JPH08195705A - Diversity receiver - Google Patents

Diversity receiver

Info

Publication number
JPH08195705A
JPH08195705A JP7021295A JP2129595A JPH08195705A JP H08195705 A JPH08195705 A JP H08195705A JP 7021295 A JP7021295 A JP 7021295A JP 2129595 A JP2129595 A JP 2129595A JP H08195705 A JPH08195705 A JP H08195705A
Authority
JP
Japan
Prior art keywords
intermediate frequency
signal
diversity
output
multiplication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7021295A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Miyatani
徹彦 宮谷
Kenzo Urabe
健三 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP7021295A priority Critical patent/JPH08195705A/en
Publication of JPH08195705A publication Critical patent/JPH08195705A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a diversity receiver in which an arithmetic time to obtain diversity synthesis is considerably reduced, the circuit scale is remarkably reduced and the transmission efficiency from a transmitter side is improved. CONSTITUTION: A gain generating section 14 is provided with a gain table memory to store a relation between intensity of a reception signal from an intermediate frequency amplifier 3 or the like and a multiplication coefficient. When the intensity of the reception signal is sent from the intermediate frequency amplifier 3 or the like to the gain generating section 14, a corresponding multiplication coefficient is read from the gain table and given to a multiplier 5 or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2相もしくは多相の位
相変調によるディジタル無線通信で用いられるダイバー
シティ受信機に係り、特にダイバーシティ合成を得るた
めの演算時間の短縮および演算回路規模の縮小に好適な
ものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diversity receiver used in digital radio communication by two-phase or multi-phase modulation, and more particularly to shortening a calculation time and a scale of a calculation circuit for obtaining diversity combination. Regarding suitable ones.

【0002】[0002]

【従来の技術】従来、対マルチパス受信方式の1つとし
てダイバーシティが広く利用されており、このダイバー
シティの中の空間ダイバーシティによる受信機は、移動
体通信における無線基地用の受信機として広く利用され
ることになると考えられている。
2. Description of the Related Art Conventionally, diversity has been widely used as one of multi-path reception systems, and a receiver based on spatial diversity in this diversity is widely used as a receiver for a radio base in mobile communication. It is believed that it will happen.

【0003】図3は、上記空間ダイバーシティによる受
信機の一例である従来方式の2ブランチダイバーシティ
受信機の回路構成を示すものである。同図においてダイ
バーシティブランチAの受信アンテナ20とダイバーシ
ティブランチBの受信アンイナ25とは互いに無相関に
なるように配置されている。そしてダイバーシティブラ
ンチA側に入力した信号は、受信アンテナ20および受
信部21を通り直交検波部22へ入力し、この直交検波
部22で直交検波が施されてベースバンド複素信号とな
り出力される。上記ベースバンド複素信号は、複素相関
検出部24および複素乗算器23に送出され、複素相関
検出部24ではこの複素相関検出部24に予じめ記憶し
ている既知信号系列であるUW(Unique Wor
d)等を用いて、受信信号(即ち上記ベースバンド複素
信号)中のUWとの複素相関をとる。従って上記UWが
鋭い自己相関特性をもつものであるときは、複素相関検
出部24の出力は、伝送路のインパルス応答と見做すこ
とができるが、事実、上記UWは鋭い自己相関特性をも
ったものとされており複素相関検出部24の出力は伝送
路のインパルス応答と見做せるようになっている。
FIG. 3 shows a circuit configuration of a conventional two-branch diversity receiver which is an example of the receiver based on the above-mentioned space diversity. In the figure, the receiving antenna 20 of the diversity branch A and the receiving antenna 25 of the diversity branch B are arranged so as to be uncorrelated with each other. Then, the signal input to the diversity branch A side is input to the quadrature detection unit 22 through the reception antenna 20 and the reception unit 21, and the quadrature detection unit 22 performs quadrature detection to output a baseband complex signal. The baseband complex signal is sent to the complex correlation detection unit 24 and the complex multiplier 23, and the complex correlation detection unit 24 is a known signal sequence previously stored in the complex correlation detection unit 24, which is a UW (Unique Wor).
d) and the like are used to obtain the complex correlation with the UW in the received signal (that is, the baseband complex signal). Therefore, when the UW has a sharp autocorrelation characteristic, the output of the complex correlation detector 24 can be regarded as an impulse response of the transmission line, but in fact, the UW has a sharp autocorrelation characteristic. The output of the complex correlation detector 24 can be regarded as the impulse response of the transmission line.

【0004】他方、ダイバーシティブランチBに入力し
た信号も受信アンテナ25、受信部26、直交検波部2
7および複素相関検出部29で上記同様の処理がなされ
る。また、係数演算部32は、この各伝送路のインパル
ス応答と見做せる複素相関検出部24および複素相関検
出部29からの出力を入力し、ダイバーシティブランチ
毎に独立した複素乗算係数(即ち上記インパルス応答の
複素共役)を算出し、それぞれ各ダイバーシティブラン
チの複素乗算器23および28に出力する。そして、複
素乗算器23および28は、それぞれ直交検波部22お
よび27から送られてくる上記ベースバンド複素信号に
対して、上記係数演算部32からそれぞれ独立に送られ
てくる複素乗算係数を乗算することにより、レベルおよ
び位相の補正を施して送出する。加算器30は、それぞ
れ上記複素乗算器23および28から送出されてくる補
正されたベースバンド複素信号を加算して得られた信号
を判定回路31に与え、判定回路31は与えられた信号
を復号化する。上記の如き構成により、最大比合成ダイ
バーシティ効果が得られる。
On the other hand, the signal input to the diversity branch B also receives the reception antenna 25, the reception unit 26, and the quadrature detection unit 2.
7 and the complex correlation detector 29 perform the same processing as above. Further, the coefficient calculation unit 32 inputs the outputs from the complex correlation detection unit 24 and the complex correlation detection unit 29, which can be regarded as the impulse response of each transmission line, and receives an independent complex multiplication coefficient for each diversity branch (that is, the impulse The complex conjugate of the response) is calculated and output to the complex multipliers 23 and 28 of each diversity branch, respectively. Then, the complex multipliers 23 and 28 multiply the baseband complex signals sent from the quadrature detectors 22 and 27, respectively, by the complex multiplication coefficients sent independently from the coefficient calculator 32. As a result, the level and the phase are corrected and transmitted. The adder 30 gives a signal obtained by adding the corrected baseband complex signals respectively sent from the complex multipliers 23 and 28 to the decision circuit 31, and the decision circuit 31 decodes the given signal. Turn into. With the above configuration, the maximum ratio combining diversity effect can be obtained.

【0005】なお、係数演算部32を、ダイバーシティ
ブランチAおよびBの伝送路のインパルス応答の電力を
比較し、この電力が低い方のダイバーシティブランチへ
の複素乗算係数を0として送出し、他方上記電力が高い
方のダイバーシティブランチへの複素乗算係数をそのダ
イバーシティブランチのインパルス応答の複素共役とし
て送出するものとしたときには、選択ダイバーシティ効
果を得た信号が加算器30から判定回路31に送られる
ことになる。
The coefficient calculator 32 compares the impulse response powers of the transmission paths of the diversity branches A and B, and sends out the complex multiplication coefficient to the diversity branch having the lower power as 0, while When the complex multiplication coefficient for the higher diversity branch is to be transmitted as the complex conjugate of the impulse response of the diversity branch, the signal having the selective diversity effect is transmitted from the adder 30 to the decision circuit 31. .

【0006】[0006]

【発明が解決しようとする課題】しかし、上記の如き構
成の従来のダイバーシティ受信機の場合、送信側では送
信信号中に上記既知信号系列を挿入しておく必要がある
が、これは伝送効率の低下を招き、また直交検波部22
および27以降の各回路部では複素数演算を実行するこ
とになるが、これは当該回路部の回路構成の複雑化およ
び大規模化を招き、特に複素相関検出部24,29では
複素数の積和演算の繰返しが行われるために、それらの
回路構成の複雑化および大規模化は著しいものとなり、
それだけこれらの回路部での演算処理時間も長くなる。
本発明は、上記の如き事情に鑑みてなされたものであ
り、送信側で送信信号に既知信号系列を挿入しておく必
要がなく、且つ複素数演算の必要に起因する回路の複雑
化および大規模化並びに演算処理時間の長時間化を回避
できるダイバーシティ受信機の提供を目的とする。
However, in the case of the conventional diversity receiver having the above-mentioned structure, it is necessary for the transmitting side to insert the above-mentioned known signal sequence into the transmission signal. The quadrature detection unit 22
And 27 and subsequent circuit units perform complex number arithmetic operations, but this causes the circuit configuration of the circuit units to be complicated and large-scaled. In particular, the complex correlation detection units 24 and 29 perform complex-sum product arithmetic operations. Because of the repetition of, the complexity and scale up of those circuit configurations becomes significant,
As a result, the calculation processing time in these circuit units also becomes longer.
The present invention has been made in view of the above circumstances, and it is not necessary to insert a known signal sequence into a transmission signal on the transmission side, and the circuit becomes complicated and large-scale due to the necessity of complex number operation. It is an object of the present invention to provide a diversity receiver capable of avoiding an increase in processing time and an increase in calculation processing time.

【0007】[0007]

【課題を解決するための手段】本発明では、上記目的を
達成するために、ダイバーシティ受信機を以下の如くに
構成するという手段を講じた。即ちダイバーシティ受信
機を、複数の受信アンテナと、それぞれ、上記複数の受
信アンテナの1つに接続し、接続している受信アンテナ
からの入力信号を高周波信号から中間周波信号に周波数
変換をする複数の受信部と、上記複数の受信部へ局所発
振周波数を供給する周波数シンセサイザと、それぞれ、
上記複数の受信部の1つに接続し、接続している受信部
からの中間周波信号を増幅して出力すると共に受信信号
強度即ちRSSI(Received Signal
Strength Indicator)を出力する複
数の中間周波増幅器と、それぞれ、上記複数の中間周波
増幅器の1つに接続し、接続している中間周波増幅器よ
りの中間周波信号を遅延検波し、先行シンボルとの位相
差を作成して出力する複数の遅延検波部と、上記受信信
号強度の各値とこの各値に対応する乗算係数とを対応付
けて記憶しているゲインテーブルメモリを備え、上記複
数の中間周波増幅器のいずれかよりの受信信号強度が与
えられたときに、それに対応する乗算係数を上記ゲイン
テーブルメモリより読出して出力するゲイン発生部と、
それぞれ上記複数の遅延検波部の1つに接続し、接続し
ている遅延検波部より出力される位相差と、当該遅延検
波部が接続している中間周波増幅器よりの上記受信信号
強度に対応するものとして上記ゲイン発生部より出力さ
れる乗算係数とを乗算して乗算結果を出力する複数の乗
算器と、上記複数の乗算器からの各乗算結果を加算し、
加算結果を出力する加算器と、上記加算器からの加算結
果から信号を判定する判定回路とを備える構成とした。
In the present invention, in order to achieve the above object, the diversity receiver is configured as follows. That is, the diversity receiver is connected to a plurality of receiving antennas, and each of the plurality of receiving antennas is connected to a plurality of receiving antennas. A receiver and a frequency synthesizer that supplies a local oscillation frequency to the plurality of receivers, respectively,
It is connected to one of the plurality of receiving units, amplifies and outputs an intermediate frequency signal from the connected receiving unit, and at the same time receives signal strength, that is, RSSI (Received Signal).
A plurality of intermediate frequency amplifiers that output a strength indicator and each of the intermediate frequency amplifiers are connected to one of the plurality of intermediate frequency amplifiers, and the intermediate frequency signals from the connected intermediate frequency amplifiers are differentially detected to detect the position of the preceding symbol. A plurality of differential detection units that create and output a phase difference, and a gain table memory that stores each value of the received signal strength and a multiplication coefficient corresponding to each value in association with each other are provided. When a received signal strength from any of the amplifiers is given, a gain generation unit that reads out and outputs a multiplication coefficient corresponding to the multiplication coefficient from the gain table memory,
Each of them is connected to one of the plurality of differential detection units and corresponds to the phase difference output from the connected differential detection unit and the received signal strength from the intermediate frequency amplifier to which the differential detection unit is connected. A plurality of multipliers that multiply the multiplication coefficient output from the gain generating unit and output the multiplication result, and add the respective multiplication results from the plurality of multipliers,
It is configured to include an adder that outputs an addition result and a determination circuit that determines a signal from the addition result from the adder.

【0008】[0008]

【作用】先ず上記構成では、前記既知信号系列を利用す
るものではなく、このため送信側では送信信号にこの既
知信号系列を挿入して送信する必要がなくそれだけ伝送
効率の向上が可能となっている。また上記ゲイン発生部
は、受信信号強度と乗算係数との関係を予じめテーブル
化して記憶しているゲインテーブルメモリを備え、送ら
れてくる受信信号強度に応じて対応する乗算係数を当該
ゲインテーブルメモリより読出して送出するだけであ
り、この点で処理時間の短縮化および回路規模の縮小化
に寄与している。また遅延検波部は、遅延検波を実行す
るのでダイバーシティブランチ間の位相調整は必要な
く、更に乗算器および加算器での重みづけ合成はスカラ
ー値での実行となり(即ち複素数演算は行われず)この
点でも回路規模縮小化および処理時間短縮化が可能にな
っている。
First, in the above configuration, the known signal sequence is not used. Therefore, the transmitting side does not need to insert the known signal sequence into the transmission signal and transmit the signal, so that the transmission efficiency can be improved. There is. Further, the gain generation unit includes a gain table memory that stores the relationship between the received signal strength and the multiplication coefficient in advance as a table and stores the corresponding multiplication coefficient according to the received signal strength that is sent. Only the data is read out from the table memory and sent out, which contributes to the reduction in processing time and the circuit scale. Further, since the differential detection unit executes differential detection, phase adjustment between diversity branches is not necessary, and the weighting and combining in the multiplier and adder is executed by the scalar value (that is, the complex number operation is not performed). However, it is possible to reduce the circuit scale and processing time.

【0009】[0009]

【実施例】以下、図面に示す実施例に基づき本発明を具
体的に説明する。図1は本発明の一実施例の回路構成を
示すものである。即ち本実施例は、受信アンテナ1、受
信部2、中間周波増幅器3、遅延検波部4および乗算器
5からなるダイバーシティブランチと受信アンテナ6、
受信部7、中間周波増幅器8、遅延検波部9および乗算
器10からなるダイバーシティブランチとを備え、2ブ
ランチダイバーシティの受信機となっている。受信アン
テナ1と6とは互いに無相関になるように配置されてい
る。周波数シンセサイザ13は、上記両ダイバーシティ
ブランチの受信部2および7に局所発振周波数を供給す
る回路部である。また受信部2および7は、それぞれ受
信アンテナ1および6からの高周波受信信号を上記周波
数シンセサイザ13からの局所発振周波数により中間周
波数信号に変換して出力する回路部である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the embodiments shown in the drawings. FIG. 1 shows a circuit configuration of an embodiment of the present invention. That is, in this embodiment, the diversity branch including the receiving antenna 1, the receiving unit 2, the intermediate frequency amplifier 3, the differential detecting unit 4 and the multiplier 5 and the receiving antenna 6,
A diversity branch including a reception unit 7, an intermediate frequency amplifier 8, a delay detection unit 9 and a multiplier 10 is provided, and a two-branch diversity receiver is provided. The receiving antennas 1 and 6 are arranged so as to be uncorrelated with each other. The frequency synthesizer 13 is a circuit section that supplies a local oscillation frequency to the receiving sections 2 and 7 of both diversity branches. The receiving units 2 and 7 are circuit units that convert the high frequency received signals from the receiving antennas 1 and 6 into an intermediate frequency signal by the local oscillation frequency from the frequency synthesizer 13 and output.

【0010】中間周波増幅器3および8は、それぞれ受
信部2および7から送られてくる中間周波信号を増幅し
てそれぞれ遅延検波部4および9に送出すると共に受信
時の電力を測定しそれぞれの電力値(即ち前記RSS
I)をゲイン発生部14に送出する回路部である。遅延
検波部4および9は、それぞれ上記中間周波増幅器3お
よび8で増幅された中間周波信号に遅延検波を施して1
シンボル前の信号との位相差分(それぞれΔθ1 および
Δθ2 )を抽出して、それぞれ乗算器5および10に出
力する回路部である。図2は、上記遅延検波を説明する
ためのものであり、上記遅延検波部4から出力される位
相差分Δθ1 (同図においてはΔθ1 [n]と表示して
いる)は、1シンボル前の信号即ち同図の先行シンボル
の位相θ1[n]より今回のシンボルの信号即ち同図の
後行シンボルの位相θ1 [n−1]を減じたときの差分
となっていることを示している。
The intermediate frequency amplifiers 3 and 8 amplify the intermediate frequency signals sent from the receivers 2 and 7, respectively, and send them to the delay detectors 4 and 9, respectively, and measure the power at the time of reception to obtain the respective powers. Value (ie the RSS
I) is a circuit unit for sending the I) to the gain generation unit 14. The differential detection units 4 and 9 perform differential detection on the intermediate frequency signals amplified by the intermediate frequency amplifiers 3 and 8, respectively, and perform 1
This is a circuit unit that extracts the phase difference (Δθ 1 and Δθ 2 ) from the signal before the symbol and outputs it to the multipliers 5 and 10, respectively. FIG. 2 is for explaining the differential detection. The phase difference Δθ 1 (denoted as Δθ 1 [n] in the figure) output from the differential detection unit 4 is one symbol before. indicates that a difference between the time obtained by subtracting the phase theta 1 after row symbols of the signal i.e. the drawing of this symbol from the phase θ 1 [n] of the preceding symbol of the signal or the figure of [n-1] ing.

【0011】ゲイン発生部14は、中間周波増幅器3お
よび8から送られてくる受信信号強度(即ちRSSI)
とそれに対応した乗算係数とを対応づけて記憶している
ゲインテーブルメモリを備え、送られてくる上記受信信
号強度に基づき、上記ゲインテーブルメモリより、それ
らに対応する乗算係数を読出して送出する回路部であ
り、例えば中間周波増幅器3および8からの受信信号強
度をそれぞれR1およびR2とし、ゲイン発生部14か
ら乗算器5および10に送出される乗算係数をそれぞれ
G1およびG2とすると、これらはそれぞれ下に示す
(1)および(2)式で示される。 G1=R1/(R1+R2)…………………(1) G2=R2/(R1+R2)…………………(2)
The gain generator 14 receives the received signal strength (that is, RSSI) sent from the intermediate frequency amplifiers 3 and 8.
And a gain table memory that stores the corresponding multiplication coefficient in association with each other, and a circuit for reading out and transmitting the corresponding multiplication coefficient from the gain table memory based on the received signal strength transmitted. Assuming that the received signal strengths from the intermediate frequency amplifiers 3 and 8 are R1 and R2, respectively, and the multiplication coefficients sent from the gain generator 14 to the multipliers 5 and 10 are G1 and G2, these are respectively It is represented by the formulas (1) and (2) shown below. G1 = R1 / (R1 + R2) ……………… (1) G2 = R2 / (R1 + R2) ……………… (2)

【0012】乗算器5および10は、それぞれ遅延検波
部4および9からの前記位相差分(即ち図1に示すΔθ
1 [n]およびΔθ2 [n])を入力すると共に、それ
ぞれゲイン発生部14からの上記乗算係数G1およびG
2を得て、位相差分と乗算係数との乗算を実行し、その
乗算結果を加算器11に出力する回路部である。また加
算器11は上記のようにして乗算器5および10から送
られてきた乗算結果を加算合成し、この加算合成結果
(図1に示すΔθ)を判定回路12に送出する回路部で
あり、判定回路12は加算器11から送られてきた上記
加算合成結果Δθを入力し、これに基づいた復号化を実
行する回路部である。次に以上の如くに構成された本実
施例の動作を説明する。いま、送信側では、変調方式と
して2相または多相の位相変調を採用し、差動符号化を
行っているものとする。
The multipliers 5 and 10 are respectively provided with the phase difference (that is, Δθ shown in FIG. 1) from the differential detection sections 4 and 9.
1 [n] and Δθ 2 [n]) are input, and the multiplication coefficients G1 and G from the gain generator 14 are input, respectively.
This is a circuit unit that obtains 2, performs multiplication of the phase difference and the multiplication coefficient, and outputs the multiplication result to the adder 11. Further, the adder 11 is a circuit unit for adding and synthesizing the multiplication results sent from the multipliers 5 and 10 as described above and sending out the addition and synthesizing result (Δθ shown in FIG. 1) to the judging circuit 12. The determination circuit 12 is a circuit unit that inputs the above-mentioned addition and synthesis result Δθ sent from the adder 11 and executes decoding based on this. Next, the operation of this embodiment configured as described above will be described. Now, it is assumed that the transmission side employs two-phase or multi-phase modulation as a modulation method and performs differential encoding.

【0013】上記送信側より送られてくる信号は、受信
アンテナ1および6で受信される。そして受信アンテナ
1で受信されたものは受信部2で周波数変換され、中間
周波増幅器3で増幅され、遅延検波部4で検波され、こ
の遅延検波部4から位相差分Δθ1 として出力される。
他方、受信アンテナ6で受信されたものは、受信部7で
周波数変換され、中間周波増幅器8で増幅され、遅延検
波部9で検波され、この遅延検波部9から位相差分Δθ
2 として出力される。そして、上記位相差分Δθ1 は、
乗算器5で前記乗算係数G1を乗算され、乗算結果は加
算器11に送られる。また上記位相差分Δθ2 は、乗算
器10で前記乗算係数G2を乗算され、乗算結果は加算
器11に送られる。そして加算器11は送られてくる上
記2つの乗算結果を加算合成して加算合成結果Δθを得
てこれを判定回路12に送出する。従って、下記の
(3)式が成立する。 Δθ=G1・Δθ1 +G2・Δθ2 …………………(3) ここで複素数(ベクトル)表現による遅延検波部4およ
び9の遅延検波ベクトルは、それぞれR1・exp(j
Δθ1 )およびR2・exp(jΔθ2 )とおける。こ
れらには、それぞれ既に絶対値R1およびR2で重付け
がなされているので、2ブランチダイバーシティの遅延
検波出力の最大比合成ベクトルR・exp(jΔΦ)
(ここでRおよびΔΦはそれぞれ合成ベクトルの大きさ
および差分位相を表わす)は、両者の単純和 R・exp(jΔΦ) =R1・exp(jΔθ1 )+R2・exp(jΔθ2 )………(4) で与えられる。
The signal sent from the transmitting side is received by the receiving antennas 1 and 6. Then, what is received by the receiving antenna 1 is frequency-converted by the receiving section 2, amplified by the intermediate frequency amplifier 3, detected by the delay detecting section 4, and output from the delay detecting section 4 as a phase difference Δθ 1 .
On the other hand, what is received by the receiving antenna 6 is frequency-converted by the receiving unit 7, amplified by the intermediate frequency amplifier 8 and detected by the delay detecting unit 9, and the phase difference Δθ is detected from the delay detecting unit 9.
It is output as 2 . Then, the phase difference Δθ 1 is
The multiplication coefficient G1 is multiplied by the multiplier 5, and the multiplication result is sent to the adder 11. The phase difference Δθ 2 is multiplied by the multiplication coefficient G2 in the multiplier 10, and the multiplication result is sent to the adder 11. Then, the adder 11 adds and synthesizes the two multiplication results sent thereto to obtain an addition synthesis result Δθ, and sends this to the determination circuit 12. Therefore, the following expression (3) is established. Δθ = G1 · Δθ 1 + G2 · Δθ 2 (3) Here, the differential detection vectors of the differential detection units 4 and 9 represented by complex numbers (vectors) are R1 · exp (j), respectively.
Δθ 1 ) and R2 · exp (jΔθ 2 ). Since these are already weighted with absolute values R1 and R2, respectively, the maximum ratio combined vector R · exp (jΔΦ) of the two-branch diversity differential detection output is obtained.
(Where R and ΔΦ represent the magnitude and difference phase of the combined vector, respectively) are the simple sum R · exp (jΔΦ) = R1 · exp (jΔθ 1 ) + R2 · exp (jΔθ 2 ) ... ( 4) is given in.

【0014】ところでテーラー級数展開によると、X<<
1のときは、 exp(X)≒1+X………………………(5) となる。このため、いま仮に、 Δθ1 ,Δθ2 <<1…………………………(6) とし、上記(4)式に上記(5)式を適用すると、下記
の(7)式が得られる。 R・exp(jΔΦ) ≒R1(1+jΔθ1 )+R2(1+jΔθ2 ) =(R1+R2)+j(R1・Δθ1 +R2・Δθ2 )……(7) この(7)式より、遅延検波出力の最大比合成ベクトル
R・exp(jΔΦ)から得られる差分位相ΔΦは、近
似的に下記の(8)式で得られる。 ΔΦ≒(R1・Δθ1 +R2・Δθ2 )/(R1+R2)…………(8) そしてこの(8)式に前記(1)および(2)式を代入
すると ΔΦ≒G1・Δθ1 +G2・Δθ2 ………(9) を得る。(9)式の右辺は、(3)式の右辺即ち加算器
11の出力(G1,G2によるΔθ1 ,Δθ2 の重付け
スカラー合成)に他ならない。従って加算器11の出力
は遅延検波出力の最大比合成ベクトルR・exp(jΔ
Φ)から得られる差分位相と見做せ、最大比合成ダイバ
ーシティ効果が得られることになる。
According to Taylor series expansion, X <<
When it is 1, exp (X) ≈1 + X …………………… (5). Therefore, assuming that Δθ 1 and Δθ 2 << 1 …………………… (6) and applying the above equation (5) to the above equation (4), the following equation (7) is obtained. Is obtained. R · exp (jΔΦ) ≈R1 (1 + jΔθ 1 ) + R2 (1 + jΔθ 2 ) = (R1 + R2) + j (R1 · Δθ 1 + R2 · Δθ 2 ) ... (7) From the formula (7), the maximum ratio of the delayed detection output is obtained. The differential phase ΔΦ obtained from the combined vector R · exp (jΔΦ) is approximately obtained by the following equation (8). ΔΦ ≈ (R1 · Δθ 1 + R2 · Δθ 2 ) / (R1 + R2) (8) Then, substituting the formulas (1) and (2) into this formula (8), ΔΦ ≈ G1 · Δθ 1 + G2 Δθ 2 ……… (9) is obtained. The right side of the equation (9) is nothing but the right side of the equation (3), that is, the output of the adder 11 (the weighted scalar combination of Δθ 1 and Δθ 2 by G1 and G2). Therefore, the output of the adder 11 is the maximum ratio combined vector R · exp (jΔ
It can be regarded as the differential phase obtained from Φ), and the maximum ratio combining diversity effect can be obtained.

【0015】ところで、以上の説明は、上記(6)式が
成立するとした場合のものであったが、Δθ1 およびΔ
θ2 が例えばπ/2ラジアンに近い場合、 Δθ1 =Δθ1 ′+π/2………………(10) Δθ2 =Δθ2 ′+π/2………………(11) Δθ′1 ,Δθ′2 <<1 …………………(12) とおくことができ、下記の(13)および(14)式を
得る。 exp(jΔθ1 )=jexp(jΔθ1 ′)…………(13) exp(jΔθ2 )=jexp(jΔθ2 ′)…………(14) (13)および(14)式は、(4)式内の各遅延検波
ベクトルをπ/2だけ左回転したベクトルとして取扱え
ることを示しており、前記(6)式の条件を外れても、
上記(10),(11),(12)式で示される条件下
では、前記説明は正しいことになる。即ちΔθ1 ,Δθ
2 は両者がある程度同じ値の領域にある限り、近似度に
差があるものの、加算器11の出力(即ち(3)式で示
される出力)は、(8)式で示される前記遅延検波出力
の最大比合成ベクトルから得られる差分位相ΔΦと同等
となる。
By the way, although the above description is for the case where the above equation (6) is established, Δθ 1 and Δ
When θ 2 is close to π / 2 radians, for example, Δθ 1 = Δθ 1 ′ + π / 2 (10) Δθ 2 = Δθ 2 ′ + π / 2 ………… (11) Δθ ′ 1 , Δθ ′ 2 << 1 ……………… (12) can be set, and the following equations (13) and (14) are obtained. exp (jΔθ 1 ) = jexp (jΔθ 1 ′) (13) exp (jΔθ 2 ) = jexp (jΔθ 2 ′) (14) Formulas (13) and (14) are given by (4) ) Shows that each differential detection vector in the equation can be treated as a vector rotated leftward by π / 2, and even if the condition of the equation (6) is not satisfied,
The above explanation is correct under the conditions represented by the above equations (10), (11), and (12). That is, Δθ 1 , Δθ
2 indicates that the outputs of the adder 11 (that is, the output expressed by the equation (3)) are the same as the differential detection output expressed by the equation (8), although the degrees of approximation are different as long as they are in the same value region to some extent. Is the same as the differential phase ΔΦ obtained from the maximum ratio combined vector of

【0016】また、ダイバーシティ合成後の受信信号は
判定回路12により復号化される。なお、ゲイン発生部
14から乗算器5,10に与えられる乗算係数G1,G
2のうち受信信号強度R1,R2の小さい方に対応する
ものを0と設定したときには、加算器11の出力は選択
ダイバーシティ効果をもったものとなる。即ち合成ダイ
バーシティまたは選択ダイバーシティが、ゲイン発生部
14からの乗算係数次第により、即座に実現されること
になる。
The received signal after diversity combining is decoded by the decision circuit 12. The multiplication coefficients G1 and G provided from the gain generator 14 to the multipliers 5 and 10
When the one corresponding to the smaller of the received signal strengths R1 and R2 of 2 is set to 0, the output of the adder 11 has the selective diversity effect. That is, the combined diversity or the selected diversity is instantly realized depending on the multiplication coefficient from the gain generator 14.

【0017】上記の如く本実施例では、受信信号強度
(RSSI)と乗算係数との関係をテーブル化し、予じ
めゲイン発生部14のゲインテーブルメモリに設定して
おくことにより、ダイバーシティ効果を得るために処理
時間を長くし且つ回路規模を増大させている複素数相関
演算や複素数の重付け合成演算を必要としなくなってい
る。また遅延検波を用いているので、ダイバーシティブ
ランチ間の位相調整を必要とせず、更にスカラー値によ
る重付け合成を用いているので全体の回路規模を縮小化
している。また本実施例を用いた送受信システムの送信
機は、前記既知信号系列を送信信号中に挿入する必要が
なく、このため伝送効率が向上することになる。
As described above, in the present embodiment, the relationship between the received signal strength (RSSI) and the multiplication coefficient is made into a table and set in the gain table memory of the preliminary gain generating section 14 to obtain the diversity effect. Therefore, the complex number correlation operation and the complex number weighting / combining operation, which increase the processing time and increase the circuit scale, are no longer required. Further, since the differential detection is used, it is not necessary to adjust the phase between the diversity branches, and since the weighted synthesis by the scalar value is used, the whole circuit scale is reduced. Further, the transmitter of the transmission / reception system using the present embodiment does not need to insert the known signal sequence into the transmission signal, which improves the transmission efficiency.

【0018】なお、本発明は上記実施例に限定されるも
のではなく、この発明を逸脱しない範囲内において種々
変形応用が可能である。例えば上記実施例はダイバーシ
ティブランチを2個だけ備えるものであったが、これを
3個以上のダイバーシティブランチを備えるようにして
もよいことは無論である。
The present invention is not limited to the above embodiments, and various modifications and applications are possible without departing from the scope of the present invention. For example, in the above-mentioned embodiment, only two diversity branches are provided, but it goes without saying that this may be provided with three or more diversity branches.

【0019】[0019]

【発明の効果】以上詳述したように、本発明によれば、
ダイバーシティ合成を得るための演算時間を大幅に短縮
でき、且つ回路規模を大幅に縮小化でき、更に送信側で
信号中に既知信号系列の挿入を要しないので伝送効率を
向上できるダイバーシティ受信機の提供を可能とする。
As described in detail above, according to the present invention,
Providing a diversity receiver that can significantly reduce the computation time for obtaining diversity combining, can significantly reduce the circuit scale, and can improve transmission efficiency because it does not require insertion of a known signal sequence in the signal on the transmitting side Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の回路構成を示す図である。FIG. 1 is a diagram showing a circuit configuration of an embodiment of the present invention.

【図2】遅延検波を説明するための図である。FIG. 2 is a diagram for explaining differential detection.

【図3】従来のダイバーシティ受信機の構成を示すもの
である。
FIG. 3 shows a configuration of a conventional diversity receiver.

【符号の説明】[Explanation of symbols]

2 受信部 3 中間周波増幅器 4 遅延検波部 5 乗算器 7 受信部 8 中間周波増幅器 9 遅延検波部 10 乗算器 11 加算器 12 判定回路 13 周波数シンセサイザ 14 ゲイン発生部 21 受信部 22 直交検波部 23 複素乗算器 24 複素相関検出部 26 受信部 27 直交検波部 28 複素乗算器 29 複素相関検出部 30 加算器 31 判定回路 32 係数演算部 A ダイバーシティブランチ B ダイバーシティブランチ 2 reception unit 3 intermediate frequency amplifier 4 delay detection unit 5 multiplier 7 reception unit 8 intermediate frequency amplifier 9 delay detection unit 10 multiplier 11 adder 12 determination circuit 13 frequency synthesizer 14 gain generation unit 21 reception unit 22 quadrature detection unit 23 complex Multiplier 24 Complex correlation detector 26 Receiver 27 Quadrature detector 28 Complex multiplier 29 Complex correlation detector 30 Adder 31 Judgment circuit 32 Coefficient calculator A Diversity branch B Diversity branch

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の受信アンテナと、 それぞれ、上記複数の受信アンテナの1つに接続し、接
続している受信アンテナからの入力信号を高周波信号か
ら中間周波信号に周波数変換をする複数の受信部と、 上記複数の受信部へ局所発振周波数を供給する周波数シ
ンセサイザと、 それぞれ、上記複数の受信部の1つに接続し、接続して
いる受信部からの中間周波信号を増幅して出力すると共
に受信信号強度を出力する複数の中間周波増幅器と、 それぞれ、上記複数の中間周波増幅器の1つに接続し、
接続している中間周波増幅器よりの中間周波信号を遅延
検波し、先行シンボルとの位相差を作成して出力する複
数の遅延検波部と、 上記受信信号強度の各値とこの各値に対応する乗算係数
とを対応付けて記憶しているゲインテーブルメモリを備
え、上記複数の中間周波増幅器のいずれかよりの受信信
号強度が与えられたときに、それに対応する乗算係数を
上記ゲインテーブルメモリより読出して出力するゲイン
発生部と、 それぞれ上記複数の遅延検波部の1つに接続し、接続し
ている遅延検波部より出力される位相差と、当該遅延検
波部が接続している中間周波増幅器よりの上記受信信号
強度に対応するものとして上記ゲイン発生部より出力さ
れる乗算係数とを乗算して乗算結果を出力する複数の乗
算器と、 上記複数の乗算器からの各乗算結果を加算し、加算結果
を出力する加算器と、 上記加算器からの加算結果から信号を判定する判定回路
とを備えることを特徴とするダイバーシティ受信機。
1. A plurality of receiving antennas, and a plurality of receiving antennas, each of which is connected to one of the plurality of receiving antennas and frequency-converts an input signal from the connected receiving antennas from a high frequency signal to an intermediate frequency signal. Section, a frequency synthesizer for supplying a local oscillation frequency to the plurality of receiving sections, and each of which is connected to one of the plurality of receiving sections, and amplifies and outputs an intermediate frequency signal from the connected receiving section. A plurality of intermediate frequency amplifiers that output the received signal strength together with each of the plurality of intermediate frequency amplifiers, and
A plurality of differential detection units that differentially detect the intermediate frequency signal from the connected intermediate frequency amplifier, create a phase difference from the preceding symbol and output it, and the above-mentioned respective values of the received signal strength and the respective values A gain table memory is stored which is associated with a multiplication coefficient, and when a received signal strength from any of the plurality of intermediate frequency amplifiers is given, the corresponding multiplication coefficient is read from the gain table memory. And a phase difference output from the connected delay detection unit, which is connected to one of the plurality of delay detection units described above, and an intermediate frequency amplifier connected to the delay detection unit. Of a plurality of multipliers for multiplying the multiplication coefficient output from the gain generating unit as a signal corresponding to the received signal strength and outputting a multiplication result, and each multiplication from the plurality of multipliers. Adding fruit, an adder for outputting the addition result, the diversity receiver characterized by comprising a determination circuit for determining signal from the addition result from the adder.
JP7021295A 1995-01-13 1995-01-13 Diversity receiver Pending JPH08195705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7021295A JPH08195705A (en) 1995-01-13 1995-01-13 Diversity receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7021295A JPH08195705A (en) 1995-01-13 1995-01-13 Diversity receiver

Publications (1)

Publication Number Publication Date
JPH08195705A true JPH08195705A (en) 1996-07-30

Family

ID=12051162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7021295A Pending JPH08195705A (en) 1995-01-13 1995-01-13 Diversity receiver

Country Status (1)

Country Link
JP (1) JPH08195705A (en)

Similar Documents

Publication Publication Date Title
US6161001A (en) Diversity reception device
US6256340B1 (en) Phased array spread spectrum system and method5
US7117016B2 (en) Adaptive antenna base station apparatus
US7088956B2 (en) Path search circuit, radio receiver and radio transmitter, utilizing a directional beam
US6192066B1 (en) Spread spectrum communication apparatus and rake receiver
US5966095A (en) Adaptive array antenna receiving apparatus
JP3300252B2 (en) Adaptive transmission diversity apparatus and adaptive transmission diversity method
JP2000509575A (en) Method and apparatus for performing interference rejection with different beam, polarization, and phase relationships
KR950703817A (en) Spread Spectrum Communication Receivers and Repeaters
JP2002026787A (en) Wireless receiver
US6654618B2 (en) Variation compensating unit
US5109392A (en) Diversity receiver arrangement for digital signals
JPH0993158A (en) Receiver in spread spectrum communication system
US7116999B2 (en) Mobile communications receiving apparatus and method
US6148186A (en) Method of combining received signal of diversity type radio device and diversity type radio device
US7103118B2 (en) Vectorial combiner for diversity reception in RF tranceivers
JPH08195705A (en) Diversity receiver
US7787573B2 (en) Wireless system having channel fading compensation using minimum mean square error
JP2002280944A (en) Deviation compensating device
JPH06303171A (en) Diversity reception system
JP2000349696A (en) Reception method and receiver
JP3091634B2 (en) Diversity device
JPH10224281A (en) Diversity synchronization circuit
JP3554226B2 (en) Receiver
JP2003163622A (en) Adaptive array antenna device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090307

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100307

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100307

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120307

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130307

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10