, the ORP measurement value at the time of detecting the ORP bending point of the first ORP meter and the current treatment Control of the intermittent aeration type activated sludge method characterized by adjusting the set value of the ORP inflection point detection time of the first ORP meter based on the difference from the ORP measured value of the first ORP meter at the end of the cycle Method.
【請求項3】第1のORP計を設置した第1曝気槽と、
この第1曝気槽に直列に連結し第2のORP計を設置し
た第2曝気槽を備え、排水を第1曝気槽へ流入させて、
前記二つの曝気槽において曝気を行なう好気状態と、曝
気を停止して攪拌を行なう嫌気状態を交互に繰り返して
処理を行なった後、この処理水を最終沈殿池から放流さ
せ、沈澱汚泥は曝気槽へ返送するとともに余剰汚泥を抜
き出し、排水中の窒素、リンを除去する間欠曝気式活性
汚泥法の制御方法において、処理工程の1サイクル終了
時点における第1のORP計の測定値の絶対値を求め、
この絶対値があらかじめ定めた値以下のとき第1のOR
P計のORP屈曲点を検出した後、第1曝気槽に有機物
を添加することを特徴とする間欠曝気式活性汚泥法の制
御方法。
3. A first aeration tank provided with a first ORP meter,
A second aeration tank, which is connected in series to the first aeration tank and has a second ORP meter installed, is provided with the waste water flowing into the first aeration tank,
After performing treatment by alternately repeating the aerobic state where aeration is performed in the two aeration tanks and the anaerobic state where aeration is stopped and stirring is performed, the treated water is discharged from the final settling tank, and the settled sludge is aerated. In the control method of the intermittent aeration type activated sludge method of removing nitrogen and phosphorus in wastewater while returning to the tank and removing excess sludge, the absolute value of the measurement value of the first ORP meter at the end of one cycle of the treatment process Seeking,
When this absolute value is less than or equal to a predetermined value, the first OR
A method for controlling an intermittent aeration type activated sludge method, which comprises adding an organic substance to a first aeration tank after detecting an ORP bending point of a P meter.
【請求項4】第1のORP計を設置した第1曝気槽と、
この第1曝気槽に直列に連結し第2のORP計を設置し
た第2曝気槽を備え、排水を第1曝気槽へ流入させて、
前記二つの曝気槽において曝気を行なう好気状態と、曝
気を停止して攪拌を行なう嫌気状態を交互に繰り返して
処理を行なった後、この処理水を最終沈殿池から放流さ
せ、沈澱汚泥は曝気槽へ返送するとともに余剰汚泥を抜
き出し、排水中の窒素、リンを除去する間欠曝気式活性
汚泥法の制御方法において、第1のORP計のORP屈
曲点検出時のORP測定値と、現在の処理サイクルの終
了時点における第1のORP計のORP測定値との差を
求め、その差があらかじめ定めた値以下のとき第1のO
RP計のORP屈曲点を検出した後、第1曝気槽に有機
物を添加することを特徴とする間欠曝気式活性汚泥法の
制御方法。
4. A first aeration tank provided with a first ORP meter,
A second aeration tank, which is connected in series to the first aeration tank and has a second ORP meter installed, is provided with the waste water flowing into the first aeration tank,
After performing treatment by alternately repeating the aerobic state where aeration is performed in the two aeration tanks and the anaerobic state where aeration is stopped and stirring is performed, the treated water is discharged from the final settling tank, and the settled sludge is aerated. In the control method of the intermittent aeration type activated sludge method that removes nitrogen and phosphorus in wastewater while returning to the tank and removing excess sludge, the ORP measurement value at the time of detecting the ORP bending point of the first ORP meter and the current treatment The difference from the ORP measurement value of the first ORP meter at the end of the cycle is calculated, and when the difference is less than or equal to a predetermined value, the first O
A method for controlling an intermittent aeration type activated sludge method, which comprises adding an organic substance to a first aeration tank after detecting an ORP bending point of an RP meter.
【請求項5】第1のORP計を設置した第1曝気槽と、
この第1曝気槽に直列に連結し第2のORP計を設置し
た第2曝気槽を備え、排水を第1曝気槽へ流入させて、
前記二つの曝気槽において曝気を行なう好気状態と、曝
気を停止して攪拌を行なう嫌気状態を交互に繰り返して
処理を行なった後、この処理水を最終沈殿池から放流さ
せ、沈澱汚泥は曝気槽へ返送するとともに余剰汚泥を抜
き出し、排水中の窒素、リンを除去する間欠曝気式活性
汚泥法の制御方法において、処理工程の1サイクル終了
時点における第1のORP計の測定値の絶対値を求め、
その絶対値があらかじめ定めた下限値以下または上限値
以上のとき第2曝気槽にリンと反応して難溶性の化合物
をつくる凝集剤を添加することを特徴とする間欠曝気式
活性汚泥法の制御方法。
5. A first aeration tank equipped with a first ORP meter,
A second aeration tank, which is connected in series to the first aeration tank and has a second ORP meter installed, is provided with the waste water flowing into the first aeration tank,
After performing treatment by alternately repeating the aerobic state where aeration is performed in the two aeration tanks and the anaerobic state where aeration is stopped and stirring is performed, the treated water is discharged from the final settling tank, and the settled sludge is aerated. In the control method of the intermittent aeration type activated sludge method of removing nitrogen and phosphorus in wastewater while returning to the tank and removing excess sludge, the absolute value of the measurement value of the first ORP meter at the end of one cycle of the treatment process Seeking,
Control of the intermittent aeration type activated sludge method characterized by adding a flocculant which reacts with phosphorus to form a sparingly soluble compound in the second aeration tank when the absolute value is below a predetermined lower limit or above a predetermined upper limit Method.
【請求項6】第1のORP計を設置した第1曝気槽と、
この第1曝気槽に直列に連結し第2のORP計を設置し
た第2曝気槽を備え、排水を第1曝気槽へ流入させて、
前記二つの曝気槽において曝気を行なう好気状態と、曝
気を停止して攪拌を行なう嫌気状態を交互に繰り返して
処理を行なった後、この処理水を最終沈殿池から放流さ
せ、沈澱汚泥は曝気槽へ返送するとともに余剰汚泥を抜
き出し、排水中の窒素、リンを除去する間欠曝気式活性
汚泥法の制御方法において、第1のORP計のORP屈
曲点検出時のORP測定値と、現在の処理サイクルの終
了時点における第1のORP計のORP測定値との差を
求め、その差があらかじめ定めた下限値以下または上限
値以上のとき第2曝気槽にリンと反応して難溶性の化合
物をつくる凝集剤を添加することを特徴とする間欠曝気
式活性汚泥法の制御方法。
6. A first aeration tank provided with a first ORP meter,
A second aeration tank, which is connected in series to the first aeration tank and has a second ORP meter installed, is provided with the waste water flowing into the first aeration tank,
After performing treatment by alternately repeating the aerobic state where aeration is performed in the two aeration tanks and the anaerobic state where aeration is stopped and stirring is performed, the treated water is discharged from the final settling tank, and the settled sludge is aerated. In the control method of the intermittent aeration type activated sludge method that removes nitrogen and phosphorus in wastewater while returning to the tank and removing excess sludge, the ORP measurement value at the time of detecting the ORP bending point of the first ORP meter and the current treatment The difference from the ORP measurement value of the first ORP meter at the end of the cycle is determined, and when the difference is less than or equal to a predetermined lower limit value or more than an upper limit value, it reacts with phosphorus in the second aeration tank to form a poorly soluble compound. A control method for an intermittent aeration type activated sludge method, which is characterized by adding a flocculating agent.
JP01026595A 1995-01-26 1995-01-26 Control method of intermittent aeration type activated sludge method Expired - Fee Related JP3260574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01026595A JP3260574B2 (en) 1995-01-26 1995-01-26 Control method of intermittent aeration type activated sludge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01026595A JP3260574B2 (en) 1995-01-26 1995-01-26 Control method of intermittent aeration type activated sludge method

Publications (2)

Publication Number Publication Date
JPH08197083A true JPH08197083A (en) 1996-08-06
JP3260574B2 JP3260574B2 (en) 2002-02-25

Family

ID=11745491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01026595A Expired - Fee Related JP3260574B2 (en) 1995-01-26 1995-01-26 Control method of intermittent aeration type activated sludge method

Country Status (1)

Country Link
JP (1) JP3260574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036514A (en) * 2006-08-04 2008-02-21 Fuji Electric Systems Co Ltd Wastewater treating method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD774568S1 (en) 2015-04-09 2016-12-20 Follett Corporation Freezer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036514A (en) * 2006-08-04 2008-02-21 Fuji Electric Systems Co Ltd Wastewater treating method

Also Published As

Publication number Publication date
JP3260574B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
JP2803941B2 (en) Control method of intermittent aeration type activated sludge method
JP5833791B1 (en) Aeration control method for activated sludge
JP4229999B2 (en) Biological nitrogen removal equipment
JP4008694B2 (en) Sewage treatment plant water quality controller
KR102281691B1 (en) Operation Apparatus and Method to Maximize Partial Nitritation by Controling Free Ammonia and Free Nitrous Acid Concentration in SBR Reactor for treating High Strength Nitrogen Wastewater
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP6334244B2 (en) Water treatment process control system
JP3388293B2 (en) Biological nitrification and denitrification method for night soil
JP3260574B2 (en) Control method of intermittent aeration type activated sludge method
JP3260575B2 (en) Control method of intermittent aeration type activated sludge method
JP3388963B2 (en) Control method of intermittent aeration type activated sludge method
JPH05220495A (en) Controlling method for sewage disposal process
JP3260558B2 (en) Control method of intermittent aeration type activated sludge method
JP3644757B2 (en) Control method of intermittent aeration activated sludge process
JP3279008B2 (en) Control method of intermittent aeration type activated sludge method
JPH0938683A (en) Biological water treating device
JP3260554B2 (en) How to control the sewage treatment process
JP3632265B2 (en) Control method for batch activated sludge treatment
JP2960272B2 (en) Addition method of organic matter and flocculant in intermittent aeration type activated sludge method.
JP3250934B2 (en) How to control the sewage treatment process
JP3671554B2 (en) Control method of intermittent aeration activated sludge process
JP2000107786A (en) Control method for intermittent aeration activated sludge process
JP3533547B2 (en) Control method of batch activated sludge method
JP3303475B2 (en) Operation control method of activated sludge circulation method
JPH1015578A (en) Control of batchwise activated sludge method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees