JPH08195379A - Plasma processing method and device - Google Patents

Plasma processing method and device

Info

Publication number
JPH08195379A
JPH08195379A JP7003366A JP336695A JPH08195379A JP H08195379 A JPH08195379 A JP H08195379A JP 7003366 A JP7003366 A JP 7003366A JP 336695 A JP336695 A JP 336695A JP H08195379 A JPH08195379 A JP H08195379A
Authority
JP
Japan
Prior art keywords
plasma
electrode
vacuum container
substrate
induction coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7003366A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yanagi
義弘 柳
Ichiro Nakayama
一郎 中山
Tomohiro Okumura
智洋 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7003366A priority Critical patent/JPH08195379A/en
Publication of JPH08195379A publication Critical patent/JPH08195379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE: To provide a plasma processing method where a work is processed with a plasma optimal in distribution and a plasma processing device which is capable of generating a plasma of high density in a comparatively high vacuum. CONSTITUTION: A first electrode 23 on which a substrate 24 is placed is provided inside a vacuum chamber 18, an electromagnetic induction coil 22 and a second electrode 25 are so installed as confront the first electrode 23, and a first high- frequency power supply 26 which applies a high-frequency voltage to the electromagnetic induction coil 22 and the second electrode 25 is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体等の製造に使用
するプラズマ処理方法及び装置、特に特定のプラズマに
よるプラズマ処理方法及び、比較的高真空度において高
密度プラズマを発生することが可能で、かつプラズマ密
度の分布に優れたプラズマ処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing method and apparatus used for manufacturing semiconductors and the like, and more particularly to a plasma processing method using a specific plasma and capable of generating high density plasma at a relatively high vacuum degree. And a plasma processing apparatus excellent in distribution of plasma density.

【0002】[0002]

【従来の技術】近来、半導体素子の微細化に対応して、
ドライエッチング技術に関しては高アスペクト比の素子
の加工等、プラズマCVD技術に関しては高アスペクト
比の素子の埋め込み等を実現するため、これらのプラズ
マ処理は高真空度の下で行うことが求められている。例
えばドライエッチングの場合、高真空度の下で高密度プ
ラズマを発生させると、基板表面に形成されるイオンシ
ースの中でイオンと、中性ラジカル粒子との衝突が少な
くなるため、イオンの方向性が揃うほか、電離度が高い
ため基板に到達するイオン対中性ラジカル入射粒子束の
比が大きくなり、エッチングの異方向性が高められる等
の効果がある。
2. Description of the Related Art Recently, in response to miniaturization of semiconductor elements,
In order to realize processing of a high aspect ratio element in the dry etching technology and embedding of a high aspect ratio element in the plasma CVD technology, it is required that these plasma treatments be performed under a high degree of vacuum. . For example, in the case of dry etching, when high-density plasma is generated under a high degree of vacuum, collisions between ions and neutral radical particles in the ion sheath formed on the substrate surface are reduced, so the directionality of the ions is reduced. In addition, since the ionization degree is high, the ratio of the ion fluxes of the neutral radicals and the incident particles that reach the substrate is increased, and the different direction of etching is enhanced.

【0003】一方、基板に到達するイオンエネルギーを
制御することも重要である。イオンエネルギーが大きい
と選択比の低下を招いたり、基板に物理的,電気的ダメ
ージを与えることがあるため、最適なエッチングを安定
して行うためには、イオンエネルギーを制御することが
必要である。
On the other hand, it is also important to control the ion energy reaching the substrate. If the ion energy is large, the selection ratio may be lowered, and the substrate may be physically or electrically damaged. Therefore, it is necessary to control the ion energy in order to perform optimum etching stably. .

【0004】従来の一般的なプラズマ処理方法として
は、容量結合性のプラズマを用いる方法と、誘導結合性
のプラズマを用いる方法が一般的である。容量結合性の
プラズマを用いる方法を適用した装置の一例を図3に示
す。図中、1は真空容器で、筒状体2の上下開口部を上
方壁面体3と下方壁面体4により封止したものであり、
必要に応じて前記筒状体2の側面に吸排気孔等が設けら
れる。5は前記上方壁面体3の内面に配置された上部電
極、6は前記下方壁面体4の内面において前記上部電極
5と対向する位置に配置された下部電極、7は前記下部
電極6上に載置された基板、8は高周波電源である。こ
の装置の動作は、前記上部電極5と下部電極6との間に
高周波電源8より高周波電圧を印加することにより、真
空容器1内に容量結合性のプラズマを発生させるもので
あるが、真空度を上げて行くと、それにつれて電子とイ
オンの衝突確率が低くなり、高真空度において高密度プ
ラズマを発生させることが難しい。
As a conventional general plasma processing method, a method using capacitive coupling plasma and a method using inductive coupling plasma are general. An example of an apparatus to which the method using capacitively coupled plasma is applied is shown in FIG. In the figure, 1 is a vacuum container, in which the upper and lower openings of a tubular body 2 are sealed by an upper wall surface body 3 and a lower wall surface body 4,
Intake and exhaust holes and the like are provided on the side surface of the cylindrical body 2 as needed. 5 is an upper electrode arranged on the inner surface of the upper wall body 3, 6 is a lower electrode arranged on the inner surface of the lower wall body 4 so as to face the upper electrode 5, and 7 is mounted on the lower electrode 6. The substrate 8 placed is a high frequency power source. The operation of this device is to generate a capacitively-coupled plasma in the vacuum container 1 by applying a high frequency voltage from a high frequency power source 8 between the upper electrode 5 and the lower electrode 6. As the temperature rises, the probability of collision between electrons and ions decreases accordingly, making it difficult to generate high-density plasma at high vacuum.

【0005】一方、誘導結合性のプラズマを用いる方法
は、高真空度においても十分な処理速度が得られる高密
度プラズマを利用することができる。この誘導結合性の
プラズマを用いる方法を適用した装置は、真空容器に設
けた電磁誘導コイルに高周波電流を流すことにより、真
空容器内に高周波磁界を発生させ、この高周波磁界によ
り誘導される誘導電界を真空容器内に発生させることに
よって電子の加速を行うもので、前記電磁誘導コイルの
電流を大きくすれば、高真空度においても十分な処理速
度が得られる高密度プラズマを発生させることができる
のであるが、後述のようにプラズマ分布の点で問題があ
る。この種の電磁誘導コイルを用いた装置の例として
は、図4に示すような円筒型と、図5に示すような平板
型があり、以下これについて説明する。なお、この2つ
の例は電磁誘導コイルの配置以外は全く同一であるの
で、同一の符号を付して説明する。
On the other hand, the method using inductively coupled plasma can utilize high density plasma which can obtain a sufficient processing speed even at a high degree of vacuum. The apparatus to which the method using the inductively coupled plasma is applied generates a high frequency magnetic field in the vacuum container by passing a high frequency current through an electromagnetic induction coil provided in the vacuum container, and the induction electric field induced by the high frequency magnetic field is generated. Is generated in a vacuum container to accelerate electrons, and by increasing the current of the electromagnetic induction coil, it is possible to generate a high-density plasma capable of obtaining a sufficient processing speed even at a high degree of vacuum. However, there is a problem in plasma distribution as described later. Examples of devices using this type of electromagnetic induction coil include a cylindrical type as shown in FIG. 4 and a flat plate type as shown in FIG. 5, which will be described below. Since these two examples are completely the same except for the arrangement of the electromagnetic induction coil, they will be described with the same reference numerals.

【0006】図4,図5において、9は真空容器で、筒
状体10の上下開口部を上方壁面体11と下方壁面体12によ
り封止したものであり、必要に応じて前記筒状体10の側
面に吸排気孔等が設けられる。13は電磁誘導コイル、14
は下方壁面体12の内面に配置された電極、15は電極14上
に載置された基板、16は第1高周波電源、17は第2高周
波電源である。ここで、真空容器9内に適当なガスを導
入しつつ排気し、真空容器9内を適当な圧力に保ちなが
ら、第1高周波電源16より電磁誘導コイル13に高周波電
圧を印加することにより、真空容器9内にプラズマが発
生し、基板15に対してエッチング,デポジション,表面
改質等のプラズマ処理を行うことができる。なお、この
とき、電極14にも第2高周波電源17より高周波電圧を印
加すると、基板15に到達するイオンエネルギーを制御す
ることができる。
4 and 5, a vacuum container 9 is formed by sealing the upper and lower openings of a cylindrical body 10 with an upper wall surface body 11 and a lower wall surface body 12, and if necessary, the cylindrical body. Intake and exhaust holes are provided on the side surface of 10. 13 is an electromagnetic induction coil, 14
Is an electrode arranged on the inner surface of the lower wall body 12, 15 is a substrate placed on the electrode 14, 16 is a first high frequency power supply, and 17 is a second high frequency power supply. A vacuum is generated by applying a high-frequency voltage from the first high-frequency power source 16 to the electromagnetic induction coil 13 while evacuating while introducing a suitable gas into the vacuum container 9 and maintaining the inside of the vacuum container 9 at a suitable pressure. Plasma is generated in the container 9, and the substrate 15 can be subjected to plasma processing such as etching, deposition and surface modification. At this time, if a high frequency voltage is applied to the electrode 14 from the second high frequency power supply 17, the ion energy reaching the substrate 15 can be controlled.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、容量結
合性のプラズマを用いてプラズマ処理を行う方法は、前
記図3に示す容量結合型の装置が持つ問題点がそのまま
現われてしまう。即ち、この装置は、真空度が高くなる
につれて電子とイオンの衝突確率が低くなり、高真空度
において高密度プラズマを発生させることが難しく、十
分な処理速度が得られない。これを改善するために高周
波電圧を無理に高くしてプラズマ密度を高くしようとす
ると、イオンエネルギーが大きくなりエッチング選択比
が低下したり、基板にダメージを与えたりする結果とな
る。また誘導結合性のプラズマを用いてプラズマ処理を
行う方法も、前記図4及び図5に示す誘導結合型の装置
が持つ問題点がそのまま現われてしまう。即ち、この装
置は、電子が基板面に対して平行で、かつ閉じた円弧上
に沿って加速され、真空容器の壁面で加速電子が失われ
る確率が減少するので高密度のプラズマが得られるが、
反面、被加工物に対して最適なプラズマ分布を得るのが
難しいという問題点がある。
However, in the method of performing plasma processing using capacitively coupled plasma, the problems of the capacitively coupled device shown in FIG. That is, in this apparatus, the probability of collision between electrons and ions decreases as the vacuum degree increases, and it is difficult to generate high-density plasma at a high vacuum degree, and a sufficient processing speed cannot be obtained. If the high frequency voltage is forcibly increased to increase the plasma density in order to improve this, the ion energy increases and the etching selectivity decreases, or the substrate is damaged. In addition, the method of performing plasma processing using inductively coupled plasma also directly shows the problems of the inductively coupled apparatus shown in FIGS. 4 and 5. That is, in this apparatus, electrons are accelerated in parallel with the substrate surface and along a closed arc, and the probability of accelerating electrons being lost on the wall surface of the vacuum container is reduced, so that high density plasma can be obtained. ,
On the other hand, there is a problem that it is difficult to obtain the optimum plasma distribution for the work piece.

【0008】本発明は、このような従来の問題点に鑑
み、被加工物に対して最適なプラズマ分布に基づくプラ
ズマ処理方法及び、比較的高真空度において高密度プラ
ズマを発生することが可能で、かつプラズマ密度の分布
に優れたプラズマ処理装置を提供することを目的とす
る。
In view of such conventional problems, the present invention is capable of generating a high-density plasma at a relatively high degree of vacuum and a plasma processing method based on an optimum plasma distribution for a workpiece. It is an object of the present invention to provide a plasma processing apparatus having an excellent plasma density distribution.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

第1の手段(方法):真空容器内に、誘導結合性と容量結
合性が混在したプラズマを発生させ、この発生させたプ
ラズマにより基板を処理するようにしたものである。
First means (method): Plasma in which inductive coupling and capacitive coupling are mixed is generated in a vacuum container, and the substrate is processed by the generated plasma.

【0010】第2の手段(装置):真空容器内に設けられ
た基板を載置するための第1の電極と、前記第1の電極
と対向する位置の前記真空容器壁面に設けた電磁誘導コ
イル及び第2の電極と、前記電磁誘導コイル及び第2の
電極に高周波電圧を印加する第1の高周波電源とからな
り、真空容器内に誘導結合性と容量結合性が混在したプ
ラズマを発生させるようにしたものである。
Second means (apparatus): a first electrode for mounting a substrate provided in the vacuum container, and an electromagnetic induction provided on the wall surface of the vacuum container at a position facing the first electrode. A coil and a second electrode, and a first high-frequency power source that applies a high-frequency voltage to the electromagnetic induction coil and the second electrode, and generate a plasma in which inductive coupling and capacitive coupling are mixed in a vacuum container. It was done like this.

【0011】[0011]

【作用】したがって、本発明は、電磁誘導コイルによる
誘導結合性のプラズマと、第1及び第2の電極による容
量結合性のプラズマとが混在した形となり、前記電磁誘
導コイルと第1及び第2の電極の構成を調整し、最適化
することにより、被加工物に最適なプラズマ分布を得る
ことができる。また、前記第1の電極にも第2高周波電
源より高周波電圧を印加すると、基板に到達するイオン
エネルギーを制御することができる。
Therefore, according to the present invention, the inductively coupled plasma formed by the electromagnetic induction coil and the capacitively coupled plasma formed by the first and second electrodes are mixed, and the electromagnetic induction coil and the first and second electrodes are formed. By adjusting and optimizing the configuration of the electrode of, it is possible to obtain the optimum plasma distribution for the workpiece. Further, when a high frequency voltage is applied to the first electrode from the second high frequency power supply, the ion energy reaching the substrate can be controlled.

【0012】[0012]

【実施例】以下、本発明の各実施例について図面を参照
しつつ説明する。図1は本発明の第1実施例を示してお
り、図中、18は真空容器で、筒状体19の上下開口部を上
方壁面体20と下方壁面体21により封止したものであり、
必要に応じて前記筒状体19の側面に吸排気孔等が設けら
れる。22は直径25cm,巻数2の電磁誘導コイル、23は前
記下方壁面体21の内面付近に配置された第1の電極、24
は前記第1の電極23上に載置された基板、25は前記電磁
誘導コイル22の内周部に設けられた面積が略48πcm2
第2の電極、26は第1高周波電源で、電磁誘導コイル22
と第2の電極25に図示のように接続されている。なお、
27は第2高周波電源で、前記第1の電極23に接続されて
いる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of the present invention, in which 18 is a vacuum container in which the upper and lower openings of a tubular body 19 are sealed by an upper wall surface body 20 and a lower wall surface body 21,
Intake and exhaust holes and the like are provided on the side surface of the tubular body 19 as required. 22 is an electromagnetic induction coil having a diameter of 25 cm and a number of turns of 2; 23 is a first electrode disposed near the inner surface of the lower wall body 21;
Is a substrate placed on the first electrode 23, 25 is a second electrode having an area of about 48πcm 2 provided in the inner peripheral portion of the electromagnetic induction coil 22, and 26 is a first high frequency power source Induction coil 22
To the second electrode 25 as shown. In addition,
27 is a second high frequency power supply, which is connected to the first electrode 23.

【0013】次にその動作を説明する。真空容器18内に
Arガスを30SCCM導入しつつ排気し、真空容器18内を10m
Torrの圧力に保ちながら、第1高周波電源26より1000W
の電力を投入すると真空容器18内にプラズマが発生す
る。図2はこのときの基板24上のイオン飽和電流密度の
分布を示しており、図2(a)は本実施例の状態、図2(b)
は図5に示す従来例の状態を示している。この図から明
らかなように図2(a),図2(b)共に高密度プラズマが得
られているが、プラズマ分布は本実施例のものは基板24
のどの位置でも略均一な値を示しており、非常に良好な
結果であるが、従来のものは誘導結合性が支配的であ
り、誘導結合型放電の特徴である基板24の中央付近で極
大となるような分布を示し、プラズマ分布としては不均
一なものとなっている。本実施例では、電磁誘導コイル
22による誘導結合性を主として、これに前記第2の電極
25による容量結合性が混在したプラズマを生成している
ため、誘導結合型放電の高いプラズマ密度を保持しつ
つ、容量結合型放電の高い均一性を両立させることがで
き、従来例に比べ、より均一性の良いプラズマ分布を得
ることができるのである。
Next, the operation will be described. Argon gas of 30 SCCM is introduced into the vacuum container 18 and evacuated.
1000W from the first high frequency power supply 26 while maintaining the pressure of Torr
When the power is turned on, plasma is generated in the vacuum container 18. FIG. 2 shows the distribution of the ion saturation current density on the substrate 24 at this time. FIG. 2 (a) shows the state of this embodiment, and FIG.
Shows the state of the conventional example shown in FIG. As is clear from this figure, high-density plasma is obtained in both FIGS. 2 (a) and 2 (b), but the plasma distribution of this embodiment is the substrate 24.
The values are almost uniform at all positions, and the results are very good.However, in the conventional one, the inductive coupling property is dominant, and the maximum value is near the center of the substrate 24, which is a characteristic of the inductive coupling type discharge. The distribution is such that the plasma distribution is non-uniform. In this embodiment, the electromagnetic induction coil
The inductive coupling by 22 is mainly applied to the second electrode.
Since a plasma having mixed capacitive coupling due to 25 is generated, it is possible to achieve high uniformity of capacitive coupling discharge while maintaining high plasma density of inductive coupling discharge. It is possible to obtain a uniform plasma distribution.

【0014】次に、シリコン酸化膜をエッチングした実
験例について説明する。なお、実験には図1に示すプラ
ズマ処理装置を用いた。真空容器18内にCHF3を50SCC
M導入しつつ排気し、真空容器18内を50mTorrの圧力に保
ちながら、第1高周波電源26より600Wの電力を投入す
ると同時に第2高周波電源27より第1の電極23に300W
の電力を投入する。基板24としてはシリコン基板上にシ
リコン酸化膜を成長させたものを用いて実験を行った。
その結果、シリコン酸化膜のエッチング速度は2500Å/
分であり、図3に示す従来の構成でのエッチング速度よ
り若干低下したが、エッチングの均一性については本実
施例の方が良好な結果であった。また、前記シリコン酸
化膜をエッチングした条件でポリシリコンをエッチング
した結果、本実施例の構成でのエツチング速度は450Å
/分、従来の構成の場合は2000Å/分であり、本実施例
の構成を用いることにより、シリコン酸化膜の対ポリシ
リコンの選択比が大きく向上することがわかった。
Next, an experimental example in which the silicon oxide film is etched will be described. The plasma processing apparatus shown in FIG. 1 was used for the experiment. CHF 3 50SCC in the vacuum container 18
While introducing M and evacuating, while maintaining the pressure in the vacuum container 18 at 50 mTorr, 600 W is supplied from the first high frequency power supply 26 and at the same time 300 W is supplied from the second high frequency power supply 27 to the first electrode 23.
Turn on the power. An experiment was conducted using a substrate 24 having a silicon oxide film grown on a silicon substrate.
As a result, the etching rate of the silicon oxide film is 2500Å /
Although the etching rate was slightly lower than the etching rate in the conventional configuration shown in FIG. 3, the present example had a better result in terms of etching uniformity. Further, as a result of etching the polysilicon under the conditions of etching the silicon oxide film, the etching rate in the structure of this example is 450Å
/ Min, and 2000 Å / min in the case of the conventional configuration. It was found that the selection ratio of the silicon oxide film to polysilicon is greatly improved by using the configuration of this embodiment.

【0015】このように、従来の誘導結合型放電は、真
空容器中に発生する誘導電界によって電子が基板面に対
して平行で、かつ閉じた円弧上に沿って加速され、真空
容器の壁面で加速電子が失われる確率が減少するので高
密度のプラズマが得られるが、反面、非常にエネルギー
の高い電子の数が多く、エッチングガスの解離が極端に
進行し、ポリシリコンをエッチングするフッ素ラジカル
を多量に生成してしまうため、シリコン酸化膜エッチン
グにおける対ポリシリコンエッチング選択性の低下を招
いているのである。
As described above, in the conventional inductively coupled discharge, the electrons are accelerated by the inductive electric field generated in the vacuum container along the closed arc, which is parallel to the substrate surface, and the electrons are accelerated on the wall surface of the vacuum container. High-density plasma can be obtained because the probability of accelerating electron loss is reduced, but on the other hand, the number of electrons with very high energy is large and the dissociation of the etching gas progresses extremely, so that fluorine radicals that etch polysilicon are removed. Since a large amount is generated, the etching selectivity for polysilicon in the etching of the silicon oxide film is lowered.

【0016】しかしながら、本実施例の誘導結合性と容
量結合性が混在したプラズマでは電子は基板面に対して
平行で、かつ閉じた円弧上に沿って加速されると同時に
基板面に対して垂直な向きにも加速されるため、高いエ
ネルギーをを持つ電子が電極に衝突して失われる確率が
高くなる。その結果、フッ素ラジカルの生成が抑制さ
れ、高い選択比が得られたと考えられる。
However, in the plasma of this embodiment in which the inductive coupling and the capacitive coupling are mixed, the electrons are parallel to the substrate surface and are accelerated along a closed arc, and at the same time, they are perpendicular to the substrate surface. Electrons with high energy collide with the electrode and are more likely to be lost because they are accelerated in any direction. As a result, it is considered that generation of fluorine radicals was suppressed and a high selection ratio was obtained.

【0017】このように構成することにより、被加工物
に対して最適なプラズマ分布を得ることが可能となる。
With this configuration, it is possible to obtain the optimum plasma distribution for the workpiece.

【0018】[0018]

【発明の効果】本発明によれば、誘導結合性と容量結合
性が混在したプラズマによりプラズマ処理を行う方法に
より、被加工物に対して均一なプラズマ処理をすること
が可能となるほか、誘導結合性プラズマを発生させる電
磁誘導コイル及び容量結合性プラズマを発生させる第
1,第2の電極並びに第1,第2の高周波電源等を調整
し、最適化することによって被加工物に対して最適なプ
ラズマ分布を得る装置が実現できる。
According to the present invention, it is possible to perform uniform plasma treatment on a workpiece by a method of performing plasma treatment with plasma having a mixture of inductive coupling and capacitive coupling. Optimum for the work piece by adjusting and optimizing the electromagnetic induction coil that generates the coupling plasma, the first and second electrodes that generate the capacitive coupling plasma, and the first and second high frequency power supplies. It is possible to realize an apparatus that obtains various plasma distributions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプラズマ処理装置の一実施例の構成を
示す斜視図である。
FIG. 1 is a perspective view showing a configuration of an embodiment of a plasma processing apparatus of the present invention.

【図2】本発明のプラズマ処理装置と従来のプラズマ処
理装置とのプラズマ分布状態を説明するための特性曲線
図である。
FIG. 2 is a characteristic curve diagram for explaining plasma distribution states of the plasma processing apparatus of the present invention and a conventional plasma processing apparatus.

【図3】従来のプラズマ処理装置の一例を示す斜視図で
ある。
FIG. 3 is a perspective view showing an example of a conventional plasma processing apparatus.

【図4】従来のプラズマ処理装置の他の例を示す斜視図
である。
FIG. 4 is a perspective view showing another example of a conventional plasma processing apparatus.

【図5】従来のプラズマ処理装置の更に他の例を示す斜
視図である。
FIG. 5 is a perspective view showing still another example of the conventional plasma processing apparatus.

【符号の説明】[Explanation of symbols]

1,9,18…真空容器、 6,14,23…第1の電極、
7,15,24…基板、 5,25…第2の電極、 13,22…
電磁誘導コイル、 16,26…第1の高周波電源、17,27
…第2の高周波電源。
1, 9, 18 ... Vacuum container, 6, 14, 23 ... First electrode,
7, 15, 24 ... Substrate, 5, 25 ... Second electrode, 13, 22 ...
Electromagnetic induction coil, 16, 26 ... First high frequency power supply, 17, 27
… Second high frequency power supply.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内に、誘導結合性と容量結合性
が混在したプラズマを発生させ、この発生させたプラズ
マにより基板を処理することを特徴とするプラズマ処理
方法。
1. A plasma processing method comprising: generating plasma in which inductive coupling and capacitive coupling are mixed in a vacuum container, and processing the substrate with the generated plasma.
【請求項2】 真空容器内に設けられた基板を載置する
ための第1の電極と、前記第1の電極と対向する位置の
前記真空容器壁面に設けた電磁誘導コイル及び第2の電
極と、前記電磁誘導コイル及び第2の電極に高周波電圧
を印加する第1の高周波電源とからなり、真空容器内に
誘導結合性と容量結合性が混在したプラズマを発生させ
ることを特徴とするプラズマ処理装置。
2. A first electrode for mounting a substrate provided in a vacuum container, and an electromagnetic induction coil and a second electrode provided on a wall surface of the vacuum container at a position facing the first electrode. And a first high-frequency power source for applying a high-frequency voltage to the electromagnetic induction coil and the second electrode, and generate a plasma having both inductive coupling and capacitive coupling in a vacuum container. Processing equipment.
JP7003366A 1995-01-12 1995-01-12 Plasma processing method and device Pending JPH08195379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7003366A JPH08195379A (en) 1995-01-12 1995-01-12 Plasma processing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7003366A JPH08195379A (en) 1995-01-12 1995-01-12 Plasma processing method and device

Publications (1)

Publication Number Publication Date
JPH08195379A true JPH08195379A (en) 1996-07-30

Family

ID=11555353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7003366A Pending JPH08195379A (en) 1995-01-12 1995-01-12 Plasma processing method and device

Country Status (1)

Country Link
JP (1) JPH08195379A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528463B1 (en) * 2001-11-30 2005-11-15 삼성전자주식회사 Plasma coil
KR100498584B1 (en) * 1997-03-19 2005-11-25 가부시끼가이샤 히다치 세이사꾸쇼 Plasma Treatment Equipment and Plasma Treatment Methods
KR100542459B1 (en) * 1999-03-09 2006-01-12 가부시끼가이샤 히다치 세이사꾸쇼 Apparatus for treating substrate by plasma and method thereof
KR100555853B1 (en) * 2003-06-26 2006-03-03 어댑티브프라즈마테크놀로지 주식회사 Coil structure for generating uniform plasma and Plasma chamber using the same
WO2006041250A1 (en) * 2004-10-13 2006-04-20 Adaptive Plasma Technology Corp. Plasma source for uniform plasma distribution in plasm chamber
JP2008513993A (en) * 2004-09-14 2008-05-01 アダプティーブ プラズマ テクノロジー コープ Adaptive plasma source and semiconductor wafer processing method using the same
JP2008112139A (en) * 2006-10-30 2008-05-15 Applied Materials Inc Mask etch plasma reactor with backside optical sensor and multiple frequency control of etch distribution

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100498584B1 (en) * 1997-03-19 2005-11-25 가부시끼가이샤 히다치 세이사꾸쇼 Plasma Treatment Equipment and Plasma Treatment Methods
KR100542459B1 (en) * 1999-03-09 2006-01-12 가부시끼가이샤 히다치 세이사꾸쇼 Apparatus for treating substrate by plasma and method thereof
KR100528463B1 (en) * 2001-11-30 2005-11-15 삼성전자주식회사 Plasma coil
KR100555853B1 (en) * 2003-06-26 2006-03-03 어댑티브프라즈마테크놀로지 주식회사 Coil structure for generating uniform plasma and Plasma chamber using the same
JP2008513993A (en) * 2004-09-14 2008-05-01 アダプティーブ プラズマ テクノロジー コープ Adaptive plasma source and semiconductor wafer processing method using the same
WO2006041250A1 (en) * 2004-10-13 2006-04-20 Adaptive Plasma Technology Corp. Plasma source for uniform plasma distribution in plasm chamber
JP2008112139A (en) * 2006-10-30 2008-05-15 Applied Materials Inc Mask etch plasma reactor with backside optical sensor and multiple frequency control of etch distribution

Similar Documents

Publication Publication Date Title
JP3987131B2 (en) Induction enhanced reactive ion etching
JP4657473B2 (en) Plasma processing equipment
JP3122601B2 (en) Plasma film forming method and apparatus therefor
US6392350B1 (en) Plasma processing method
US5662819A (en) Plasma processing method with controlled ion/radical ratio
US6348158B1 (en) Plasma processing with energy supplied
TWI585834B (en) A plasma processing method and a plasma processing apparatus
US5368676A (en) Plasma processing apparatus comprising electron supply chamber and high frequency electric field generation means
JPH0770532B2 (en) Plasma processing device
JP3319285B2 (en) Plasma processing apparatus and plasma processing method
JPH06283470A (en) Plasma processing device
US6573190B1 (en) Dry etching device and dry etching method
JPH1074600A (en) Plasma processing equipment
JPH08195379A (en) Plasma processing method and device
JP2001160551A (en) Method for etching polysilicon having a smooth surface
JPH10134995A (en) Plasma processing device and processing method for plasma
US6582617B1 (en) Plasma etching using polycarbonate mask and low-pressure high density plasma
JPH10284298A (en) Plasma processing method and device
JP3368806B2 (en) Plasma processing method and apparatus
JP3192352B2 (en) Plasma processing equipment
JP3172340B2 (en) Plasma processing equipment
JP3642806B2 (en) Plasma processing method and plasma processing apparatus
JP3164188B2 (en) Plasma processing equipment
JP3138899B2 (en) Plasma processing equipment
JP4083716B2 (en) Plasma processing method and plasma processing apparatus