JPH08196914A - Plate-shaped catalyst and its manufacture - Google Patents

Plate-shaped catalyst and its manufacture

Info

Publication number
JPH08196914A
JPH08196914A JP7012698A JP1269895A JPH08196914A JP H08196914 A JPH08196914 A JP H08196914A JP 7012698 A JP7012698 A JP 7012698A JP 1269895 A JP1269895 A JP 1269895A JP H08196914 A JPH08196914 A JP H08196914A
Authority
JP
Japan
Prior art keywords
catalyst
fiber
catalyst component
plate
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7012698A
Other languages
Japanese (ja)
Inventor
Katsuhiro Yashiro
克洋 矢代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP7012698A priority Critical patent/JPH08196914A/en
Publication of JPH08196914A publication Critical patent/JPH08196914A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To increase the strength of resistance to release by improving the fluidity of a catalyst paste at the time of manufacturing a plate-shaped catalyst. CONSTITUTION: Ammonium molybdate and vanadyl sulfate are blended with titanium oxide (average diameter of 1.5μm and with given particle diameter distribution) of a catalyst composition component, to which alumina silica fiber of average diameter of 2.5μm and average length of 250mm are added twice, and the fiber diameter of the alumina silica fiber added first is made to fine pieces to be in the range of equal to ten times or less to the average particle diameter of a catalyst component and also the fiber length of 100 times or less of the average particle diameter. Then alumina silica fiber of the same quantity as first is added and kneaded to prepare a catalyst paste and a catalyst is manufactured through a coating process. The apparent particle diameter distribution of the catalyst component is widened by the arrangement to improve the fluidity of the paste and the catalyst of high strength of resistance to release is manufactured by being mixed with reinforcing fiber added thereafter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排煙脱硝用触媒に係わ
り、金属基材、特にメタルラスに触媒組成物を担持した
板形状の触媒およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flue gas denitration catalyst, and more particularly to a plate-shaped catalyst in which a catalyst composition is supported on a metal substrate, especially a metal lath, and a method for producing the same.

【0002】[0002]

【従来の技術】排ガス中の窒素酸化物を除去する方法と
しては、触媒を用いてアンモニアで選択的に還元する方
法が主流になっており、これらの脱硝触媒は一般に、酸
化チタン(TiO2)とモリブデン(Mo)、バナジウ
ム(V)、タングステン(W)等の酸化物からなる触媒
組成物を粒状、板状、ハニカム状等に成形した触媒が用
いられている。この中でも板状触媒は、ガス流れに対し
平行な触媒板を組み合わせたもので、他の形式に比べて
圧力損失、ダスト等の堆積が少なく、他の触媒エレメン
トを積み重ねる積み増しが容易であるという点で優れて
いる。
2. Description of the Related Art As a method for removing nitrogen oxides in exhaust gas, a method in which a catalyst is selectively reduced with ammonia is the mainstream, and these denitration catalysts are generally titanium oxide (TiO 2 ) There is used a catalyst obtained by molding a catalyst composition comprising an oxide of molybdenum (Mo), vanadium (V), tungsten (W), etc. into a granular shape, a plate shape, a honeycomb shape or the like. Among them, the plate catalyst is a combination of catalyst plates parallel to the gas flow, has less pressure loss and less accumulation of dust, etc. than other types, and it is easy to stack other catalyst elements. Is excellent at.

【0003】図6は一般的なメタルラス基材の構造を示
す平面図である。
FIG. 6 is a plan view showing the structure of a general metal lath substrate.

【0004】板状触媒として触媒成分を保持しかつ形状
を維持するために基材を用いることが一般的で、本図に
示すような金属薄板をメタルラス加工したメタルラス基
材1や金網、無機繊維織布等の各種基材が採用されてい
る。このメタルラス基材の公知例として特願昭63−3
0591号公報がある。
It is common to use a substrate as a plate catalyst for holding a catalyst component and maintaining its shape. A metal lath substrate 1 formed by metal lath processing a metal thin plate as shown in this figure, a wire mesh, and an inorganic fiber are used. Various base materials such as woven cloth are used. As a known example of this metal lath substrate, Japanese Patent Application No. 63-3
There is a publication of 0591.

【0005】これら触媒は一般に、触媒成分に水と無機
質の強化繊維を添加し、混練調製したペースト(以下、
触媒ペーストと称す)を基材に担持させ、各種形状に成
形し、乾燥、焼成工程により製造される。
These catalysts are generally pastes prepared by kneading and adding water and inorganic reinforcing fibers to the catalyst components (hereinafter,
A catalyst paste) is supported on a base material, molded into various shapes, and dried and fired to produce the film.

【0006】図7は一般的なメタルラス基材を使った板
状触媒の製造方法を示す説明図である。
FIG. 7 is an explanatory view showing a method for producing a plate catalyst using a general metal lath substrate.

【0007】メタルラス基材1を用いた従来触媒の触媒
担持方法は、本図に示すような圧延ロール3へメタルラ
ス基材1と触媒ペースト2を同時に挿入し、メタルラス
基材1のラス目に触媒ペースト2を塗布シート4により
塗り込んでいく(塗布工程と呼ぶ)。触媒ペースト2に
添加されている繊維は、触媒成分が容易にメタルラス基
材1から脱落しないよう触媒成分からなる部分の強度を
向上させることと、ペースト状態から乾燥する際の収縮
を抑制してメタルラス基材1との密着性を損なわないこ
と、さらに触媒成分からなる細孔容積の増加を図り、触
媒の耐剥離強度及び脱硝性能向上に貢献している。
In the conventional catalyst supporting method of the catalyst using the metal lath base material 1, the metal lath base material 1 and the catalyst paste 2 are simultaneously inserted into the rolling roll 3 as shown in FIG. The paste 2 is applied by the application sheet 4 (referred to as an application process). The fibers added to the catalyst paste 2 improve the strength of the portion made of the catalyst component so that the catalyst component does not easily fall off from the metal lath base material 1 and suppress the shrinkage when drying from the paste state to suppress the metal lath. The adhesion to the substrate 1 is not impaired, the pore volume of the catalyst component is increased, and the peel resistance of the catalyst and the denitration performance are improved.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来技術の中で触媒成分に繊維を添加することが、触媒ペ
ーストの流動性を悪くし、塗布に支障を来すことがあ
る。具体的には触媒成分が担持されない部分が生じた
り、触媒ペーストから水が分離して触媒担持が不均一と
なる。原因としては、本来から触媒成分のみによるペー
ストの流動性が悪いこと、そのため繊維の分散が悪くな
ること、分散の悪い繊維を添加することで繊維の絡まっ
た部分を生じてペーストの変形性を悪くすること、繊維
の絡まった部分に含まれる余剰水を塗布時の圧力で排出
すること、流動性が悪いために塗布時の圧力が大きくな
ること等が挙げられる。触媒成分よりなるペーストの流
動性が悪いのは原料粉末の粒径に因るところが多く、通
常脱硝触媒へ利用される主原料の酸化チタンの粒径が1
0~1〜101μmのオーダであるとすると、その粒径分
布が狭い場合にペーストにダイラタントな性状が現れ流
動性が悪い。
However, the addition of fibers to the catalyst component in the above-mentioned conventional techniques may impair the fluidity of the catalyst paste and hinder the application. Specifically, a portion where the catalyst component is not supported is generated, or water is separated from the catalyst paste to make the catalyst support non-uniform. The cause is that the flowability of the paste due to only the catalyst component is originally poor, therefore the dispersion of the fibers is poor, and the addition of fibers with poor dispersion causes the entangled parts of the fibers to deteriorate the deformability of the paste. Doing so, discharging the excess water contained in the entangled portion of the fibers at the pressure at the time of application, and increasing the pressure at the time of application due to poor fluidity. The poor fluidity of the paste composed of the catalyst component is due largely to the particle size of the raw material powder, and the particle size of the main raw material titanium oxide that is usually used for the denitration catalyst is 1
If it is on the order of 0 to 1 to 10 1 μm, when the particle size distribution is narrow, a dilatant property appears in the paste and the fluidity is poor.

【0009】図8は一般的な触媒成分粒子の粒径分布の
狭い場合の粒径分布図である。
FIG. 8 is a particle size distribution chart when the particle size distribution of general catalyst component particles is narrow.

【0010】ダイラタントなペーストは粒子充填状態も
悪く、このようなペーストに粒子よりも分散の悪い繊維
状のものを添加して混練した場合、急激な負荷に対して
は極端に流動性が悪化するが、緩やかな負荷に対しては
流動する。このペーストへ繊維を添加することで繊維の
分散が悪くなり、粒子よりも流動し難い繊維は分散でき
ずに絡まってしまい、繊維の絡まった部分がペースト中
に残ることによって、粒子間の隙間に余分な水を含有し
ていることが多い。このような状態のペーストは、例え
ば塗布工程のように大きな圧力を加えられると、繊維は
ペースト内でフィルタのように働き、ペースト中の水が
絞り出されて繊維中へ移動し、容易にペーストから水を
排出させてしまう。その結果粒子間の流動性がさらに悪
くなり、最終的に基材へ触媒ペーストを塗布すると、上
述のような現象を引き起こし、基材から触媒成分が脱落
し易くなるといった問題をもたらす。
The dilatant paste has a poor particle filling state, and when a fibrous material having a poorer dispersion than particles is added to such a paste and kneaded, the fluidity is extremely deteriorated under a sudden load. However, it does flow for moderate loads. By adding fibers to this paste, the dispersion of the fibers becomes poor, and the fibers that are more difficult to flow than the particles become entangled without being able to disperse. Often contains excess water. In the paste in such a state, when a large pressure is applied, for example, in a coating process, the fiber acts like a filter in the paste, water in the paste is squeezed out and moves into the fiber, and the paste is easily formed. Drains water from it. As a result, the fluidity between the particles is further deteriorated, and when the catalyst paste is finally applied to the base material, the above-mentioned phenomenon is caused and the catalyst component is easily dropped from the base material.

【0011】図9は一般的な触媒成分粒子の粒径分布の
広い場合の粒径分布図である。
FIG. 9 is a particle size distribution chart in the case where the particle size distribution of general catalyst component particles is wide.

【0012】ペーストのダイラタントな性状を改善する
一般的な方法として、粒径の異なる粉体を添加して粒度
調整を行い粒径分布を広くすると、粒子の充填状態も良
く、ペーストの流動性は良くなり、繊維の分散も良く余
剰水が減少し結果的に塗布性が改善されるが、この方法
では触媒原料の粒径分布に適合した粉体を用意する必要
があり、工程が複雑化する問題がある。また分散の良い
繊維として、繊維長さの短く、集束あるいは絡まりのな
い物を添加すると繊維の分散は良くなるが、強化繊維と
しての働きが低減し、触媒成分の脱落が比較的大きくな
るといった問題がある。
As a general method for improving the dilatant property of the paste, if powders having different particle sizes are added to adjust the particle size to widen the particle size distribution, the packed state of the particles will be good and the fluidity of the paste will be improved. Improves the quality, disperses the fibers well, reduces excess water, and consequently improves coatability, but this method complicates the process because it is necessary to prepare a powder that matches the particle size distribution of the catalyst raw material. There's a problem. Also, as a well-dispersed fiber, if a fiber having a short fiber length and no bundling or entanglement is added, the dispersion of the fiber is improved, but the function as a reinforcing fiber is reduced, and the loss of the catalyst component becomes relatively large. There is.

【0013】本発明の目的は、板状触媒の製造時に、触
媒ペーストの流動性を改善し、耐剥離強度を大きくする
ことにある。
An object of the present invention is to improve the fluidity of the catalyst paste and increase the peel resistance during the production of the plate catalyst.

【0014】[0014]

【課題を解決するための手段】上記目的は、金属薄板を
メタルラス加工した基材と、該基材のラス表面および貫
通孔であるラス目に圧着した触媒成分とを有する板状触
媒において、前記触媒成分中に長さが異なる2種類の繊
維群を含むことにより達成される。
Means for Solving the Problems The above object is to provide a plate-shaped catalyst having a base material obtained by processing a metal thin plate into a metal lath, and a catalyst component pressure-bonded to the lath surface of the base material and the through holes that are through holes. This is achieved by including two types of fiber groups having different lengths in the catalyst component.

【0015】上記目的は、金属薄板をメタルラス加工し
た基材と、該基材のラス表面および貫通孔であるラス目
に圧着した触媒成分とを有する板状触媒において、繊維
径が前記触媒成分の平均粒径に対し1倍以上10倍以下
で繊維長が前記触媒成分の平均粒径の100倍以下であ
る繊維群を含むことにより達成される。
The above-mentioned object is a plate-shaped catalyst having a base material obtained by processing a metal thin plate into a metal lath, and a catalyst component pressure-bonded to the lath surface of the base material and the lath which is a through hole, and the fiber diameter of the catalyst component is It is achieved by including a fiber group having a fiber length of 1 to 10 times the average particle size and a fiber length of 100 times or less the average particle size of the catalyst component.

【0016】上記目的は、金属薄板をメタルラス加工し
た基材のラス表面および貫通孔であるラス目に触媒成分
と繊維を混練して圧着する板状触媒の製造方法におい
て、前記触媒成分と前記繊維の一部を加え前記繊維を微
細化した後に、前記繊維の残部を加えて混練することに
より達成される。
[0016] The above object is a method for producing a plate-shaped catalyst in which a catalyst component and fibers are kneaded and pressure-bonded to the lath surface of a base material obtained by processing a metal thin plate into metal laths and the laths that are through holes, and the catalyst component and the fibers are Is added to make the fibers finer, and then the rest of the fibers are added and kneaded.

【0017】上記目的は、金属薄板をメタルラス加工し
た基材のラス表面および貫通孔であるラス目に触媒成と
繊維を混練して圧着する板状触媒の製造方法において、
前記触媒成分と前記繊維の一部を加えて繊維径が前記触
媒成分の平均粒径に対し1倍以上10倍以下で繊維長が
前記触媒成分の平均粒径の100倍以下となるように微
細化した後に、前記繊維の残部を加えて混練することに
より達成される。
The above-mentioned object is a method for producing a plate-shaped catalyst in which a catalyst composition and fibers are kneaded and pressure-bonded to the lath surface of a base material obtained by processing a metal thin plate into a metal lath and the lath which is a through hole,
The catalyst component and a part of the fiber are added so that the fiber diameter is 1 to 10 times the average particle diameter of the catalyst component and the fiber length is 100 times or less the average particle diameter of the catalyst component. This is achieved by adding the rest of the fibers and kneading after the formation.

【0018】[0018]

【作用】最初に加えた繊維を微細化することにより、触
媒成分粒子の見掛け上の粒径分布を広くして、粒子の充
填状態を良くし、ペースト流動性の改善と余剰水の減少
を可能にする。
[Function] By first refining the added fibers, the apparent particle size distribution of the catalyst component particles can be widened, the packing condition of the particles can be improved, and the paste fluidity can be improved and excess water can be reduced. To

【0019】また、更に繊維を加えることにより、繊維
による強化は最初に加えた繊維の効果と合わせて1度で
繊維を添加した場合よりも高い強度をもたらす。
Also, by adding more fiber, the fiber reinforcement provides a higher strength than if the fiber was added at one time combined with the effect of the fiber initially added.

【0020】[0020]

【実施例】以下、本発明の実施例を詳細に説明する。EXAMPLES Examples of the present invention will be described in detail below.

【0021】板状触媒の基材には、材質SUS430で
板厚0.2mmの金属鋼板を刻み幅0.6mm、図6に示
すラス目寸法約4.50mm(Lw)、約2.05mm
(Sw)、厚さ約0.8mmのメタルラス加工したもの
を使用した。次に具体的な製造方法について説明する。
As a base material of the plate-shaped catalyst, a metal plate made of SUS430 and having a thickness of 0.2 mm is carved with a width of 0.6 mm, and a lath size shown in FIG. 6 is about 4.50 mm (Lw) and about 2.05 mm.
(Sw), a metal lath having a thickness of about 0.8 mm was used. Next, a specific manufacturing method will be described.

【0022】実施例1 図1は本発明の実施例の製造工程を説明するフローチャ
ートである。
Embodiment 1 FIG. 1 is a flow chart for explaining the manufacturing process of an embodiment of the present invention.

【0023】本図に示すように触媒組成成分には、酸化
チタン(平均粒径1.5μmで図8に示す粒径分布を持
った原料)にモリブデン酸アンモンと硫酸バナジルを、
Ti/Mo/V=90.5/5/4.5の原子比となるよ
うに配合し、これらに対し平均径2.5μm、平均長さ
250mmのアルミナシリカ繊維(商品名カオウール)
を2等分して別工程で添加し、最初のアルミナシリカ繊
維を触媒成分の平均粒径に対し繊維径が1倍以上10倍
以下で繊維長が触媒成分の平均粒径の100倍以下とな
るように微細化し、次に最初と同量のアルミナシリカ繊
維を添加混練して触媒ぺーストを調製し、図7の塗布工
程を経て触媒を製作した。なお2回目に添加したアルミ
ナシリカ繊維の形状は混練によって殆ど変化することは
なく強化繊維としての機能を有する。
As shown in the figure, titanium oxide (a raw material having an average particle size of 1.5 μm and a particle size distribution shown in FIG. 8) is used as the catalyst composition components, and ammonium monate molybdate and vanadyl sulfate are added.
Alumina-silica fibers (commercial name Kaowool) with an average diameter of 2.5 μm and an average length of 250 mm, which were compounded so that the atomic ratio of Ti / Mo / V = 90.5 / 5 / 4.5.
Is added in two separate steps, and the first alumina-silica fiber has a fiber diameter of 1 to 10 times the average particle diameter of the catalyst component and a fiber length of 100 times or less the average particle diameter of the catalyst component. The catalyst paste was made finer, and then the same amount of alumina-silica fiber as the first was added and kneaded to prepare a catalyst paste, and the catalyst was manufactured through the coating process of FIG. 7. It should be noted that the shape of the alumina-silica fiber added the second time hardly changes due to the kneading and has a function as a reinforcing fiber.

【0024】図2は本発明の実施例の触媒成分平均粒径
と各繊維群の長さとの関係を説明する図表である。
FIG. 2 is a chart for explaining the relationship between the average particle diameter of the catalyst component and the length of each fiber group in the example of the present invention.

【0025】本図に示すように触媒ぺースト中に、繊維
長が異なる2種類の繊維群が存在し繊維群1は最初に添
加したアルミナシリカ繊維であり、繊維群2は後に添加
したアルミナシリカ繊維である。
As shown in the figure, there are two kinds of fiber groups having different fiber lengths in the catalyst paste, the fiber group 1 is the alumina silica fiber added first, and the fiber group 2 is the alumina silica added later. It is a fiber.

【0026】実施例2 実施例1とは2回に分けて添加する繊維の性状が異なる
以外は同条件であり、最初に実施例1のアルミナシリカ
繊維を添加して触媒成分の平均粒径に対し繊維径が1倍
以上10倍以下で平均繊維長が触媒成分の平均粒径の1
00倍以下となるように微細化し、次に繊維径10μm
長さ30mmのEガラス繊維を最初と同重量添加混練し
て触媒ぺーストを調製し、図7の塗布工程を経て触媒を
製作した。なお2回目に添加したEガラス繊維の形状は
混練によって殆ど変化することはなく強化繊維としての
機能を有する。
Example 2 The same conditions as in Example 1 were used except that the properties of the fibers added in two steps were different. First, the alumina-silica fibers of Example 1 were added to obtain the average particle size of the catalyst component. On the other hand, the fiber diameter is 1 to 10 times and the average fiber length is 1 of the average particle diameter of the catalyst component.
Finer to 100 times or less, then fiber diameter 10 μm
An E glass fiber having a length of 30 mm was added and kneaded in the same weight as the first to prepare a catalyst paste, and the catalyst was manufactured through the coating process of FIG. The shape of the E glass fiber added the second time hardly changed by kneading and has a function as a reinforcing fiber.

【0027】比較例1 図3は比較例の触媒製造工程を説明するフローチャート
である。
Comparative Example 1 FIG. 3 is a flow chart for explaining a catalyst manufacturing process of a comparative example.

【0028】触媒成分には、実施例1と同じ粒径分布を
持った原料酸化チタンに粒度調製用の酸化チタン(平均
粒径0.5μmで図9に示す粒径分布を持った原料)を
8対2で配合し、モリブデン酸アンモンと硫酸バナジル
を、Ti/Mo/V=90.5/5/4.5の原子比とな
るように配合し混練後、実施例1のアルミナシリカ繊維
全量を添加混練して触媒ぺーストを調製し、図7の塗布
工程を経て触媒を製作した。
As the catalyst component, a raw material titanium oxide having the same particle size distribution as in Example 1 and titanium oxide for particle size adjustment (a raw material having an average particle size of 0.5 μm and a particle size distribution shown in FIG. 9) were used. 8: 2, ammonium molybdate and vanadyl sulfate were mixed so as to have an atomic ratio of Ti / Mo / V = 90.5 / 5 / 4.5, and after kneading, the total amount of alumina-silica fiber of Example 1 Was added and kneaded to prepare a catalyst paste, and the catalyst was manufactured through the coating process of FIG.

【0029】比較例2 図4は比較例の触媒製造工程を説明するフローチャート
である。
Comparative Example 2 FIG. 4 is a flow chart for explaining the catalyst manufacturing process of the comparative example.

【0030】本図に示すように触媒組成成分には、酸化
チタン(平均粒径1.5μmで図8に示す粒径分布を持
った原料)にモリブデン酸アンモンと硫酸バナジルを、
Ti/Mo/V=90.5/5/4.5の原子比となるよ
うに配合し、これらに対し実施例1の平均径2.5μ
m、平均長さ250mmのアルミナシリカ繊維全量を添
加混練して触媒ぺーストを調製し、図7の塗布工程を経
て触媒を製作した。
As shown in the figure, the catalyst composition components were titanium oxide (a raw material having an average particle size of 1.5 μm and a particle size distribution shown in FIG. 8), ammonium ammonium molybdate and vanadyl sulfate.
Ti / Mo / V = 90.5 / 5 / 4.5 was blended so as to have an atomic ratio, and the average diameter of Example 1 was 2.5 μ.
m, and the total amount of alumina-silica fibers having an average length of 250 mm were added and kneaded to prepare a catalyst paste, and the catalyst was manufactured through the coating process of FIG.

【0031】比較例3 図5は比較例の触媒製造工程を説明するフローチャート
である。
Comparative Example 3 FIG. 5 is a flow chart for explaining the catalyst manufacturing process of the comparative example.

【0032】本図に示すように触媒組成成分には、酸化
チタン(平均粒径1.5μmで図8に示す粒径分布を持
った原料)にモリブデン酸アンモンと硫酸バナジルを、
Ti/Mo/V=90.5/5/4.5の原子比となるよ
うに配合して混練し、この混練物に対し実施例1の平均
径2.5μm、平均長さ250mmのアルミナシリカ繊
維全量を混練して触媒ぺーストを調製し、図7の塗布工
程を経て触媒を製作した。
As shown in the figure, titanium oxide (a raw material having an average particle size of 1.5 μm and a particle size distribution shown in FIG. 8) was used as the catalyst composition components, and ammonium monate molybdate and vanadyl sulfate were used.
Atomic ratio of Ti / Mo / V = 90.5 / 5 / 4.5 was mixed and kneaded, and the kneaded product was alumina silica of Example 1 having an average diameter of 2.5 μm and an average length of 250 mm. A catalyst paste was prepared by kneading the entire amount of the fibers, and the catalyst was manufactured through the coating process of FIG. 7.

【0033】上記実施例1、2、比較例1、2及び3の
5種類の触媒について、改善目的としているペーストの
流動性については図7に示す塗布工程での塗布性で評価
し、耐剥離強度については、板状触媒から切り出した幅
100mm、長さ250mmの試験片を1mの高さから
鋼板上に平面部が衝突するように50回繰返して自由落
下させ、その時の触媒成分の剥離量で評価した。表1は
比較結果を表したものである。
Regarding the five kinds of catalysts of Examples 1 and 2 and Comparative Examples 1, 2 and 3, the fluidity of the paste, which is the object of improvement, was evaluated by the coating property in the coating process shown in FIG. Regarding the strength, a test piece with a width of 100 mm and a length of 250 mm cut out from a plate-shaped catalyst was repeatedly dropped 50 times from a height of 1 m so that the flat surface collided with the steel plate, and the amount of separation of the catalyst component at that time It was evaluated by. Table 1 shows the comparison results.

【0034】[0034]

【表1】 [Table 1]

【0035】これより、繊維を先に添加して短く切断し
たものは(実施例1、2、比較例2)、粉体により粒度
調製したもの(比較例1)もの同様に、ペースト流動性
の改善効果が明らかで、そうでない比較例3は塗布性の
悪いことが分る。また繊維を2回に分けて粒度調製後に
追加添加することで、粉体による粒度調製法よりも耐剥
離強度が向上することが示されている。
From the above, the fibers added first and cut into short pieces (Examples 1 and 2 and Comparative Example 2) have the same paste flowability as those obtained by adjusting the particle size of the powder (Comparative Example 1). It can be seen that the improvement effect is obvious, and Comparative Example 3 which is not so has poor coatability. Further, it has been shown that the peel resistance is improved by adding the fibers in two times after the particle size is adjusted, as compared with the particle size adjusting method using powder.

【0036】以上述べたように本実施例は、強化用の繊
維を利用しペースト混練の際に同一あるいは異なる繊維
を2回に分けて添加するものである。この時、先に添加
した繊維は、その繊維径を対象の粉体の平均粒径に対し
1倍以上10倍以下とすることと、混練過程を通して繊
維長さを対象の粉体の平均粒径に対し100倍以下の長
さに短かく加工することで、触媒成分の見掛け上の粒径
分布が広くなる。粉体による粒度調製は対象の粉体より
も大きい或いは小さい粒径の粉体を調合することが簡便
な方法であるが、繊維による粒度調製が粉体による調製
と異なる点は、切断された繊維が依然として繊維径より
も長い形状を持つことによって強化繊維としての作用を
完全には失わないことにある。但し、繊維長さが短くな
るにつれて繊維添加による本来の強度向上や乾燥収縮の
抑制および細孔容積の増加効果は軽減される。そのた
め、粒度調製後流動性が改善されたペーストへ繊維を追
加添加することにより本来の繊維強化の効果を発揮させ
て、先に添加した繊維の効果と合わせて、1度で繊維を
添加した場合よりも高強度が触媒を得ることができる。
As described above, in this embodiment, the reinforcing fibers are used and the same or different fibers are added in two batches when the paste is kneaded. At this time, the fiber added previously has a fiber diameter of 1 to 10 times the average particle diameter of the target powder, and the fiber length during the kneading process is the average particle diameter of the target powder. On the other hand, when the length is shortened to 100 times or less, the apparent particle size distribution of the catalyst component becomes wider. Particle size adjustment with powder is a simple method to mix powder with a particle size larger or smaller than the target powder, but the point that particle size adjustment with fiber differs from powder preparation is that cut fiber Still has a shape longer than the fiber diameter so that it does not completely lose its function as a reinforcing fiber. However, as the fiber length becomes shorter, the original strength improvement, the suppression of drying shrinkage, and the effect of increasing the pore volume due to the addition of the fiber are alleviated. Therefore, when the fiber is added to the paste with improved fluidity after particle size adjustment, the original effect of fiber reinforcement is exerted, and when the fiber is added at one time together with the effect of the fiber added earlier. Higher strength can obtain the catalyst.

【0037】[0037]

【発明の効果】本発明によれば、板状触媒の製造におい
て繊維を2回に分けて添加し、先に添加した繊維を微細
化することにより、触媒成分の見掛け上の粒径分布を広
くしてペーストの流動性を改善すると共に、その後追加
添加する強化用繊維と合わせて耐剥離強度の高い触媒が
得られる。
EFFECTS OF THE INVENTION According to the present invention, in the production of a plate-shaped catalyst, fibers are added in two steps, and the fibers previously added are refined to broaden the apparent particle size distribution of the catalyst component. In addition to improving the fluidity of the paste, a catalyst having a high peeling resistance can be obtained in combination with the reinforcing fiber added later.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の製造工程を説明するフローチ
ャートである。
FIG. 1 is a flow chart illustrating a manufacturing process according to an embodiment of the present invention.

【図2】本発明の実施例の触媒成分平均粒径と各繊維群
の長さの関係を説明する図表である。
FIG. 2 is a chart for explaining the relationship between the average particle diameter of the catalyst component and the length of each fiber group in the example of the present invention.

【図3】比較例の触媒製造工程を説明するフローチャー
トである。
FIG. 3 is a flowchart illustrating a catalyst manufacturing process of a comparative example.

【図4】比較例の触媒製造工程を説明するフローチャー
トである。
FIG. 4 is a flowchart illustrating a catalyst manufacturing process of a comparative example.

【図5】比較例の触媒製造工程を説明するフローチャー
トである。
FIG. 5 is a flowchart illustrating a catalyst manufacturing process of a comparative example.

【図6】一般的なメタルラス基材の構造を示す平面図で
ある。
FIG. 6 is a plan view showing the structure of a general metal lath substrate.

【図7】一般的なメタルラス基材を使った板状触媒の製
造方法を示す説明図である。
FIG. 7 is an explanatory view showing a method for producing a plate catalyst using a general metal lath substrate.

【図8】一般的な触媒成分粒子の粒径分布の狭い場合の
粒径分布図である。
FIG. 8 is a particle size distribution chart in the case where the particle size distribution of general catalyst component particles is narrow.

【図9】一般的な触媒成分粒子の粒径分布の広い場合の
粒径分布図である。
FIG. 9 is a particle size distribution chart in the case where the particle size distribution of general catalyst component particles is wide.

【符号の説明】[Explanation of symbols]

1 メタルラス基材 2 触媒ペースト 3 圧延ロール 4 塗布シート 1 Metal lath base material 2 Catalyst paste 3 Rolling roll 4 Coating sheet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属薄板をメタルラス加工した基材と、
該基材のラス表面および貫通孔であるラス目に圧着した
触媒成分とを有する板状触媒において、前記触媒成分中
に長さが異なる2種類の繊維群を含むことを特徴とする
板状触媒。
1. A base material obtained by processing a metal thin plate with a metal lath,
A plate-like catalyst having a lath surface of the base material and a catalyst component pressure-bonded to the laths which are through holes, wherein the catalyst component contains two types of fiber groups having different lengths. .
【請求項2】 金属薄板をメタルラス加工した基材と、
該基材のラス表面および貫通孔であるラス目に圧着した
触媒成分とを有する板状触媒において、繊維径が前記触
媒成分の平均粒径に対し1倍以上10倍以下で、繊維長
が前記触媒成分の平均粒径の100倍以下である繊維群
を含むことを特徴とする板状触媒。
2. A base material obtained by processing a metal thin plate with a metal lath,
In a plate-shaped catalyst having a lath surface of the base material and a catalyst component pressure-bonded to the lath which is a through hole, the fiber diameter is 1 to 10 times the average particle diameter of the catalyst component, and the fiber length is A plate-shaped catalyst comprising a fiber group having an average particle diameter of 100 times or less of a catalyst component.
【請求項3】 金属薄板をメタルラス加工した基材のラ
ス表面および貫通孔であるラス目に触媒成分と繊維を混
練して圧着する板状触媒の製造方法において、 前記触
媒成分と前記繊維の一部を加え前記繊維を微細化した後
に前記繊維の残部を加えて混練することを特徴とする板
状触媒の製造方法。
3. A method for producing a plate-shaped catalyst in which a catalyst component and fibers are kneaded and pressure-bonded to a lath surface of a base material obtained by processing a metal thin plate into a metal lath and laths that are through holes, wherein one of the catalyst component and the fiber is And a kneading method in which the remaining portion of the fiber is added and kneaded.
【請求項4】 金属薄板をメタルラス加工した基材のラ
ス表面および貫通孔であるラス目に触媒成分と繊維を混
練して圧着する板状触媒の製造方法において、 前記触
媒成分と前記繊維の一部を加えて繊維径が前記触媒成分
の平均粒径に対し1倍以上10倍以下で繊維長が前記触
媒成分の平均粒径の100倍以下となるように微細化し
た後に、前記繊維の残部を加えて混練することを特徴と
する板状触媒の製造方法。
4. A method for producing a plate-shaped catalyst in which a catalyst component and fibers are kneaded and pressure-bonded to the lath surface of a substrate obtained by processing a metal thin plate into a metal lath and to the laths that are through-holes. Part to make the fiber diameter 1 to 10 times the average particle size of the catalyst component and the fiber length to 100 times or less the average particle size of the catalyst component, and then the remaining part of the fiber. A method for producing a plate-shaped catalyst, which comprises adding and kneading.
JP7012698A 1995-01-30 1995-01-30 Plate-shaped catalyst and its manufacture Pending JPH08196914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7012698A JPH08196914A (en) 1995-01-30 1995-01-30 Plate-shaped catalyst and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7012698A JPH08196914A (en) 1995-01-30 1995-01-30 Plate-shaped catalyst and its manufacture

Publications (1)

Publication Number Publication Date
JPH08196914A true JPH08196914A (en) 1996-08-06

Family

ID=11812618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7012698A Pending JPH08196914A (en) 1995-01-30 1995-01-30 Plate-shaped catalyst and its manufacture

Country Status (1)

Country Link
JP (1) JPH08196914A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013775A1 (en) * 1998-09-09 2000-03-16 Babcock-Hitachi Kabushiki Kaisha Exhaust emission control catalyst structure and device
JP2003010698A (en) * 2001-07-05 2003-01-14 Nippon Shokubai Co Ltd Exhaust gas treating catalyst and exhaust gas cleaning method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013775A1 (en) * 1998-09-09 2000-03-16 Babcock-Hitachi Kabushiki Kaisha Exhaust emission control catalyst structure and device
JP2003010698A (en) * 2001-07-05 2003-01-14 Nippon Shokubai Co Ltd Exhaust gas treating catalyst and exhaust gas cleaning method using the same

Similar Documents

Publication Publication Date Title
CN1054393C (en) Residuum hydrogenating and metal-eliminating catalyst
DE112005000638B4 (en) Process for producing a porous ceramic body
US5348987A (en) NOx removal catalyst containing an inorganic fiber
WO2006045267A1 (en) Method for the production of a metal-ceramic substrate or copper-ceramic substrate, and support to be used in said method
DE102006000068A1 (en) Yttria sintered body, yttria sintered body using ceramic member and manufacturing method for yttria sintered body
EP0375391B1 (en) Process for producing a catalyst for removing nitrogen oxides
US20100069231A1 (en) Base for catalyst, catalyst and methods for producing those
EP0246413A1 (en) Plate catalyst
DE60118337T2 (en) CERAMIC CATALYST CARRIER WITH WAVE STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF
JPH08196914A (en) Plate-shaped catalyst and its manufacture
JP2007007496A (en) Method for adjusting viscosity of slurry and coating slurry for catalyst
DE10148072A1 (en) Ceramic catalyst bodies, ceramic supports and their manufacturing processes
DE10325590A1 (en) Ceramic body and ceramic catalyst body
DE102005017378A1 (en) Emission control device for vehicles and manufacturing process
DE202010018032U1 (en) Honeycomb filter
US5294584A (en) Process for producing a denitration catalyst
EP1771236A1 (en) Method for producing an area of a filter structure, especially for a particle filter in the exhaust gas system of an internal combustion engine
EP1370381A1 (en) Sintered, highly porous body and method for the production thereof
JP5619199B2 (en) Method for adjusting slurry viscosity and method for producing slurry
DE4409142C2 (en) Method for applying a coating to the honeycomb body of an exhaust gas converter and use of the exhaust gas converter for the exhaust gas purification of internal combustion engines
EP1640351B1 (en) Method for producing honeycomb structure
DE10306054A1 (en) catalyst body
JPH09187651A (en) Production of catalyst for stack gas denitrification
JP3660381B2 (en) Method for producing plate catalyst for exhaust gas denitration
JPH05154351A (en) Plate type denitration catalyst and preparation of the same