JPH0819497B2 - Turbine blade manufacturing method - Google Patents

Turbine blade manufacturing method

Info

Publication number
JPH0819497B2
JPH0819497B2 JP62211464A JP21146487A JPH0819497B2 JP H0819497 B2 JPH0819497 B2 JP H0819497B2 JP 62211464 A JP62211464 A JP 62211464A JP 21146487 A JP21146487 A JP 21146487A JP H0819497 B2 JPH0819497 B2 JP H0819497B2
Authority
JP
Japan
Prior art keywords
turbine blade
hardness
adhered
alloy
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62211464A
Other languages
Japanese (ja)
Other versions
JPS6456836A (en
Inventor
山本  優
一昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62211464A priority Critical patent/JPH0819497B2/en
Publication of JPS6456836A publication Critical patent/JPS6456836A/en
Publication of JPH0819497B2 publication Critical patent/JPH0819497B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、タービン羽根の製造方法にかかり、特に
タービン羽根の前縁部に被着される防食片(エロージョ
ンシールド)の延性、靭性等の特性および防食片被着後
の被着部分の硬度性を、従来よりも一段と向上させたタ
ービン羽根の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention relates to a method for manufacturing a turbine blade, and more particularly to a corrosion-preventing piece (erosion shield) attached to the front edge of the turbine blade. The present invention relates to a turbine blade manufacturing method in which the characteristics such as ductility and toughness and the hardness of the adhered portion after the anticorrosion piece is adhered are further improved as compared with conventional methods.

(従来の技術) 蒸気タービンでは、蒸気エネルギをあますところなく
活用した高出力化が求められており、必然的にタービン
羽根もそのエネルギをあますところなく活用する点から
長翼化する傾向にある。
(Prior art) In steam turbines, there is a demand for higher power output that makes full use of steam energy, and inevitably turbine blades tend to have longer blades in order to make full use of that energy. is there.

従来、この種の材質は、12Cr鋼が適用されていたが、
この12Cr鋼では重量的に重いために、タービン羽根が回
転する際に生起する遠心力がきわめて高く、強度上、厳
しい設計が強いられていた。また、蒸気は、タービン羽
根の後流段落部に向かって流れるにつれて微細な水滴が
あらわれることもあって、タービン羽根の前縁部には浸
食防止として機能する防食片(エロージョンシールド)
を被着していた。
Conventionally, 12Cr steel was applied to this type of material,
Since the 12Cr steel is heavy in weight, the centrifugal force generated when the turbine blades rotate is extremely high, and a strict design is required in terms of strength. In addition, steam may have fine water droplets appearing as it flows toward the wake stage of the turbine blade, and the corrosion-preventing piece (erosion shield) that functions to prevent erosion at the leading edge of the turbine blade.
Was wearing.

しかしながら、従来、タービン羽根材として適用され
ている12Cr鋼では、上述遠心力の点を考えると、設計上
必ずしも好ましくなく、従来材質よりも一段と軽く、く
わえて耐食性の高いチタン合金が見直され、実機適用へ
の検討が進められている。
However, in consideration of the above centrifugal force, 12Cr steel that has been conventionally applied as a turbine blade material is not necessarily preferable in terms of design, and a titanium alloy that is much lighter in weight than conventional materials and has high corrosion resistance has been reviewed. Investigation into application is in progress.

ところが、チタン合金といえども、微細な水滴を含む
蒸気には長年使用による耐食の点で抗しきれず、やはり
タービン羽根の前縁部に防食片を被着する検討が進めら
れている。この場合、チタン合金製タービン羽根の前縁
部に、従来から使用されている防食片(硬度Hvが約500
のCo基合金)を被着しようにもその合金鋼の特性と互い
に異にするので、従来とおりの被着法では問題がある。
However, even titanium alloys cannot withstand steam containing fine water droplets in terms of corrosion resistance due to long-term use, and studies are still underway to apply anticorrosive pieces to the leading edges of turbine blades. In this case, the anticorrosion piece (hardness Hv is approximately 500
However, there is a problem in the conventional deposition method because the characteristics of the alloy steel are different from each other even when the Co-based alloy is deposited.

このため、チタン合金製タービン羽根に対して、防食
片の材質としては、同じくチタン合金の中で、熱処理に
よって硬化できるβ形チタン合金、例えばTi−15Mo−5Z
rの適用を検討しつつある。
Therefore, as for the material of the anticorrosion piece for a titanium alloy turbine blade, a β-type titanium alloy that can be hardened by heat treatment in the same titanium alloy, for example, Ti-15Mo-5Z.
We are considering the application of r.

(発明が解決しようとする問題点) ところで、上記β形チタン合金は熱処理ができる利便
性はあるものの、硬度および耐食性の点では従来適用の
防食片には、はるかにおよばない。しかも防食片をター
ビン羽根の前縁部に被着する際、その被着部分は熱処理
による硬化後の延性、靭性が極端に低下し、タービン羽
根の前縁部に被着するには一抹の不安がある。
(Problems to be Solved by the Invention) Although the above β-type titanium alloy is convenient for heat treatment, it is far inferior to the conventionally applied anticorrosion piece in terms of hardness and corrosion resistance. Moreover, when the anticorrosion piece is applied to the leading edge of the turbine blade, the ductility and toughness of the applied portion after hardening by heat treatment are extremely reduced, and there is a slight concern that it will be applied to the leading edge of the turbine blade. There is.

そこで、この発明は、防食片自身の特性および防食片
のタービン羽根への被着にかかる上記不具合な点を考慮
して一段と高い硬度にして耐食性に富み、しかも延性・
靭性を兼ね備えたタービン羽根の製造方法を提供するこ
とを目的とする。
Therefore, in consideration of the characteristics of the anticorrosion piece itself and the above-mentioned inconveniences associated with the attachment of the anticorrosion piece to the turbine blade, the present invention has a much higher hardness and is rich in corrosion resistance, and also has ductility.
It is an object of the present invention to provide a method for manufacturing a turbine blade that also has toughness.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段と作用) この発明は、上記目的を達成するために、チタン炭化
物の粉末に、重量比で、Cr7〜25%,Ni1〜10%,Co1〜15
%,Mo0.5〜10%,Al0.5〜2.5%,Ti0.5〜2.5%,Cu0.5〜2.
5%,C0.1〜1.5%,残部Feおよび付随的不純物よりなる
マトリックス合金のアルゴンアトマイズ粉末を混合し、
混合の際、上記チタン炭化物の粉末を全体体積比で30〜
60%、上記マトリックス合金のアルゴンアトマイズ粉末
を全体体積比で40〜70%になるように調整した混合物を
焼結後、ホットアイソスタティックプレス処理工程によ
り成形したタービン羽根の防食片を、タービン羽根の前
縁部に被着し、しかる後、その被着部分を温度範囲500
〜800℃で熱処理することを特徴とする。
(Means and Actions for Solving Problems) In order to achieve the above object, the present invention provides titanium carbide powder containing Cr7 to 25%, Ni1 to 10%, and Co1 to 15% by weight.
%, Mo0.5-10%, Al0.5-2.5%, Ti0.5-2.5%, Cu0.5-2.
Argon atomized powder of matrix alloy consisting of 5%, C 0.1-1.5%, balance Fe and incidental impurities was mixed,
At the time of mixing, the above-mentioned titanium carbide powder is mixed in a volume ratio of 30-
60%, the mixture of argon atomized powder of the above matrix alloy adjusted to be 40-70% in the total volume ratio is sintered, and then the anticorrosion piece of the turbine blade formed by the hot isostatic pressing process is Apply to the front edge, and then apply the applied temperature range 500
Characterized by heat treatment at ~ 800 ° C.

この発明にかかるタービン羽根の製造方法では、チタ
ン炭化物の粉末に、マトリックス合金のアルゴンアトマ
イズ粉末を混合させ、その際、チタン炭化物の粉末を全
体体積比で30〜60%、マトリックス合金のアルゴンアト
マイズ粉末を全体体積比で40〜70%になるように調整し
て焼結し、その焼結体を成形加工した防食片を、タービ
ン羽根の前縁部に被着後、その被着部分を温度範囲500
〜800℃で熱処理したものであるから、防食片自身は従
来よりも延性・靭性に富む一方、タービン羽根への防食
片被着後の被着部分の硬度性も従来に較べ向上する。
In the turbine blade manufacturing method according to the present invention, the titanium carbide powder is mixed with the argon atomized powder of the matrix alloy, in which case the powder of the titanium carbide is 30 to 60% by total volume ratio, and the argon atomized powder of the matrix alloy is used. Is adjusted to a total volume ratio of 40 to 70% and sintered, and the corrosion-resistant piece obtained by molding the sintered body is applied to the front edge of the turbine blade, and then the applied part is subjected to the temperature range. 500
Since it is heat-treated at ~ 800 ° C, the anticorrosion piece itself is richer in ductility and toughness than before, while the hardness of the adhered part after the anticorrosion piece is attached to the turbine blade is also improved compared to the conventional one.

(実施例) 以下、この発明にかかるタービン羽根の製造方法にお
ける防食片の組成成分、その調合、調合後の処理および
タービン羽根への防食片被着後の処理について各限定理
由を説明するとともに、その具体的実施手段を説明す
る。
(Example) Hereinafter, each constituent reason of the composition components of the anticorrosion piece in the method for manufacturing a turbine blade according to the present invention, its mixing, the processing after the mixing, and the processing after the anticorrosion piece is attached to the turbine blade will be described, and The specific implementation means will be described.

先ず、チタン炭化物(以下TiCと記す)は、それ自
体、硬度Hv320を有する粉末であるが、焼結体中に均一
分散させるには全体体積比で30%〜60%が最も好ましい
適用範囲である。これは、全体体積比が30%未満である
と、従来適用されている防食片の硬度Nv500以上を得る
ことが難しく、またその60%を超えると、焼結体として
の硬度が脆くなり、実用的に供し得なくなるからであ
る。
First, titanium carbide (hereinafter referred to as TiC) is a powder itself having a hardness of Hv320, but 30% to 60% by volume is the most preferable range for uniform dispersion in a sintered body. . This is because if the total volume ratio is less than 30%, it is difficult to obtain the hardness Nv500 or more of the conventionally applied anticorrosion piece, and if it exceeds 60%, the hardness as a sintered body becomes brittle, This is because it cannot be used for a long time.

次に、TiCと混合するマトリックス合金は、延性およ
び靭性等を考慮して、全体体積比としては40〜70%が最
も好ましい適用範囲である。
Next, the matrix alloy to be mixed with TiC has a total volume ratio of 40 to 70% in the most preferable range in consideration of ductility and toughness.

ところで、マトリックス合金は、重量比でCr7〜25%,
Ni1〜10%,Co1〜15%,Mo0.5〜10%,Al0.5〜2.5%,Ti0.5
〜2.5%,Cu0.5〜2.5%,C0.1〜1.5%,残部Feおよび付随
的不純物からなる。
By the way, the matrix alloy contains Cr7-25% by weight,
Ni1-10%, Co1-15%, Mo0.5-10%, Al0.5-2.5%, Ti0.5
〜2.5%, Cu0.5〜2.5%, C0.1〜1.5%, balance Fe and incidental impurities.

ここにおいて、各組成の重量比の限定理由は次の通り
である。
Here, the reason for limiting the weight ratio of each composition is as follows.

Crは耐食性のために必要な元素で7%未満では湿り蒸
気中の耐食性が不充分であり、25%超になるとマトリッ
クス合金の延性を損なうため、この範囲としてある。
Cr is an element necessary for corrosion resistance, and if it is less than 7%, the corrosion resistance in wet steam is insufficient, and if it exceeds 25%, the ductility of the matrix alloy is impaired, so this range is set.

Niはマトリックス合金の延性を増す元素で、1%未満
では延性の効果はないが、10%を超えてもその効果が一
定のまま変わらないのでこの範囲としてある。
Ni is an element that increases the ductility of the matrix alloy. If it is less than 1%, the effect of ductility is not obtained, but if it exceeds 10%, the effect remains constant and remains within this range.

CoはNiと同様の効果を有するが、15%超になるとかえ
ってマトリックス合金を脆化させる。また1%未満では
効果は生じない。
Co has the same effect as Ni, but if it exceeds 15%, it rather embrittles the matrix alloy. If it is less than 1%, no effect is produced.

Moはマトリックス中に固溶して強化する有用な元素で
0.5%以上でその効果が表われる。しかし10%を超える
と脆化をもたらす。
Mo is a useful element that solidifies and strengthens in the matrix.
The effect appears at 0.5% or more. However, if it exceeds 10%, embrittlement occurs.

AlとTiは、ともにNiおよびCoと金属間化合物を形成し
て硬化に著しく寄与するが、それぞれ0.5%未満ではほ
とんど硬化に寄与せず、それぞれ2.5%を超えると介在
物としてマトリックス合金の延性を損なう。
Al and Ti both form an intermetallic compound with Ni and Co and contribute significantly to the hardening, but if they are less than 0.5% each, they hardly contribute to the hardening, and if they exceed 2.5% respectively, the ductility of the matrix alloy becomes an inclusion as an inclusion. Spoil.

Cuは焼結時のバインダーとして必要な元素で、0.5%
以上でその効果が表われるが、2.5%を超えると非金属
介在物を作って、マトリックス合金を脆くする。
Cu is an element necessary as a binder during sintering, 0.5%
The above effect is exhibited, but if it exceeds 2.5%, nonmetallic inclusions are formed and the matrix alloy becomes brittle.

Cはマトリックスの強化と析出強化に寄与する成分
で、0.1%未満ではその効果はなく、1.5%を超えると延
性を著しく低下させるのでこの範囲としてある。
C is a component that contributes to strengthening and precipitation strengthening of the matrix. If it is less than 0.1%, its effect is not exerted, and if it exceeds 1.5%, the ductility is remarkably reduced, so it is within this range.

しかして、TiCとマトリックス合金とは、通常、アル
ゴンアトマイズ処理により作製された粉末として混合さ
れ、成形後、高温・高真空または不活性ガス中で焼結さ
れる。こうして形成された焼結体では、通常、全体とし
て数%の気孔を有するので、これ自体では脆く、実用的
に供し得ない。
Then, TiC and the matrix alloy are usually mixed as a powder produced by an argon atomizing treatment, and after molding, they are sintered at high temperature / high vacuum or in an inert gas. Since the sintered body thus formed usually has several percent of pores as a whole, it is fragile by itself and cannot be practically used.

このため、気孔を圧搾して均質なものにするために
は、ホットアイソスタティックプレス(以下HIPと記
す)処理工程を行う。このHIP処理工程は、先ず、試料
をステンレス製の容器に入れ、つづいてその周囲をボロ
ンナイトライド(BN)の粉末で充填し、さらにアルゴン
ガスで温度1100〜1200℃に加熱するとともに、1000気圧
で加圧してそのまま1時間保持し、しかる後冷却するプ
ロセスである。
Therefore, a hot isostatic press (hereinafter referred to as HIP) treatment step is performed to squeeze the pores to make them uniform. In this HIP processing step, first, the sample is placed in a stainless steel container, and then the periphery thereof is filled with boron nitride (BN) powder, and further heated to a temperature of 1100 to 1200 ° C. with argon gas, and 1000 atm. It is a process of pressurizing, holding for 1 hour, and then cooling.

こうしてHIP処理後、成形された防食片は、タービン
羽根の前縁部に被着されるが、その被着方法は従来から
適用されている溶接方法である。
After the HIP treatment, the molded anticorrosion piece is adhered to the leading edge of the turbine blade, which is a welding method that has been conventionally applied.

しかしながら、タービン羽根として強度、耐食性が、
十分に保証し得る防食片ならともかく、その適用上、ボ
ーダラインにある防食片では、タービン羽根に被着後、
温度範囲500〜800℃で熱処理することが必要とされる。
こうした熱処理により、マトリックス合金からTi,Alを
主成分とする金属間化合物の析出が見られ、TiC粒子に
よる硬化とあいまって、防食片として一段と高い硬度が
得られる。ここで、熱処理温度を500〜800℃と選定した
のは、500℃未満では、硬化のための析出物が十分に得
られず、また800℃以上では析出物が粗大化して硬化に
寄与しなくなるからである。
However, the strength and corrosion resistance of the turbine blade are
In spite of the anticorrosion piece that can be sufficiently guaranteed, in its application, in the anticorrosion piece in the border line, after being attached to the turbine blade,
Heat treatment is required in the temperature range 500-800 ° C.
By such heat treatment, precipitation of intermetallic compounds containing Ti and Al as the main components is observed from the matrix alloy, and in combination with hardening by TiC particles, an even higher hardness can be obtained as an anticorrosion piece. Here, the heat treatment temperature was selected to be 500 to 800 ° C because if it is less than 500 ° C, sufficient precipitates for curing cannot be obtained, and if it is 800 ° C or higher, the precipitates become coarse and do not contribute to hardening. Because.

次に、上記具体的実施手段に基づいて作製された防食
片および防食片のタービン羽根への被着後の被着部分の
特性を説明する。
Next, the characteristics of the anticorrosion piece produced based on the above-mentioned specific implementation means and the characteristics of the adhered portion after the anticorrosion piece is attached to the turbine blade will be described.

平均粒径20μmのTiC粉末とCr−Ni−Co−Mo−Al−Ti
−Cu−Feマトリックス合金のアルゴンアトマイズ粉末
(100メッシュ)を混合し、表1に示す組成比の試料と
作成した。
TiC powder with an average particle size of 20 μm and Cr-Ni-Co-Mo-Al-Ti
An argon atomized powder (100 mesh) of a -Cu-Fe matrix alloy was mixed to prepare a sample having a composition ratio shown in Table 1.

上記表1で、試料1,2,3,4,5,6はこの発明に基づいて
得られた防食片の試料であり、試料7,8はこの発明に基
づくものからはずれたものである。各試料は、混合後、
6Ton/cm2荷重を加えて成形ブレスし、温度1200〜1300℃
で真空焼結した。各試料は、この段階で一部引張試験と
硬さ試験に供した。残りの試料は静水圧4000kg/cm2、温
度1000〜1100℃で各1時間のHIP処理を施した。その一
部を引張試験、硬さ試験および耐食(エロージョン)試
験に供した。さらに、各試料に400〜900℃の間で適宜熱
処理(時効)を施した後、上記の各試験を行った。エロ
ージョン試験としては学振法(学術振興会第97委員会で
制定)に準拠したキャビテーション・エロージョン試験
を行った。試験条件は液温24゜±1℃、試験時間180
分、振動周波数6.5KHz、振動振幅100μmである。比較
材として在来の防食片としての材質であるCo基合金鋼
(ステライト)を同時に各種試験に供した。その組成は
表1に示した。
In Table 1 above, Samples 1, 2, 3, 4, 5 and 6 are samples of anticorrosion pieces obtained according to the present invention, and Samples 7 and 8 are samples deviated from those according to the present invention. After mixing each sample,
6Ton / cm 2 A load is applied to form a brace and the temperature is 1200 to 1300 ° C.
It was vacuum sintered at. Each sample was partially subjected to a tensile test and a hardness test at this stage. The remaining sample was subjected to HIP treatment at a hydrostatic pressure of 4000 kg / cm 2 and a temperature of 1000 to 1100 ° C. for 1 hour each. A part thereof was subjected to a tensile test, a hardness test and a corrosion resistance (erosion) test. Furthermore, each sample was subjected to appropriate heat treatment (aging) at 400 to 900 ° C., and then each of the above tests was performed. As an erosion test, a cavitation erosion test based on the Japan Society for the Promotion of Science (established by the 97th Committee of the Japan Society for the Promotion of Science) was performed. Test conditions are liquid temperature 24 ° ± 1 ° C, test time 180
Min, vibration frequency 6.5 KHz, vibration amplitude 100 μm. As a comparative material, a Co-based alloy steel (Stellite), which is a material as a conventional anticorrosion piece, was simultaneously subjected to various tests. Its composition is shown in Table 1.

第1図は、各試料の硬さと引張破断伸びの関係で、従
来の防食片の材質であるステライト合金と比較して、焼
結時の硬さは試験7を除き同等以上であるが、引張破断
伸びはやはり試験7を除き同等以下である。HIP処理を
施すと各試験とも硬さは変わらないが、引張破断伸びが
向上し、試料4を除き従来のステライト合金のそれを上
回る。この改善の主原因はHIP処理により焼結時の気孔
が圧搾され、引張破断の源であったシクロポロシティが
消失したためと考えられる。さらに時効処理(600℃×3
h)を施すと、試料7を除く各試料の硬さが上昇し、引
張破断伸びはいくぶん低下するものの、試料4と8を除
き、各試料ともステライト合金よりも高い引張破断伸び
を有している。試料7において、焼結時および時効処理
後の硬さが低いのは強化元素量が本発明の範囲に達しな
いためであり、試料4と8において引張破断伸びが小さ
いのは、TiC量およびマトリックス合金の強化元素が本
発明の範囲を超えているためである。この発明の範囲に
ある試料1,2,3,5,6はHIP処理後と時効処理後のいずれに
おいても硬さ、引張破断伸びとも従来のステライト合金
を上回っている。
FIG. 1 shows the relationship between hardness and tensile elongation at break of each sample, and the hardness at the time of sintering is equal to or more than that of Stellite alloy which is the material of the conventional anticorrosion piece except for the test 7, The elongation at break is the same or less except for Test 7. When the HIP treatment is applied, the hardness does not change in each test, but the tensile elongation at break improves and exceeds that of the conventional stellite alloy except for sample 4. It is considered that the main cause of this improvement is that the pores during sintering were squeezed by the HIP process, and the cycloporosity, which was the source of tensile fracture, disappeared. Further aging treatment (600 ℃ x 3
When h) was applied, the hardness of each sample except sample 7 increased and the tensile elongation at break decreased somewhat, but except sample 4 and 8, each sample had higher tensile elongation at break than the stellite alloy. There is. In Sample 7, the hardness at the time of sintering and after aging treatment is low because the amount of the strengthening element does not reach the range of the present invention, and in Samples 4 and 8, the tensile elongation at break is small because of the TiC amount and the matrix. This is because the strengthening element of the alloy exceeds the scope of the present invention. Samples 1, 2, 3, 5, and 6 within the scope of the present invention have higher hardness and tensile elongation at break than conventional stellite alloys both after HIP treatment and after aging treatment.

第2図は、試料2,5,6,7を基にしてタービン羽根への
被着後の被着部分の各種時効処理による硬さの変化を示
したもので、試料7を除き、500℃〜800℃の間で実質的
に有効な硬化が得られ、比較材のステライト合金の硬さ
約Hv500を超える高い値を得ている。500℃よりも低温側
では拡散が遅いため、500℃以上の温度における硬化を
達成するには100時間を超える長時間の加熱が必要とな
り、経済性から適さない。
Fig. 2 shows the changes in hardness due to various aging treatments of the adhered part after being adhered to the turbine blade, based on samples 2, 5, 6 and 7, except for sample 7 at 500 ° C. Substantially effective hardening was obtained between ~ 800 ° C, and the hardness of the comparative Stellite alloy was as high as about Hv500 or higher. Since diffusion is slower at temperatures lower than 500 ° C, heating at a temperature of 500 ° C or higher requires heating for more than 100 hours, which is not economically suitable.

第3図は、防食片のタービン羽根への被着後の試験結
果で、従来のステライト合金のエロージョン量に比べ、
本発明の範囲にある各試料はHIP処理のままでもいずれ
も同等以下のエロージョン量を示し、耐エロージョン性
は良好であるが、時効処理を施すことにより、一段と高
い耐食性を得ることができる。
FIG. 3 shows the test results after the corrosion-preventing piece was attached to the turbine blade, and compared with the erosion amount of the conventional stellite alloy,
Each sample within the scope of the present invention shows the same or less erosion amount even if it is HIP-treated, and has good erosion resistance, but by performing an aging treatment, much higher corrosion resistance can be obtained.

このように、この発明にかかるタービン羽根の製造方
法では、タービン羽根への防食片被着後の被着部分の耐
食性が従来に較べても優れていることが容易に理解でき
るであろう。なお、上記実施例においては、焼結体中の
気孔を圧搾するに、HIP処理を例にとって説明したが、
熱間および冷間における圧延、鍛造等の塑性加工によっ
ても同様の効果を達成することは可能である。
As described above, it can be easily understood that in the turbine blade manufacturing method according to the present invention, the corrosion resistance of the adhered portion after the anticorrosion piece is adhered to the turbine blade is superior to the conventional one. In the above examples, the HIP treatment was described as an example for compressing the pores in the sintered body.
The same effect can be achieved by plastic working such as rolling and forging in hot and cold.

〔発明の効果〕〔The invention's effect〕

以上説明したように、この発明によれば、従来適用さ
れているものに較べ、防食片自身の靭性、延性が富むこ
とと相まって、防食片のタービン羽根への被着後の被着
部分の硬度性が増すことによる耐食性も一段と高まる効
果がある。
As described above, according to the present invention, the hardness of the adhered portion of the anticorrosion piece after being adhered to the turbine blade is coupled with the toughness and ductility of the anticorrosion piece as compared with those conventionally applied. Corrosion resistance is further enhanced by the increased corrosion resistance.

なお、この発明にかかるタービン羽根製造方法では、
蒸気中の水滴の影響を受ける防食片を備えたタービン羽
根のエロージョン対策について説明したが、この実施に
とらわれることなく、例えば作動流体中に含まれる砂、
ほこり、酸化スケール等による固体粒子エロージョンに
対しても、この発明は有効である。
Incidentally, in the turbine blade manufacturing method according to the present invention,
Although the erosion countermeasures of the turbine blade provided with the anticorrosion piece affected by the water droplets in the steam have been described, the sand contained in the working fluid is not limited to this implementation,
The present invention is also effective for solid particle erosion due to dust, oxide scale, and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明によって得られた防食片および防食片
へのタービン羽根への被着後の被着部分の硬さと引張破
断伸びとの関係を示す図、第2図はこの発明によって得
られた防食片のタービン羽根への被着後の被着部分の硬
さと時効処理との関係を示す図、第3図は防食片のター
ビン羽根への被着後の被着部分の耐食度合の試験結果を
示す図である。
FIG. 1 is a diagram showing the relationship between the hardness of the anticorrosion piece obtained by the present invention and the adhered portion of the anticorrosion piece after being attached to a turbine blade and the tensile elongation at break, and FIG. 2 is obtained by the present invention. Fig. 3 is a diagram showing the relationship between the hardness of the adhered part of the anticorrosion piece after being adhered to the turbine blade and the aging treatment. Fig. 3 is a test of the corrosion resistance of the adhered part of the anticorrosion piece after being adhered to the turbine blade. It is a figure which shows a result.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】チタン炭化物の粉末に、重量比で、Cr7〜2
5%,Ni1〜10%,Co1〜15%,Mo0.5〜10%,Al0.5〜2.5%,T
i0.5〜2.5%,Cu0.5〜2.5%,C0.1〜1.5%,残部Feおよび
付随的不純物よりなるマトリックス合金のアルゴンアト
マイズ粉末を混合し、混合の際、上記チタン炭化物の粉
末を全体体積比で30〜60%、上記マトリックス合金のア
ルゴンアトマイズ粉末を全体体積比で40〜70%になるよ
うに調整した混合物を焼結後、ホットアイソスタティッ
クプレス処理工程により成形したタービン羽根の防食片
を、タービン羽根の前縁部に被着し、しかる後、その被
着部分を温度範囲500〜800℃で熱処理することを特徴と
するタービン羽根の製造方法。
1. A titanium carbide powder containing Cr7 to 2 in a weight ratio.
5%, Ni1-10%, Co1-15%, Mo0.5-10%, Al0.5-2.5%, T
i 0.5 to 2.5%, Cu 0.5 to 2.5%, C 0.1 to 1.5%, the balance of the argon atomized powder of the matrix alloy consisting of Fe and incidental impurities was mixed, and when mixing, the titanium carbide powder as a whole was mixed. A turbine blade anticorrosion piece formed by a hot isostatic press treatment step after sintering a mixture prepared by adjusting the volume ratio of the argon atomized powder of the above matrix alloy to 30 to 60% and the total volume ratio to 40 to 70%. Is adhered to the front edge of the turbine blade, and then the adhered portion is heat-treated in a temperature range of 500 to 800 ° C., a method of manufacturing a turbine blade.
JP62211464A 1987-08-27 1987-08-27 Turbine blade manufacturing method Expired - Lifetime JPH0819497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62211464A JPH0819497B2 (en) 1987-08-27 1987-08-27 Turbine blade manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62211464A JPH0819497B2 (en) 1987-08-27 1987-08-27 Turbine blade manufacturing method

Publications (2)

Publication Number Publication Date
JPS6456836A JPS6456836A (en) 1989-03-03
JPH0819497B2 true JPH0819497B2 (en) 1996-02-28

Family

ID=16606371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62211464A Expired - Lifetime JPH0819497B2 (en) 1987-08-27 1987-08-27 Turbine blade manufacturing method

Country Status (1)

Country Link
JP (1) JPH0819497B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508888A (en) * 2011-03-01 2014-04-10 スネクマ The process of manufacturing metal parts such as turbine engine blade reinforcement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508888A (en) * 2011-03-01 2014-04-10 スネクマ The process of manufacturing metal parts such as turbine engine blade reinforcement

Also Published As

Publication number Publication date
JPS6456836A (en) 1989-03-03

Similar Documents

Publication Publication Date Title
JP4511097B2 (en) Method for producing FeCrAl material and material thereof
EP1842934B1 (en) Heat-resistant superalloy
US5395699A (en) Component, in particular turbine blade which can be exposed to high temperatures, and method of producing said component
US4217113A (en) Aluminum oxide-containing metal compositions and cutting tool made therefrom
JP2007510056A (en) Nickel-containing alloy, method for producing the same, and article obtained therefrom
JP4166821B2 (en) Powder metallurgical manufacturing method of composite material
JP3361072B2 (en) Method for producing metal member having excellent oxidation resistance
JP2653527B2 (en) How to join erosion resistant alloys
JP2837798B2 (en) Cobalt-based alloy with excellent corrosion resistance, wear resistance and high-temperature strength
JPH0819497B2 (en) Turbine blade manufacturing method
JP2566978B2 (en) Manufacturing method of corrosion resistant alloy steel
JP2566979B2 (en) Manufacturing method of corrosion resistant alloy steel
JP2566980B2 (en) Manufacturing method of corrosion resistant alloy steel
JPH0593233A (en) Aluminum-modified titanium/titanium alloy microcomposite material
US5935349A (en) Intermetallic nickel-aluminum base alloy and material formed of the alloy
CN106591674A (en) Preparation method for high-strength high-toughness heat-resistant TiN steel-bonded hard alloy
US4798625A (en) Superalloy with oxide dispersion hardening having improved corrosion resistance and based on nickel
WO1999039016A1 (en) Iron aluminide composite and method of manufacture thereof
JPH09176759A (en) Production of erosion resistant alloy
CN110643857A (en) Nickel-based alloy powder without original grain boundary and preparation method thereof
JP7429432B2 (en) Pressure sintered body and its manufacturing method
Shakesheff Ageing and toughness of silicon carbide particulate reinforced Al-Cu and Al-Cu-Mg based metal-matrix composites
JPS62211340A (en) Corrosion resistant hard alloy
RU2771192C9 (en) Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body
JP3379203B2 (en) High-rigidity iron-based alloy and method for producing the same