JPH08195453A - Heat dissipation plate - Google Patents

Heat dissipation plate

Info

Publication number
JPH08195453A
JPH08195453A JP7019698A JP1969895A JPH08195453A JP H08195453 A JPH08195453 A JP H08195453A JP 7019698 A JP7019698 A JP 7019698A JP 1969895 A JP1969895 A JP 1969895A JP H08195453 A JPH08195453 A JP H08195453A
Authority
JP
Japan
Prior art keywords
heat dissipation
heat
pins
base
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7019698A
Other languages
Japanese (ja)
Inventor
Rokuro Shimada
六郎 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7019698A priority Critical patent/JPH08195453A/en
Publication of JPH08195453A publication Critical patent/JPH08195453A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE: To enhance heat dissipation efficiency by arranging heat dissipation pins at a predetermined interval on multiple imaginary lines extending radially from the center of a base thereby improving ventilation between the heat dissipation pins. CONSTITUTION: The heat dissipation plate 1 for dissipating heat generated from a semiconductor including an integrated circuit, e.g. an IC, into the air and cooling the semiconductor comprises a base 2 and multiple pins 3,... arranged at a predetermined interval on one side of the base 2. The base 2 of the heat dissipation plate 1 for absorbing heat from the semiconductor and transmitting the heat to the heat dissipation pins 3 is secured to the semiconductor and made of a light metal having high thermal conductivity, e.g. aluminum. The base 2 is arranged, on one side thereof, with multiple heat dissipation pins 3 and can be fixed, on the other side thereof, to one side of an IC, for example. The multiple heat dissipation pins 3 are arranged, at a predetermined interval, on a large number of imaginary lines 4 extending radially from the center of the base 2 and the lengths of heat dissipation pins 3 corresponding to alternate imaginary lines 4,... are differentiated (i.e., long heat dissipation pins 3A and short heat dissipation pins 3B).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体などの発熱体、
特に大量の熱を発生する半導体を具備した集積回路など
に好適な放熱板に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a heating element such as a semiconductor,
In particular, the present invention relates to a heat sink suitable for an integrated circuit including a semiconductor that generates a large amount of heat.

【0002】[0002]

【従来の技術】近年多数の半導体等を備えた素子や内部
配線を特殊な方法で1つの固体として結合した超小型電
子回路を備えたICが多くなってきている。また、この
ICの半導体は作動する過程で大量の熱を発生すると共
に、温度が上昇すると半導体自身の動作が不安定となる
不具合が発生する。そして、更に半導体の温度が上昇す
ると半導体が破壊してしまう。このため、半導体を冷却
する放熱板をICに取り付け、放熱板と空気とを熱交換
させて半導体の熱を空気中に放出し、半導体が高温にな
り動作不安定や破壊するのを防止している。
2. Description of the Related Art In recent years, there have been increasing numbers of ICs having microminiature electronic circuits in which elements including a large number of semiconductors and internal wiring are combined as a single solid by a special method. Further, the semiconductor of this IC generates a large amount of heat in the process of operating, and when the temperature rises, the operation of the semiconductor itself becomes unstable. Then, if the temperature of the semiconductor further rises, the semiconductor will be destroyed. Therefore, a heat sink that cools the semiconductor is attached to the IC, heat is exchanged between the heat sink and the air to release the heat of the semiconductor into the air, and the semiconductor is prevented from becoming hot and unstable in operation or destroyed. There is.

【0003】係る放熱板は、従来よりそれを構成するア
ルミニウムなどの金属製のベースの一面に、所定の間隔
を存して多数の薄板状フィンを設け、放熱板と空気との
接触面積を広くして放熱性能を上げているが、特に大量
の熱を発生する半導体を具備したICなどに対しては、
薄板状フィンの代わりに多数の細長い放熱ピンを碁盤目
状に配置して取り付け、放熱板と空気との接触面積を更
に拡大してより大きな放熱効果を得るようにしたものが
用いられている。
A conventional heat dissipation plate is provided with a large number of thin plate fins at a predetermined interval on one surface of a base made of metal such as aluminum, which makes the contact area between the heat dissipation plate and air wide. To improve the heat dissipation performance, especially for ICs equipped with semiconductors that generate a large amount of heat,
Instead of the thin plate fins, a large number of elongated heat dissipation pins are arranged and attached in a grid pattern to further increase the contact area between the heat dissipation plate and air to obtain a larger heat dissipation effect.

【0004】係る(後者の)放熱板の場合、従来ではそ
のベースの一面に多数の細く長い放熱ピンを切削加工し
て形成していたが、その場合はフライス盤等を用いて一
列ずつ縦横に切削しなければならず、切削に多大な手間
がかかると共に、一辺が1mm〜2mmの4角で長さ1
0mm以上の長い放熱ピンを切削加工すると、切削中に
途中から曲がったり欠けたりするため、安定した加工を
実現することが困難であった。
In the case of such (the latter) heat dissipation plate, conventionally, a large number of thin and long heat dissipation pins were formed by cutting on one surface of the base, but in that case, a milling machine or the like is used to cut each row vertically and horizontally. It takes a lot of time and labor for cutting, and one side is a square with a length of 1 mm to 2 mm and a length of 1
When a heat dissipation pin having a length of 0 mm or more is cut, it is difficult to realize stable processing because the heat dissipation pin is bent or chipped during cutting.

【0005】このため、近年では以下に述べる如くより
簡単な構成で細く長い放熱ピンを容易に形成できる方法
が開発されてきている。即ち、その場合は多数の細くて
長い穴を設けた型を樹脂で造り、この型に加熱溶融させ
たアルミニウムを流し込んでベースと同時に放熱ピンを
一体成形する。その後、上記樹脂型を所定の薬品で溶か
して取り除くことにより、ベースの一面に細く長い放熱
ピンを碁盤目状に形成した放熱板を得るものである。
Therefore, in recent years, a method has been developed in which a thin and long radiating pin can be easily formed with a simpler structure as described below. That is, in this case, a mold provided with a large number of thin and long holes is made of resin, and the heat-melted aluminum is poured into the mold to integrally form the radiation pin with the base. Then, the resin mold is melted and removed with a predetermined chemical to obtain a heat dissipation plate in which thin and long heat dissipation pins are formed in a grid pattern on one surface of the base.

【0006】係る放熱板は上記ICに交熱的に取り付け
られると共に、放熱ピンの先端には通常軸流ファン(プ
ロペラファン)が取り付けられるが、係る放熱板を空冷
して半導体を冷却する場合、放熱板に空気を吹き付けて
冷却すると加熱した空気は半導体の周囲に拡散されIC
の周囲の部品がその熱で温度上昇し、動作不安定になっ
たり破壊したりする。そのため、一般的に放熱板の冷却
はその周囲の空気をベースの中央に向けて移動させ、そ
の空気を吸引して外部に放出する方法が採られる。ま
た、限られた寸法の放熱板に設けた放熱ピンは細くて長
いものを密集して配置した方が放熱板の表面積が広くな
るため、ICが小型化されるに伴い、放熱ピンの密集度
は更に加速される傾向にあった。
The radiator plate is attached to the IC in a heat exchange manner, and an axial fan (propeller fan) is usually attached to the tip of the radiator pin. When the radiator plate is air-cooled to cool the semiconductor, When air is blown onto the heat sink to cool it, the heated air is diffused around the semiconductor and IC
The heat of the surrounding parts causes the temperature to rise, resulting in unstable operation or destruction. Therefore, generally, for cooling the heat dissipation plate, a method is adopted in which the air around the heat dissipation plate is moved toward the center of the base, and the air is sucked and discharged to the outside. In addition, since the surface area of the heat dissipation plate is larger when the heat dissipation pins provided on the heat dissipation plate of a limited size are thin and long and densely arranged, the density of the heat dissipation pins increases as the size of the IC decreases. Tended to be accelerated.

【0007】[0007]

【発明が解決しようとする課題】ここで、前記ファンに
て空気を吸引した場合、放熱板の周囲の空気はベースの
中央に向かって流れる。即ち、吸引された空気は放熱板
のベースの中央から放射する仮想線上を、放熱ピンと熱
交換しながら逆に外から中央に向かって流れることにな
る。一方で、従来の放熱板では多数の放熱ピンがベース
の一面に碁盤目状に配置されていたため、空気の流れに
対する放熱ピンの抵抗が大きくなる。特に、前述の如く
放熱ピンの密集度が高くなると、通風性の低下によって
逆に放熱性能が低下し、或いは、頭打ちとなってしまう
と共に、騒音も大きくなる。
When air is sucked by the fan, the air around the radiator plate flows toward the center of the base. That is, the sucked air flows from the outside toward the center on the imaginary line radiating from the center of the base of the heat radiating plate while exchanging heat with the heat radiating pin. On the other hand, in the conventional heat radiating plate, a large number of heat radiating pins are arranged in a grid pattern on one surface of the base, so that the resistance of the heat radiating pin to the flow of air increases. In particular, as described above, when the density of the heat radiating pins is high, the heat radiation performance is lowered due to the deterioration of ventilation, or the level of the heat is reached, and the noise is increased.

【0008】また、軸流ファンによって空気を吸引する
と、空気はベースの中央に向かって渦を巻きながら流れ
るようになるので、空気抵抗は一層大きくなる問題があ
った。
Further, when the air is sucked by the axial fan, the air flows while swirling toward the center of the base, so that the air resistance is further increased.

【0009】本発明は、係る従来技術の課題を対策する
ために成されたものであり、放熱ピン間の通風性を改善
することにより、放熱効率を向上させた放熱板を提供す
ることを目的とする。
The present invention has been made in order to solve the problems of the prior art, and it is an object of the present invention to provide a heat dissipation plate having improved heat dissipation efficiency by improving ventilation between the heat dissipation pins. And

【0010】[0010]

【課題を解決するための手段】即ち、請求項1の発明の
放熱板1は、ベース2の一面に多数の放熱ピン3・・・
を設けたものであって、ベース2の中央から放射する多
数の仮想線4・・・上に、所定間隔で放熱ピン3を配置
したものである。
That is, the heat radiating plate 1 according to the invention of claim 1 has a large number of heat radiating pins 3 ...
The heat dissipating pins 3 are arranged at predetermined intervals on a large number of virtual lines 4 ... Emitted from the center of the base 2.

【0011】請求項2の発明の放熱板1は、ベース2の
一面に多数の放熱ピン3・・・を設けたものであって、
ベース2の中央から渦状に放射する多数の仮想線4・・
・上に、所定間隔で放熱ピン3を配置したものである。
According to a second aspect of the present invention, there is provided a heat radiating plate 1 having a large number of heat radiating pins 3 on one surface of a base 2.
A large number of virtual lines 4 that radiate spirally from the center of the base 2.
The heat radiation pins 3 are arranged on the upper side at a predetermined interval.

【0012】また、請求項3の発明の放熱板1は上記各
発明において、各放熱ピン3・・・の長さに高低差をつ
けたものである。
Further, the heat radiating plate 1 of the invention of claim 3 is the same as in each of the above inventions, in which the length of each of the heat radiating pins 3 ...

【0013】更に、請求項4の発明の放熱板1は前記請
求項1または請求項2の発明において、各放熱ピン3・
・・の断面形状を木の葉状とし、それぞれ仮想線4・・
・の延在方向に指向させたものである。
Further, the heat dissipation plate 1 of the invention of claim 4 is the heat dissipation plate 3 according to the invention of claim 1 or 2,
.. The cross-sectional shape of the tree is leaf-shaped, and the virtual lines 4 ...
・ It is oriented in the direction of extension.

【0014】[0014]

【作用】請求項1の発明の放熱板1によれば、放熱ピン
3・・・をベース2の一面の中央から放射する多数の仮
想線4・・・上に配置したので、外側からベース2の中
央へ(或いはベース2の中央から外側へ)向かう空気の
流れに沿って放熱ピン3・・・が配置されるようにな
る。従って、放熱ピン3・・間を流れる空気の通風抵抗
を著しく減少させることができ、空気流を極めてスムー
ズなものとして放熱効率を向上させることが可能とな
る。
According to the heat radiating plate 1 of the invention of claim 1, since the heat radiating pins 3 ... Are arranged on a large number of virtual lines 4 ... The heat radiating pins 3 are arranged along the flow of air toward the center of the base (or from the center of the base 2 to the outside). Therefore, the ventilation resistance of the air flowing between the heat radiating pins 3 can be remarkably reduced, and the air flow can be made extremely smooth to improve the heat radiation efficiency.

【0015】請求項2の発明の放熱板1によれば、放熱
ピン3・・・をベース2の一面の中央から放射する多数
の渦状の仮想線4・・・上に配置しているので、特に軸
流ファンを用いた場合に、渦を巻きながら外側からベー
ス2の中央へ(或いはベース2の中央から外側へ)向か
う空気の流れに沿って放熱ピン3・・・が配置されるよ
うになる。従って、放熱ピン3・・間を流れる空気の通
風抵抗を著しく減少させることができ、空気流を極めて
スムーズなものとして放熱効率を一層向上させることが
可能となる。
According to the heat radiating plate 1 of the invention of claim 2, since the heat radiating pins 3 ... Are arranged on a large number of spiral virtual lines 4 ... Radiating from the center of one surface of the base 2, Especially when an axial fan is used, the heat dissipation pins 3 ... Are arranged along the air flow from the outside toward the center of the base 2 (or from the center of the base 2) while swirling. Become. Therefore, the ventilation resistance of the air flowing between the heat radiating pins 3 can be remarkably reduced, and the air flow can be made extremely smooth to further improve the heat radiation efficiency.

【0016】また、請求項3の発明の放熱板1によれば
上記各発明に加えて、ベース2の一面に設けた多数の放
熱ピン3・・・の長さに高低差をつけているので、放熱
板1への空気入口(或いは出口)における放熱ピン3・
・の密度を疎とすることができ、通風性能を一層向上さ
せることができる。
According to the heat dissipation plate 1 of the third aspect of the present invention, in addition to the above respective inventions, the length of a large number of the heat dissipation pins 3 provided on one surface of the base 2 has height differences. , A heat dissipation pin 3 at the air inlet (or outlet) to the heat dissipation plate 1
・ The density of can be made sparse and the ventilation performance can be further improved.

【0017】更に、請求項4の発明の放熱板1によれば
請求項1または請求項2の発明に加えて、各放熱ピン3
・・・の断面形状を木の葉状とすると共に、それぞれ放
熱ピン3・・・を仮想線4・・・の延在方向に指向させ
たので、放熱ピン3・・・に衝突する空気抵抗を更に低
減することができると共に、木の葉形状のエッジ部分か
ら効率良く放熱が行われるようになり、放熱効率をより
一層向上させることが可能となる。
Further, according to the heat dissipation plate 1 of the invention of claim 4, in addition to the invention of claim 1 or 2, each heat dissipation pin 3 is provided.
The cross-sectional shape of ... Is made to be a leaf shape, and the heat dissipation pins 3 ... Are oriented in the extending direction of the virtual lines 4 ... In addition to being able to reduce the amount of heat, heat can be efficiently radiated from the edge portion of the leaf shape, and the heat radiation efficiency can be further improved.

【0018】[0018]

【実施例】次に、図面に基づき本発明の実施例を詳述す
る。図1は本発明の放熱板1の正面図、図2は本発明の
放熱板1の側面図、図3は本発明の放熱板1のダイカス
ト成形金型10の断面図をそれぞれ示している。例えば
放熱板1はIC等の集積回路を具備した半導体から発生
する熱を空気中に放出して半導体を冷却するもので、ベ
ース2とベース2の一面に所定の間隔で配置した多数の
放熱ピン3・・とから構成されている。
Embodiments of the present invention will now be described in detail with reference to the drawings. 1 is a front view of a heat sink 1 of the present invention, FIG. 2 is a side view of the heat sink 1 of the present invention, and FIG. 3 is a cross-sectional view of a die casting mold 10 of the heat sink 1 of the present invention. For example, the heat radiating plate 1 radiates heat generated from a semiconductor having an integrated circuit such as an IC into the air to cool the semiconductor, and the base 2 and a large number of heat radiating pins arranged on one surface of the base 2 at a predetermined interval. It consists of 3 ...

【0019】放熱板1のベース2は半導体の熱を吸収し
て放熱ピン3に伝達すると共に、半導体に固定するため
のもので、熱電導率が高く軽いアルミニウム等の金属で
構成されている。係る、ベース2の一面に後述する放熱
ピン3を多数設けると共に、ベース2の他面はIC等の
一面に容易に取り付け可能に構成されている。そして、
ベース2にはIC等に取り付けるための図示しない取付
孔が所定位置に設けられている。
The base 2 of the heat radiating plate 1 is for absorbing the heat of the semiconductor and transmitting it to the heat radiating pin 3 and fixing it to the semiconductor, and is made of a metal such as aluminum having a high thermal conductivity and a light weight. A large number of heat dissipation pins 3 to be described later are provided on one surface of the base 2, and the other surface of the base 2 can be easily attached to one surface of an IC or the like. And
A mounting hole (not shown) for mounting on an IC or the like is provided in the base 2 at a predetermined position.

【0020】放熱ピン3はベース2の中央より放射する
多数の仮想線4・・・上に所定の間隔で多数突出して設
けられる。また、交互の仮想線4・・・に対応する放熱
ピン3・・・の長さには高低差(長い放熱ピン3A、短
い放熱ピン3Bで示す)をつけており、長い放熱ピン3
Aは例えば一辺が1mm〜2mmの四角形(実施例では
菱形)で20mm〜30mmの長さであり、短い放熱ピ
ン3Bは例えば一辺が1mm〜2mmの四角形(実施例
では菱形)で10mm〜25mmの長さである。
The heat dissipation pins 3 are provided so as to protrude from the center of the base 2 on a plurality of virtual lines 4 ... Further, there is a height difference (indicated by a long radiating pin 3A and a short radiating pin 3B) in the length of the radiating pins 3 ... Corresponding to the alternate virtual lines 4 ...
A is, for example, a quadrangle (diamond in the example) having a side of 1 mm to 2 mm and a length of 20 mm to 30 mm, and the short heat dissipation pin 3B is a quadrangle (diamond in the example) having a side of 1 mm to 2 mm and a length of 10 mm to 25 mm. Is the length.

【0021】次に、放熱板1の成形手順を図3で説明す
る。ダイカスト成形金型10はキャビティ側金型10A
と、コア側金型10Bとから構成され、コア側金型10
Bには前記放熱板1の成形金型11が取り付けられてい
る。そして、放熱板1の成形金型11の放熱ピン部13
の先端部に連通して真空室12が設けられると共に、真
空室12には図示しない通気性材料が設けられている。
この通気性材料は空気が容易に通過するが、放熱板1の
成形材料(アルミニウムなど)は容易に通過しない。ま
た、真空室12の一方には図示しないリミットスイッチ
を介して図示しない真空ポンプを具備したパイプ14が
接続されると共に、他方にはこれも図示しないリミット
スイッチを介して圧搾空気を吐出するパイプ15が接続
されている。
Next, the procedure for forming the heat sink 1 will be described with reference to FIG. The die casting mold 10 is a cavity side mold 10A.
And a core-side mold 10B, the core-side mold 10
A mold 11 for the heat dissipation plate 1 is attached to B. Then, the heat dissipation pin portion 13 of the molding die 11 of the heat dissipation plate 1
A vacuum chamber 12 is provided so as to communicate with the tip of the vacuum chamber 12, and the vacuum chamber 12 is provided with a breathable material (not shown).
Air easily passes through this breathable material, but the molding material (aluminum or the like) of the heat dissipation plate 1 does not easily pass through. A pipe 14 equipped with a vacuum pump (not shown) is connected to one of the vacuum chambers 12 via a limit switch (not shown), and the other end of the vacuum chamber 12 is a pipe 15 for discharging compressed air via a limit switch (not shown). Are connected.

【0022】そして、放熱板1を成形する場合は、先ず
放熱板1の成形金型11を図示しないヒータで成形可能
な温度に加熱する。次に、放熱板1の成形金型11に放
熱板1を容易に取り出すための図示しない離型材を塗布
し、金型(キャビティ側金型10Aとコア側金型10
B)を閉じる。そして、真空室12の他方に接続したパ
イプ15のリミットスイッチを閉じると共に、一方に接
続したパイプ14のリミットスイッチを開いて真空ポン
プで真空室12の空気を吸引して抜き取る。これにより
真空室12及び放熱板1の成形金型11内を真空にす
る。
When molding the heat dissipation plate 1, first, the molding die 11 of the heat dissipation plate 1 is heated to a temperature at which it can be molded by a heater (not shown). Next, a mold release material (not shown) for easily taking out the heat sink 1 is applied to the molding die 11 of the heat sink 1, and the die (cavity side die 10A and core side die 10A
Close B). Then, the limit switch of the pipe 15 connected to the other side of the vacuum chamber 12 is closed, the limit switch of the pipe 14 connected to one side is opened, and the air in the vacuum chamber 12 is sucked and extracted by the vacuum pump. As a result, the vacuum chamber 12 and the molding die 11 for the heat sink 1 are evacuated.

【0023】次に、+680℃〜+700℃で溶かした
図示しない材料(この場合アルミニウム)を図示しない
油圧シリンダー等を用い所定の圧力を加えて成形金型1
1内に充填する。このとき、金型11内は真空になって
いるので溶けたアルミニウム材料は容易に充填できる共
に、各放熱ピン部13・・・は先端で真空室12と連通
しているので、溶けたアルミニウム材料は各放熱ピン部
13・・・の先端まで容易に流入する。また、溶けたア
ルミニウム材料は真空室12に設けた通気性材料により
阻止され、それ以上真空室12に流入しない。
Next, a material (not shown) (aluminum in this case) melted at + 680 ° C. to + 700 ° C. is applied with a predetermined pressure using a hydraulic cylinder or the like (not shown) to form the molding die 1.
Fill within 1. At this time, since the inside of the mold 11 is in a vacuum state, the molten aluminum material can be easily filled, and the radiation pin portions 13 ... Easily flows into the tips of the heat dissipation pin portions 13 ... Further, the melted aluminum material is blocked by the breathable material provided in the vacuum chamber 12, and does not flow into the vacuum chamber 12 any more.

【0024】係るアルミニウム材料の充填が終了する
と、図示しない冷却装置でダイカスト成形金型10を冷
却する。これにより、成形金型11及び金型11内の製
品(放熱板1)、ランナー部等を冷却する。そして、所
定時間冷却して金型11内のアルミニウムが固化した状
態でダイカスト成形金型10のキャビティ側金型10A
とコア側金型10Bを開くと共に、真空ポンプを停止し
て一方のパイプ14のリミットスイッチを閉じる。そし
て、他方のパイプ15のリミットスイッチを開いて圧搾
空気を所定時間真空室12に吹き込むと共に、図示しな
いエジェクターピンで金型11より放熱板1を押出し、
放熱板1を取り出す。
When the filling of the aluminum material is completed, the die casting mold 10 is cooled by a cooling device (not shown). As a result, the molding die 11, the product (radiation plate 1) in the die 11 and the runner portion are cooled. Then, the cavity side mold 10A of the die casting mold 10 is cooled in a state where the aluminum in the mold 11 is solidified by cooling for a predetermined time.
Then, the core side mold 10B is opened, the vacuum pump is stopped, and the limit switch of the one pipe 14 is closed. Then, the limit switch of the other pipe 15 is opened to blow compressed air into the vacuum chamber 12 for a predetermined time, and the radiator plate 1 is pushed out from the mold 11 by an ejector pin (not shown).
The heat sink 1 is taken out.

【0025】また、真空室12に圧搾空気を吹き込むこ
とにより放熱板1の成型時に成形金型11、特に多数の
放熱ピン部13・・・或いは通気性材料等に付着したゴ
ミ(アルミニウム材料かす、カーボン等)を吹き飛ば
し、成形金型11、通気性材料等にゴミが付着して目詰
まりするのを防止すると共に、放熱板1及び成形金型1
1等を冷却する。そして、成形金型11より放熱板1を
取り出して成型時にできたバリ取り或いはベース2面と
ICとの接触面の仕上げ等の所定の処理を行ない、放熱
板1を完成する。
Further, by blowing compressed air into the vacuum chamber 12, dust (aluminum material residue, etc.) adhered to the molding die 11, particularly a large number of the radiation pin portions 13 ... Or the breathable material when the radiation plate 1 is molded. (For example, carbon) to prevent the dust from adhering to the molding die 11, the breathable material, etc. and clogging, and at the same time, the heat sink 1 and the molding die 1
Cool 1st etc. Then, the heat sink 1 is taken out from the molding die 11 and subjected to a predetermined process such as deburring that has been performed during molding or finishing of the contact surface between the base 2 surface and the IC to complete the heat sink 1.

【0026】係るダイカスト成形金型10によれば、従
来の如き樹脂型を使用することなく放熱板1を成形する
ことができるので、樹脂を溶かす手間もかからず、製造
コストの大幅な削減を図ることができる。
According to the die-cast molding die 10 as described above, since the heat sink 1 can be molded without using a conventional resin mold, there is no need to melt the resin, and the manufacturing cost is greatly reduced. Can be planned.

【0027】次に、放熱板1の使用例を説明する。ま
ず、図示しない電気回路に所定のIC等を取り付けると
共に、ICの所定位置に放熱板1のベース2の他面を密
着して取付孔を図示しないネジで固定する。そして、吸
引型の図示しない軸流ファンを放熱板1のベース2の一
面の中央に対向させ、且つ、放熱ピン3・・と接触しな
いように放熱ピン3・・の先端と小許隙間を設けて取り
付ける。
Next, an example of using the heat sink 1 will be described. First, a predetermined IC or the like is attached to an electric circuit (not shown), and the other surface of the base 2 of the heat dissipation plate 1 is closely attached to a predetermined position of the IC to fix the attachment hole with a screw (not shown). Then, a suction type axial fan (not shown) is made to face the center of one surface of the base 2 of the heat radiating plate 1, and a small clearance is provided between the tip of the heat radiating pin 3 ... To install.

【0028】そして、電気回路の図示しないスイッチを
入れると半導体が作動し、熱を発生すると共に、ファン
も作動して回転し、放熱板1の周囲の空気を多数の放熱
ピン3・・・を介して吸引する。吸引された空気は放熱
板1の外側からベース2の中央に向かって流入するが、
このとき放熱ピン3・・・はベース2の一面の中央から
放射する多数の仮想線4・・・上に配置されているの
で、係る空気の流れに沿って放熱ピン3・・・が配置さ
れることになる。
When a switch (not shown) of the electric circuit is turned on, the semiconductor operates to generate heat, and at the same time the fan also operates to rotate, so that the air around the radiator plate 1 is rotated by a large number of radiator pins 3. Aspirate through. The sucked air flows from the outside of the heat dissipation plate 1 toward the center of the base 2,
At this time, since the heat dissipation pins 3 ... Are arranged on a large number of virtual lines 4 ... Radiating from the center of one surface of the base 2, the heat dissipation pins 3 ... Are arranged along the air flow. Will be.

【0029】従って、放熱ピン3・・間を流れる空気の
通風抵抗が著しく減少し、空気流が極めてスムーズなも
のとなって半導体からの熱が円滑に発散されるようにな
るので、温度上昇による半導体の作動不安定や破損等の
不具合を阻止することができる。
Therefore, the ventilation resistance of the air flowing between the heat radiating pins 3 is remarkably reduced, the air flow becomes extremely smooth, and the heat from the semiconductor is smoothly dissipated. Problems such as unstable operation and damage of the semiconductor can be prevented.

【0030】特に、図1の場合空気流の入口となるベー
ス2の外周部分では放熱ピン3・・の密度が疎となると
共に、放熱ピン3・・には交互に高低差を付けられてい
るので(放熱ピン3A、3B)、空気流の出口の放熱ピ
ン3・・の密度も疎となる。従って、放熱板1に空気が
入り易く或いは出易くなるので、その通風性能を一層向
上させることができる。
In particular, in the case of FIG. 1, the density of the heat radiating pins 3, ... Is sparse in the outer peripheral portion of the base 2 which is the inlet of the air flow, and the heat radiating pins 3 ,. Therefore (radiation pins 3A, 3B), the density of the radiation pins 3 at the outlet of the air flow is also sparse. Therefore, air easily enters or exits the heat dissipation plate 1, so that the ventilation performance can be further improved.

【0031】次に、図4乃至図6ではベース2の中央か
ら渦状(右巻き或いは左巻き)に放射した多数の仮想線
4・・・上に、断面形状を木の葉状とした多数の放熱ピ
ン3・・・を設けている。そして、各放熱ピン3・・・
を仮想線4・・・の延在方向に指向させると共に、交互
の仮想線4・・に対応する放熱ピン3・・に高低差(長
いものを放熱ピン3A、短いものを放熱ピン3Bで示
す)をつけている。
Next, in FIG. 4 to FIG. 6, a large number of radiating pins 3 radiating spirally (right-handed or left-handed) from the center of the base 2 ... ... is provided. And each radiation pin 3 ...
Are directed in the direction of extension of the virtual lines 4 ..., and the height difference between the heat radiation pins 3 ... Corresponding to the alternate virtual lines 4 ... Is indicated by the heat radiation pins 3A (long ones and heat radiation pins 3B, short ones). ) Is attached.

【0032】ここで、上記軸流ファンが回転すると、実
際にはその回転に沿って空気が渦状に吸引されるが、本
発明では放熱ピン3・・・をベース2の一面の中央から
放射する多数の渦状の仮想線4・・・上に配置している
ので、前述の如く渦を巻きながら外側からベース2の中
央へ向かう空気の流れに沿って放熱ピン3・・・が配置
されることになる。従って、放熱ピン3・・間を流れる
空気の通風抵抗が著しく減少し、空気流を極めてスムー
ズなものとして放熱効率を一層向上させ、且つ、騒音も
低減させることが可能となる。
Here, when the axial fan rotates, air is actually sucked in a vortex along the rotation, but in the present invention, the radiation pins 3 ... Are radiated from the center of one surface of the base 2. Since they are arranged on a large number of vortex-shaped imaginary lines 4 ..., the radiating pins 3 ... Are arranged along the air flow from the outside toward the center of the base 2 while swirling as described above. become. Therefore, the ventilation resistance of the air flowing between the heat radiating pins 3 is remarkably reduced, the air flow is made extremely smooth, and the heat radiation efficiency is further improved, and the noise can be reduced.

【0033】特に、各放熱ピン3・・・の断面形状を木
の葉状とし、それぞれ放熱ピン3・・・を仮想線4・・
・の延在方向に指向させたので、放熱ピン3・・・に衝
突する空気抵抗を更に低減することができると共に、木
の葉形状のエッジ部分から効率良く放熱が行われるよう
になり、放熱効率をより一層向上させることが可能とな
る。
In particular, the cross-sectional shape of each of the heat radiating pins 3 ... Is a leaf shape, and the heat radiating pins 3 ...
Since it is oriented in the extending direction of, the air resistance that collides with the heat dissipation pins 3 ... Can be further reduced, and heat can be efficiently dissipated from the edge portion of the leaf shape, and the heat dissipation efficiency can be improved. It is possible to further improve.

【0034】また、図7、図8に示す如く放熱ピン3
を、ベース2の一面の中央から放射する多数の仮想線4
・・・上に配置して設けた多数の長い放熱ピン3A・・
・と、放射した放熱ピン3Aの外側の粗の部分の間に設
けた円柱形状(この場合4角でもよい)の短い放熱ピン
3C・・・とから構成しても良い。この場合は図1より
放熱ピン3・・・が密となり、更に放熱板1の放熱面積
が増大する。
Further, as shown in FIG. 7 and FIG.
Is radiated from the center of one surface of the base 2 with a number of virtual lines 4
... A large number of long radiating pins 3A arranged above
, And a short radiating pin 3C having a cylindrical shape (in this case, a square shape may be used) provided between the radiated radiating pin 3A and a rough portion on the outer side. In this case, as shown in FIG. 1, the heat dissipation pins 3 are denser, and the heat dissipation area of the heat dissipation plate 1 is further increased.

【0035】更に、上記実施例ではベース2の一面の中
央から放射する仮想線4・・・上に多数の放熱ピン3・
・・を配置して設けると共に、交互の仮想線4・・・に
対応する放熱ピン3に高低差をつけたが、それに限ら
ず、図9に示す如くベース2の中央部の放熱ピン3を低
くして通風抵抗を低くし、外周部を高く構成しても良
い。更に、図10に示す如くベース2の中央部の放熱ピ
ン3を高くすると共に、外周部を低くして通風抵抗を低
くしても良い。
Further, in the above embodiment, a large number of heat radiation pins 3 are arranged on the virtual line 4 ...
.. are arranged and the heat radiation pins 3 corresponding to the alternate virtual lines 4 ... Are provided with different heights. However, this is not restrictive, and the heat radiation pin 3 in the central portion of the base 2 is arranged as shown in FIG. The ventilation resistance may be lowered by lowering it and the outer peripheral portion may be raised by lowering it. Further, as shown in FIG. 10, the radiating pin 3 at the center of the base 2 may be raised and the outer peripheral portion may be lowered to reduce the ventilation resistance.

【0036】尚、実施例では放熱ピン3・・・を四角
(菱形)、丸或いは木の葉状に形成したが、それに限ら
ず、三角形、星形或いは多角形等に形成しても本発明は
有効である。また、実施例では吸引型の軸流ファンを用
いた場合について説明したが、吐出型の軸流ファンであ
っても本発明は有効である。更に、実施例では放熱板1
のベース2の一面の中央に対向して軸流ファンを放熱ピ
ン3と接触しないように設けたが、これに限らず、放熱
板1の一面(放熱ピン3側)に、図示しないファン取付
孔を設け、この取付孔に小型のファンを取り付けて放熱
板1とファンとを一体化したものでも本発明は有効であ
る。
In the embodiment, the radiating pins 3 ... Are formed in the shape of a square (diamond), circle or leaf, but the present invention is not limited to this and the present invention is also effective. Is. Further, in the embodiment, the case where the suction type axial flow fan is used has been described, but the present invention is effective even if it is a discharge type axial flow fan. Further, in the embodiment, the heat sink 1
Although the axial fan is provided so as not to come into contact with the heat dissipation pin 3 so as to face the center of one surface of the base 2, the present invention is not limited to this. The present invention is also effective when the heat dissipation plate 1 and the fan are integrated by installing a small fan in this mounting hole.

【0037】また、実施例ではファンによる強制空冷の
みについて説明したが、空気の自然対流による放熱であ
っても、空気流が円滑化されて放熱性能の向上が期待で
きることは云うまでもない。更に、実施例では半導体の
放熱に本発明の放熱板1を適用したが、他のブレーキな
どの如何なる発熱体にも本発明は有効である。
Further, although only the forced air cooling by the fan has been described in the embodiment, it is needless to say that even if the heat is radiated by natural convection, the air flow can be smoothed and the heat radiation performance can be improved. Further, although the heat dissipation plate 1 of the present invention is applied to the heat dissipation of the semiconductor in the embodiment, the present invention is effective for any heating element such as other brakes.

【0038】[0038]

【発明の効果】以上詳述した如く請求項1の発明によれ
ば、放熱ピンをベースの一面の中央から放射する多数の
仮想線上に配置したので、外側からベースの中央へ(或
いはベースの中央から外側へ)向かう空気の流れに沿っ
て放熱ピンが配置されるようになる。従って、放熱ピン
間を流れる空気の通風抵抗を著しく減少させることがで
き、空気流を極めてスムーズなものとして放熱効率を向
上させることが可能となる。
As described in detail above, according to the invention of claim 1, since the heat dissipation pins are arranged on a large number of imaginary lines radiating from the center of one surface of the base, from the outside to the center of the base (or the center of the base). The heat radiating pins are arranged along the flow of air from the outside (to the outside). Therefore, the ventilation resistance of the air flowing between the heat radiating pins can be remarkably reduced, and the air flow can be made extremely smooth to improve the heat radiation efficiency.

【0039】請求項2の発明によれば、放熱ピンをベー
スの一面の中央から放射する多数の渦状の仮想線上に配
置しているので、特に軸流ファンを用いた場合に、渦を
巻きながら外側からベースの中央へ(或いはベースの中
央から外側へ)向かう空気の流れに沿って放熱ピンが配
置されるようになる。従って、放熱ピン間を流れる空気
の通風抵抗を著しく減少させることができ、空気流を極
めてスムーズなものとして放熱効率を一層向上させるこ
とが可能となる。
According to the second aspect of the present invention, since the heat radiation pins are arranged on a large number of vortex-shaped virtual lines radiating from the center of one surface of the base, the whirlpool is generated when the axial fan is used. The heat dissipation pins are arranged along the air flow from the outside to the center of the base (or from the center of the base to the outside). Therefore, the ventilation resistance of the air flowing between the heat radiating pins can be significantly reduced, and the air flow can be made extremely smooth to further improve the heat radiation efficiency.

【0040】また、請求項3の発明によれば上記各発明
に加えて、ベースの一面に設けた多数の放熱ピンの長さ
に高低差をつけているので、放熱板への空気入口(或い
は出口)における放熱ピンの密度を疎とすることがで
き、通風性能を一層向上させることができる。
Further, according to the invention of claim 3, in addition to the above-mentioned inventions, since the length of a large number of heat radiation pins provided on one surface of the base has height differences, the air inlet to the heat radiation plate (or The density of the radiation pins at the outlet) can be made sparse, and the ventilation performance can be further improved.

【0041】更に、請求項4の発明によれば請求項1ま
たは請求項2の発明に加えて、各放熱ピンの断面形状を
木の葉状とすると共に、それぞれ放熱ピンを仮想線の延
在方向に指向させたので、放熱ピンに衝突する空気抵抗
を更に低減することができると共に、木の葉形状のエッ
ジ部分から効率良く放熱が行われるようになり、放熱効
率をより一層向上させることが可能となる。
Furthermore, according to the invention of claim 4, in addition to the invention of claim 1 or claim 2, the cross-sectional shape of each radiating pin is made into a leaf shape, and each radiating pin is arranged in the extending direction of the imaginary line. Since it is oriented, it is possible to further reduce the air resistance that collides with the heat dissipation pin, and it is possible to efficiently dissipate heat from the edge portion of the leaf shape, and it is possible to further improve heat dissipation efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の放熱板の正面図である。FIG. 1 is a front view of a heat sink of the present invention.

【図2】本発明の放熱板の側面図である。FIG. 2 is a side view of a heat sink of the present invention.

【図3】本発明の放熱板の成形金型の断面図である。FIG. 3 is a cross-sectional view of a molding die for a heat dissipation plate of the present invention.

【図4】木の葉状の放熱ピンを渦状に配置した放熱板の
正面図である。
FIG. 4 is a front view of a heat dissipation plate in which leaf-shaped heat dissipation pins are arranged spirally.

【図5】図4の木の葉状の放熱ピンを逆の渦状に配置し
た放熱板の正面図である。
5 is a front view of a heat dissipation plate in which the leaf-shaped heat dissipation pins of FIG. 4 are arranged in an opposite spiral shape.

【図6】図4、図5の放熱板の側面図である。6 is a side view of the heat sink of FIGS. 4 and 5. FIG.

【図7】放熱ピンの外方の粗の部分に放熱ピンを設けた
放熱板の正面図である。
FIG. 7 is a front view of a heat dissipation plate in which a heat dissipation pin is provided on a rough portion outside the heat dissipation pin.

【図8】図7の放熱板の側面図である。FIG. 8 is a side view of the heat dissipation plate of FIG.

【図9】外周の放熱ピンを高く中央を低くした放熱板の
側面図である。
FIG. 9 is a side view of a heat dissipation plate in which a heat dissipation pin on the outer periphery is high and a center is low.

【図10】外周の放熱ピンを低く中央を高くした放熱板
の側面図である。
FIG. 10 is a side view of a heat dissipation plate in which a heat dissipation pin on the outer circumference is low and a center is high.

【符号の説明】[Explanation of symbols]

1 放熱板 2 ベース 3 放熱ピン 4 仮想線 10 ダイカスト成形金型 12 真空室 13 放熱ピン部 1 heat sink 2 base 3 heat sink pin 4 virtual line 10 die casting mold 12 vacuum chamber 13 heat sink pin section

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ベースの一面に多数の放熱ピンを設けた
放熱板において、 前記ベースの中央から放射する多数の仮想線上に、所定
間隔で前記放熱ピンを配置したことを特徴とする放熱
板。
1. A heat dissipation plate having a large number of heat dissipation pins provided on one surface of a base, wherein the heat dissipation pins are arranged at predetermined intervals on a plurality of virtual lines radiating from the center of the base.
【請求項2】 ベースの一面に多数の放熱ピンを設けた
放熱板において、 前記ベースの中央から渦状に放射する多数の仮想線上
に、所定間隔で前記放熱ピンを配置したことを特徴とす
る放熱板。
2. A heat dissipation plate having a large number of heat dissipation pins provided on one surface of a base, wherein the heat dissipation pins are arranged at predetermined intervals on a plurality of virtual lines radiating spirally from the center of the base. Board.
【請求項3】 各放熱ピンの長さに高低差をつけたこと
を特徴とする請求項1または請求項2の放熱板。
3. The heat radiating plate according to claim 1, wherein the length of each heat radiating pin is different in height.
【請求項4】 各放熱ピンの断面形状を木の葉状とし、
それぞれ仮想線の延在方向に指向させたことを特徴とす
る請求項1または請求項2の放熱板。
4. The cross-sectional shape of each radiating pin is a leaf shape,
The radiator plate according to claim 1 or 2, wherein the radiator plate is oriented in the extending direction of the virtual line.
JP7019698A 1995-01-12 1995-01-12 Heat dissipation plate Pending JPH08195453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7019698A JPH08195453A (en) 1995-01-12 1995-01-12 Heat dissipation plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7019698A JPH08195453A (en) 1995-01-12 1995-01-12 Heat dissipation plate

Publications (1)

Publication Number Publication Date
JPH08195453A true JPH08195453A (en) 1996-07-30

Family

ID=12006494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7019698A Pending JPH08195453A (en) 1995-01-12 1995-01-12 Heat dissipation plate

Country Status (1)

Country Link
JP (1) JPH08195453A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015008A (en) * 1997-07-14 2000-01-18 Mitsubishi Electric Home Appliance Co., Ltd. Heat radiating plate
US6729383B1 (en) * 1999-12-16 2004-05-04 The United States Of America As Represented By The Secretary Of The Navy Fluid-cooled heat sink with turbulence-enhancing support pins
JP2011044619A (en) * 2009-08-22 2011-03-03 Stanley Electric Co Ltd Heat sink and cooling system
JP2011134816A (en) * 2009-12-23 2011-07-07 Fa-Lian Technology Co Ltd Heat sink device for high-power led streetlight
US8982559B2 (en) 2008-02-08 2015-03-17 Fuchigami Micro Co., Ltd. Heat sink, cooling module and coolable electronic board
JP2019155455A (en) * 2018-03-16 2019-09-19 日本軽金属株式会社 Manufacturing method for liquid-cooled jacket
CN113035805A (en) * 2021-03-04 2021-06-25 阳光电源股份有限公司 Liquid cooling plate and power module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015008A (en) * 1997-07-14 2000-01-18 Mitsubishi Electric Home Appliance Co., Ltd. Heat radiating plate
US6729383B1 (en) * 1999-12-16 2004-05-04 The United States Of America As Represented By The Secretary Of The Navy Fluid-cooled heat sink with turbulence-enhancing support pins
US8982559B2 (en) 2008-02-08 2015-03-17 Fuchigami Micro Co., Ltd. Heat sink, cooling module and coolable electronic board
JP2011044619A (en) * 2009-08-22 2011-03-03 Stanley Electric Co Ltd Heat sink and cooling system
JP2011134816A (en) * 2009-12-23 2011-07-07 Fa-Lian Technology Co Ltd Heat sink device for high-power led streetlight
JP2019155455A (en) * 2018-03-16 2019-09-19 日本軽金属株式会社 Manufacturing method for liquid-cooled jacket
CN113035805A (en) * 2021-03-04 2021-06-25 阳光电源股份有限公司 Liquid cooling plate and power module

Similar Documents

Publication Publication Date Title
US6986384B2 (en) Cooling apparatus for dissipating heat from a heat source
US7063504B2 (en) Cooling fan
US6926070B2 (en) System and method for providing cooling systems with heat exchangers
CN1592568B (en) High performance cooling device with vapor chamber
TW200421965A (en) Heat-dissipating device and a housing thereof
JPH09172113A (en) Heat sink for semiconductor device
JP2007234957A (en) Heat sink with centrifugal fan
JPH08288438A (en) Cooling device for electronic equipment
JPH08195453A (en) Heat dissipation plate
CA2348618A1 (en) Apparatus for cooling a box with heat generating elements received therein and a method for cooling same
US5873407A (en) Windblown-type heat-dissipating device for computer mother board
US20040085727A1 (en) Computer main body cooling system
CN209930381U (en) Air-cooled radiating uncooled infrared core
US20020079086A1 (en) Embedded centrifugal cooling device
US7178587B2 (en) Heat-dissipating module
KR20040044705A (en) Cooling Apparatus, and Electric-Electronic Equipment with the Cooling Apparatus
JP2004537869A (en) Heat dissipation system
EP3584442A1 (en) Controller and vacuum pump device
JP3077575B2 (en) Heat sink cooling device
JPH09213849A (en) Cooler of liquid-cooled heat sink
JPH08316389A (en) Heat sink cooler
US20030116309A1 (en) Heat exchanging apparatus and method of manufacture
JP3449605B2 (en) Heat dissipation housing for electronic equipment
JPH09138091A (en) Radiating plate
JP2003258473A (en) Cooler having heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040406

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060123

A131 Notification of reasons for refusal

Effective date: 20060131

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530