JPH08194050A - Supersonic wave distance measuring device using wave transmission bar - Google Patents

Supersonic wave distance measuring device using wave transmission bar

Info

Publication number
JPH08194050A
JPH08194050A JP7004677A JP467795A JPH08194050A JP H08194050 A JPH08194050 A JP H08194050A JP 7004677 A JP7004677 A JP 7004677A JP 467795 A JP467795 A JP 467795A JP H08194050 A JPH08194050 A JP H08194050A
Authority
JP
Japan
Prior art keywords
probe
waveguide
ultrasonic
transmission
waveguide rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7004677A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Konakawa
信好 粉川
Fuminobu Takahashi
文信 高橋
Kazunori Koga
和則 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7004677A priority Critical patent/JPH08194050A/en
Publication of JPH08194050A publication Critical patent/JPH08194050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE: To measure a distance of an object to be measured in a high temperature atmosphere, to extend a range of measuring distance of the object to be measured and to improve detection performance of the object to be measured in the high temperature atmosphere. CONSTITUTION: This device is constituted of a transmission probe 1 to transmit a signal by way of carrying out electro-acoustic transduction a wave transmission bar 2 for transmission installed on the transmission probe 1 through a contact medium and to propagate a supersonic wave, a wave transmission bar 5 for reception to propagate a supersonic wave pulse reflected on a surface of an object 4 to be measured, a receiving probe 6 installed on the wave transmission bar 5 for reception through a contact medium and to receive a supersonic wave signal by way of carrying out electro-acoustic transduction and a supersonic wave distance measuring part 7 to measure a distance from reciprocal propagating time in which a supersonic wave is emitted from the transmission probe 1 and returned to the receiving probe 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超音波距離計測装置に係
り、特に、高温雰囲気中の被計測物体の距離を計測する
のに好敵な超音波距離計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic distance measuring device, and more particularly to an ultrasonic distance measuring device suitable for measuring the distance of an object to be measured in a high temperature atmosphere.

【0002】[0002]

【従来の技術】従来、高温の被探傷物で用いる探触子と
しては特開昭62−280649号公報がある。この発明は被探
傷物に接触媒質を挟んで取り付けられる保護板あるいは
直接取り付けられる金属材料に電極部間に挟まれた振動
子を積層した超音波探傷装置の探触子において、保護板
あるいは金属材料と振動子との間にこれらを互いに接合
すると共にその振動子の電極部を一体的に形成するアル
ミ系耐熱性電極層を形成したものである。この種のもの
は、溶解金属中のように非常に高温に達する雰囲気中で
は、保護板の熱膨張により接合剤が剥離してしまう危れ
がある。
2. Description of the Related Art Conventionally, Japanese Patent Application Laid-Open No. 62-280649 discloses a probe used for a high temperature flaw-detecting object. The present invention relates to a probe of an ultrasonic flaw detector, in which a transducer sandwiched between electrode parts is laminated on a protective plate or a metal material directly attached to an object to be inspected, with the protective plate or the metal material. The aluminum-based heat-resistant electrode layer is integrally formed between the electrode and the vibrator, and the electrode portion of the vibrator is integrally formed. In the case of this kind, the bonding agent may be peeled off due to the thermal expansion of the protective plate in an atmosphere reaching a very high temperature such as in a molten metal.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、高温
雰囲気中に直接、探触子をさらすことをなくするために
導波棒の一部を高温雰囲気中にさらし探触子は高温雰囲
気中にさらされていない導波棒の上面に取り付けること
で高温雰囲気中の被計測物体の距離を計測することので
きる超音波距離計測装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to expose a portion of a waveguide rod to a high temperature atmosphere so that the probe is not directly exposed to the high temperature atmosphere. An object of the present invention is to provide an ultrasonic distance measuring device capable of measuring the distance of an object to be measured in a high temperature atmosphere by mounting it on the upper surface of a waveguide rod that is not exposed to the inside.

【0004】本発明の第二の目的は、超音波の距離計測
範囲を拡げることのできる超音波距離計測装置を提供す
ることにある。
A second object of the present invention is to provide an ultrasonic distance measuring device capable of expanding the ultrasonic distance measuring range.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は電気音響変換を行い信号を送信する送信探
触子と,送信探触子と接触媒質を介して取り付けられ超
音波を伝播する送信用導波棒と,被計測物体の表面で反
射された超音波パルスを伝播する受信用導波棒と,受信
用導波棒と接触媒質を介して取り付けられ電気音響変換
を行い超音波信号を受信する受信探触子と,送信探触子
から超音波が放射され受信探触子に戻ってくるまでの往
復伝播時間から距離を計測する超音波距離計測部とで構
成する。第二の目的はを達成するため、本発明は電気音
響変換を行い信号を送信する送信探触子と,送信探触子
と接触媒質を介して取り付けられ超音波を伝播し、放射
面が斜面形状である送信用導波棒と,被計測物体の表面
で反射された超音波パルスを伝播する受信用導波棒と,
受信用導波棒と接触媒質を介して取り付けられ電気音響
変換を行い超音波信号を受信する受信探触子と,送信探
触子から超音波が反射され受信探触子に戻ってくるまで
の往復伝播時間から距離を計測する超音波距離計測部
と,送信用導波棒の円周上に形成された歯車と,歯車と
噛み合い送信用導波棒を送信用導波棒の中心軸上を回転
させる導波棒回転用モータと,送信用導波棒の回転角を
検出するエンコーダと,前記エンコーダからの信号を取
り込み導波棒の現在角度を演算し、導波棒回転用モータ
に制御信号を出力する統括制御装置とで構成する。
In order to achieve the above-mentioned object, the present invention provides a transmitting probe for performing electroacoustic conversion and transmitting a signal, and an ultrasonic wave attached to the transmitting probe via a contact medium. A propagating transmitting waveguide rod, a receiving waveguide rod that propagates the ultrasonic pulse reflected on the surface of the object to be measured, and a receiving waveguide rod and a contact medium that are mounted via a couplant to perform electroacoustic conversion. It is composed of a receiving probe that receives a sound wave signal and an ultrasonic distance measuring unit that measures the distance from the round-trip propagation time until the transmitting probe emits ultrasonic waves and returns to the receiving probe. In order to achieve the second object, according to the present invention, a transmitting probe that performs electroacoustic conversion and transmits a signal, an ultrasonic wave that is attached via the transmitting probe and a couplant, propagates ultrasonic waves, and a radiating surface is a slope. A transmission waveguide rod having a shape, and a reception waveguide rod that propagates the ultrasonic pulse reflected on the surface of the measured object,
The receiving probe, which is attached to the receiving waveguide rod through the contact medium, performs electroacoustic conversion and receives ultrasonic signals, and the ultrasonic wave is reflected from the transmitting probe and returns to the receiving probe. An ultrasonic distance measuring unit that measures the distance from the round-trip propagation time, a gear formed on the circumference of the transmitting waveguide rod, and a transmission waveguide rod that meshes with the gear and is placed on the center axis of the transmitting waveguide rod. A motor for rotating the waveguide rod to be rotated, an encoder for detecting the rotation angle of the waveguide rod for transmission, a signal from the encoder is calculated to calculate the current angle of the waveguide rod, and a control signal is sent to the motor for rotating the waveguide rod. It is composed of an integrated control device that outputs

【0006】また、第二の目的は、送信用導波棒の放射
面を凸形状とすることでも達成される。
The second object is also achieved by making the emitting surface of the transmitting waveguide rod convex.

【0007】[0007]

【作用】高温雰囲気中に直接、探触子をさらすことなく
するために導波棒の一部を高温雰囲気中にさらし探触子
は高温雰囲気中にさらされていない導波棒の上面に取り
付ける。被計測物体までの距離を計測する際は、送信探
触子により超音波信号を送信すると、送信探触子と接触
媒質を介して取り付けられた送信用導波棒中を超音波が
伝播する。被計測物体の表面で反射された超音波パルス
は受信用導波棒により受信され導波棒中を伝播し、受信
用導波棒と接触媒質を介して取り付けられた受信探触子
により超音波信号が受信される。距離の計測は超音波距
離計測部により送信探触子から超音波が放射され受信探
触子に戻ってくるまでの往復伝播時間から求めることが
できる。
[Function] A part of the waveguide is exposed to a high temperature atmosphere so as not to expose the probe directly to the high temperature atmosphere, and the probe is mounted on the upper surface of the waveguide not exposed to the high temperature atmosphere. . When measuring the distance to the object to be measured, an ultrasonic wave signal is transmitted by the transmitting probe, and the ultrasonic wave propagates in the transmitting waveguide rod attached via the transmitting probe and the contact medium. The ultrasonic pulse reflected by the surface of the measured object is received by the receiving waveguide rod, propagates in the waveguide rod, and is transmitted by the receiving probe attached via the receiving waveguide rod and the contact medium. The signal is received. The distance can be measured from the round-trip propagation time until the ultrasonic wave is radiated from the transmitting probe by the ultrasonic distance measuring unit and returns to the receiving probe.

【0008】また、第二の方式では、エンコーダにより
送信用導波棒の回転角を検出し、エンコーダからの信号
を取り込み導波棒の現在角度を演算し、その結果、導波
棒回転用モータに制御信号を出力し、導波棒回転用モー
タにより送信用導波棒を中心軸上に回転させる。送信用
導波棒の放射面は斜面形状であるので超音波は屈折し、
送信用導波棒の回転動作により、超音波の距離計測範囲
を拡げることができる。
In the second method, the encoder detects the rotation angle of the transmitting waveguide rod, the signal from the encoder is taken in, and the current angle of the waveguide rod is calculated. As a result, the waveguide rod rotating motor is obtained. A control signal is output to and the transmission waveguide rod is rotated on the central axis by the waveguide rod rotation motor. Since the emitting surface of the transmitting waveguide is a sloped surface, ultrasonic waves are refracted,
By rotating the transmitting waveguide rod, the ultrasonic distance measurement range can be expanded.

【0009】さらに、第三の方式では、送信用導波棒の
凸形状の放射面により超音波の放射角が拡がる。
Further, in the third method, the emission angle of ultrasonic waves is expanded by the convex emission surface of the transmitting waveguide rod.

【0010】[0010]

【実施例】以下、本発明の実施例を図面により説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は本発明の一実施例で、全体の構成を
示している。
FIG. 1 shows one embodiment of the present invention and shows the entire structure.

【0012】超音波信号を送信する送信探触子1と超音
波を伝播する送信用導波棒2とは、接触媒質を介して取
り付けられている。同様に、受信探触子6と受信用導波
棒5とは、接触媒質を介して取り付けられている。送信
用導波棒2と受信用導波棒5とは冷却用フィン8により
一定間隔に固定されている。送信用導波棒2と受信用導
波棒5の一部は、溶解金属などの高温雰囲気中の超音波
伝播媒体3にさらされている。送信探触子1と受信探触
子6は高温雰囲気中にさらされていない導波棒の上面に
取り付けられている。送信用導波棒2の放射面は凸形状
である。送信探触子1から超音波が放射され、被計測物
体4の表面で反射され、受信用導波棒5を介して、受信
探触子6に戻ってくるまでの往復伝播時間から距離を計
測する超音波距離計測部7が外部に設置されている。
The transmitting probe 1 for transmitting ultrasonic signals and the transmitting waveguide rod 2 for propagating ultrasonic waves are attached via a contact medium. Similarly, the receiving probe 6 and the receiving waveguide rod 5 are attached via a contact medium. The transmitting waveguide rod 2 and the receiving waveguide rod 5 are fixed at regular intervals by cooling fins 8. A part of the transmission waveguide rod 2 and the reception waveguide rod 5 is exposed to the ultrasonic wave propagation medium 3 in a high temperature atmosphere such as a molten metal. The transmitting probe 1 and the receiving probe 6 are attached to the upper surface of the waveguide rod that is not exposed to the high temperature atmosphere. The emitting surface of the transmitting waveguide rod 2 has a convex shape. Ultrasonic waves are radiated from the transmitting probe 1, are reflected on the surface of the measured object 4, and measure the distance from the round-trip propagation time until they return to the receiving probe 6 via the receiving waveguide rod 5. The ultrasonic distance measuring unit 7 is installed outside.

【0013】図2は送信用導波棒2の放射面の形状と超
音波の拡がりの関係を示している。送信探触子及び受信
探触子は1MHzで送信用導波棒2の放射面と受信探触
子との距離は700mmとし、超音波の分布を測定した。
横軸が超音波の拡がり(mm)で縦軸が超音波受信強度
(dB)を示す。図中の実線が放射面の形状がフラット
形状,破線がテーパ形状,一点鎖線が球面形状である。
これを見ると、放射面の形状が凸形状すなわちテーパ形
状,球面形状のものが、超音波が拡がることが分かる。
FIG. 2 shows the relationship between the shape of the emitting surface of the transmitting waveguide rod 2 and the spread of ultrasonic waves. The transmitting probe and the receiving probe were 1 MHz, the distance between the emitting surface of the transmitting waveguide rod 2 and the receiving probe was 700 mm, and the ultrasonic wave distribution was measured.
The horizontal axis represents the ultrasonic wave spread (mm) and the vertical axis represents the ultrasonic wave reception intensity (dB). In the figure, the solid line shows the flat emission surface, the broken line shows the taper shape, and the alternate long and short dash line shows the spherical shape.
From this, it can be seen that the ultrasonic waves spread when the radiation surface has a convex shape, that is, a tapered shape or a spherical shape.

【0014】図3により超音波の距離計測について説明
する。超音波を用いた距離計測は、超音波信号を送信す
る送信探触子1から、送信用導波棒2,高温液体金属な
どの超音波伝播媒体3を介して、超音波伝播媒体3とは
異なる音響インピーダンスを有する被計測物体4の表面
に超音波パルスを放射し、この超音波パルスが同面で反
射され、受信用導波棒5を介して、受信探触子6に戻っ
てくるまでの往復伝播時間Tを計測し、Tの値から超音
波伝播媒体である送信用導波棒2及び受信用導波棒5の
伝播時間tを引いた値と高温液体金属の音速vから導波
棒先端と被計測物体4の超音波反射面との距離Lを、数
1の計算式に従って計測するものである。
The distance measurement of ultrasonic waves will be described with reference to FIG. In the distance measurement using ultrasonic waves, what is called the ultrasonic wave propagation medium 3 from the transmission probe 1 which transmits an ultrasonic wave signal, through the transmission wave guide rod 2, the ultrasonic wave propagation medium 3 such as a high temperature liquid metal, etc. Until the ultrasonic pulse is emitted to the surface of the measured object 4 having different acoustic impedance, the ultrasonic pulse is reflected on the same surface, and returns to the receiving probe 6 via the receiving waveguide rod 5. The round-trip propagation time T is measured, and the value is calculated by subtracting the propagation time t of the transmission waveguide rod 2 and the reception waveguide rod 5 which are ultrasonic propagation media from the value of T and the sound velocity v of the high temperature liquid metal. The distance L between the tip of the rod and the ultrasonic reflection surface of the measured object 4 is measured according to the equation (1).

【0015】[0015]

【数1】 L=(T−t)・v/2 …(数1) 図3のブロック図において、1は電気音響変換を行い超
音波信号を送信する送信探触子、2は送信用導波棒、3
は高温液体金属などの超音波伝播媒体、4は超音波伝播
媒体3とは異なる音響インピーダンスを有する被計測物
体、5は受信用導波棒、6は電気音響変換を行い超音波
信号を受信する受信探触子、70は送信信号を送信探触
子1に与える送信器、71は受信探触子6によって受信
された反射パルスを増幅する受信器、72はパルス伝播
時間測定のために前もって設定されたスレッシュルドレ
ベルと反射パルスの振幅比較を行う振幅比較回路、73
は基準パルス発生回路76によって発生された基準パル
スのカウントを振幅比較回路72の出力に同期して停止
する信号を発生するストップパルス発生回路、74は送
信パルスをスタートさせ基準パルスのカウントを開始す
る信号を発生するスタートパルス発生回路、75はスタ
ートパルス,ストップパルスによって基準パルス数をカ
ウントする期間を設定するゲート回路、77はゲートを
開かれた期間内の基準パルス数をカウントするカウン
タ、78はカウンタ77の出力から超音波パルス伝播時
間Tを求め、さらに数1に従って距離Lを計算するため
の演算回路、79は演算回路78で計算した距離Lを表
示する表示器である。
L = (T−t) · v / 2 (Equation 1) In the block diagram of FIG. 3, 1 is a transmission probe that performs electroacoustic conversion and transmits an ultrasonic signal, and 2 is a transmission conductor. Wavy stick, 3
Is an ultrasonic wave propagation medium such as a high temperature liquid metal, 4 is an object to be measured having an acoustic impedance different from that of the ultrasonic wave propagation medium 3, 5 is a receiving waveguide rod, and 6 is electroacoustic conversion to receive an ultrasonic wave signal. A reception probe, 70 is a transmitter that gives a transmission signal to the transmission probe 1, 71 is a receiver that amplifies the reflected pulse received by the reception probe 6, and 72 is preset for pulse transit time measurement. An amplitude comparison circuit that compares the amplitudes of the reflected threshold level and the reflected pulse, 73
Is a stop pulse generation circuit that generates a signal that stops the counting of the reference pulse generated by the reference pulse generation circuit 76 in synchronization with the output of the amplitude comparison circuit 72, and 74 starts the transmission pulse and starts the counting of the reference pulse. A start pulse generation circuit for generating a signal, a gate circuit 75 for setting a period for counting the reference pulse number by a start pulse and a stop pulse, 77 for a counter for counting the reference pulse number within the period in which the gate is opened, and 78 for An arithmetic circuit for obtaining the ultrasonic pulse propagation time T from the output of the counter 77 and further calculating the distance L according to the equation 1 is a display for displaying the distance L calculated by the arithmetic circuit 78.

【0016】図4は本発明の他の実施例を示している。FIG. 4 shows another embodiment of the present invention.

【0017】図4は図1の実施例の送信用導波棒2に回
転機能を付加したものである。送信用導波棒2の放射面
は斜面形状である。放射面は斜面形状であるので超音波
は屈折し図4に示すように斜め方向に放射される。歯車
10は送信用導波棒2の円周上に形成され、歯車11と
噛み合い送信用導波棒2を送信用導波棒2の中心軸上を
回転させる導波棒回転用モータ12へと連結されてい
る。エンコーダ13は送信用導波棒2の回転角を検出す
る。統括制御装置9では、導波棒現在角度演算部91で
エンコーダ13からの信号を取り込み導波棒の現在角度
を演算し、導波棒回転機構制御部92で導波棒回転用モ
ータ12に制御信号を出力する。
FIG. 4 shows the transmission waveguide rod 2 of the embodiment shown in FIG. 1 to which a rotation function is added. The emitting surface of the transmitting waveguide rod 2 has a sloped shape. Since the emitting surface has a sloped shape, ultrasonic waves are refracted and emitted in an oblique direction as shown in FIG. The gear 10 is formed on the circumference of the transmitting waveguide rod 2, and meshes with the gear 11 to form a waveguide rod rotating motor 12 that rotates the transmitting waveguide rod 2 on the central axis of the transmitting waveguide rod 2. It is connected. The encoder 13 detects the rotation angle of the transmitting waveguide rod 2. In the integrated controller 9, the waveguide rod current angle calculation unit 91 takes in a signal from the encoder 13 to calculate the current angle of the waveguide rod, and the waveguide rod rotation mechanism control unit 92 controls the waveguide rod rotation motor 12. Output a signal.

【0018】図5は被計測物体4の位置が異なる場合の
検出方法を示している。統括制御装置9で、導波棒回転
用モータ12に制御信号を出力し、送信用導波棒2を回
転することによって被計測物体4を検出することができ
る。
FIG. 5 shows a detection method when the position of the measured object 4 is different. The integrated control device 9 outputs a control signal to the waveguide rod rotation motor 12 to rotate the transmission waveguide rod 2 so that the measured object 4 can be detected.

【0019】図4,図5に示すように送信用導波棒2を
回転させることによって、被計測物体4の距離計測範囲
を拡げることができる。
By rotating the transmitting waveguide rod 2 as shown in FIGS. 4 and 5, the distance measuring range of the object 4 to be measured can be expanded.

【0020】[0020]

【発明の効果】本発明によれば、高温雰囲気中に直接、
探触子をさらすことをなくするために導波棒の一部を高
温雰囲気中にさらし探触子は高温雰囲気中にさらされて
いない導波棒の上面に取り付けることで高温雰囲気中の
被計測物体の距離を計測することができ、被計測物体の
距離計測範囲を拡げることができるので、高温雰囲気中
における被計測物体の検出性能が向上する。
According to the present invention, directly in a high temperature atmosphere,
In order to avoid exposing the probe, part of the waveguide is exposed to a high temperature atmosphere, and the probe is mounted on the upper surface of the waveguide that is not exposed to the high temperature atmosphere. Since the distance of the object can be measured and the distance measurement range of the object to be measured can be expanded, the detection performance of the object to be measured in a high temperature atmosphere is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の全体の説明図。FIG. 1 is an overall explanatory view of an embodiment of the present invention.

【図2】送信用導波棒の放射面の形状と超音波の拡がり
の特性図。
FIG. 2 is a characteristic diagram of the shape of the emitting surface of the transmitting waveguide rod and the spread of ultrasonic waves.

【図3】超音波の距離計測についての説明図。FIG. 3 is an explanatory view of ultrasonic distance measurement.

【図4】本発明の他の実施例を示す説明図。FIG. 4 is an explanatory view showing another embodiment of the present invention.

【図5】被計測物体の位置が異なる場合の検出方法を示
す説明図。
FIG. 5 is an explanatory diagram showing a detection method when the position of the measured object is different.

【符号の説明】[Explanation of symbols]

1…送信探触子、2…送信用導波棒、3…超音波伝播媒
体、4…被計測物体、5…受信用導波棒、6…受信探触
子、7…超音波距離計測部。
DESCRIPTION OF SYMBOLS 1 ... Transmitting probe, 2 ... Transmitting waveguide rod, 3 ... Ultrasonic propagation medium, 4 ... Object to be measured, 5 ... Receiving waveguide rod, 6 ... Receiving probe, 7 ... Ultrasonic distance measuring unit .

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電気音響変換を行い信号を送信する送信探
触子と,前記送信探触子と接触媒質を介して取り付けら
れ超音波を伝播する送信用導波棒と,被計測物体の表面
で反射された超音波パルスを伝播する受信用導波棒と,
前記受信用導波棒と前記接触媒質を介して取り付けられ
電気音響変換を行い超音波信号を受信する受信探触子
と,前記送信探触子から超音波が放射され前記受信探触
子に戻ってくるまでの往復伝播時間から距離を計測する
超音波距離計測部とからなることを特徴とする導波棒を
用いた超音波距離計測装置。
1. A transmission probe that performs electroacoustic conversion and transmits a signal, a transmission waveguide rod that is attached to the transmission probe through a contact medium and propagates ultrasonic waves, and a surface of an object to be measured. A receiving waveguide that propagates the ultrasonic pulse reflected by
A reception probe attached to the reception waveguide rod through the contact medium to receive an ultrasonic signal by performing electroacoustic conversion, and an ultrasonic wave emitted from the transmission probe and returned to the reception probe. An ultrasonic distance measuring device using a waveguide rod, comprising: an ultrasonic distance measuring unit that measures a distance from a round-trip propagation time until arrival.
【請求項2】電気音響変換を行い信号を送信する送信探
触子と,前記送信探触子と接触媒質を介して取り付けら
れ超音波を伝播し、放射面が斜面形状である送信用導波
棒と,被計測物体の表面で反射された超音波パルスを伝
播する受信用導波棒と,前記受信用導波棒と接触媒質を
介して取り付けられ、電気音響変換を行い超音波信号を
受信する受信探触子と,前記送信探触子から超音波が放
射され前記受信探触子に戻ってくるまでの往復伝播時間
から距離を計測する超音波距離計測部と,前記送信用導
波棒の円周上に形成された歯車と,前記歯車と噛み合い
前記送信用導波棒を前記送信用導波棒の中心軸上を回転
させる導波棒回転用モータと,前記送信用導波棒の回転
角を検出するエンコーダと,前記エンコーダからの信号
を取り込み導波棒の現在角度を演算し、前記導波棒回転
用モータに制御信号を出力する統括制御装置とからなる
ことを特徴とする導波棒を用いた超音波距離計測装置。
2. A transmission probe that performs electroacoustic conversion and transmits a signal, and a transmission waveguide that is attached to the transmission probe via a couplant to propagate ultrasonic waves and has a radiating surface having a slope shape. The rod, the receiving waveguide rod that propagates the ultrasonic pulse reflected by the surface of the object to be measured, and the receiving waveguide rod are attached via a contact medium, and electroacoustic conversion is performed to receive an ultrasonic signal. A receiving probe, an ultrasonic distance measuring unit that measures a distance from a round-trip propagation time until ultrasonic waves are emitted from the transmitting probe and return to the receiving probe, and the transmitting waveguide rod A gear formed on the circumference of, a motor for rotating the waveguide rod that meshes with the gear to rotate the waveguide waveguide for transmission around the central axis of the waveguide waveguide for transmission, and a waveguide rod for transmission. An encoder that detects a rotation angle and a waveguide rod that receives a signal from the encoder Currently it calculates the angle, the waveguide rod and outputs a control signal to the rotation motor integrated control unit and that the ultrasonic distance measuring device using a waveguide rod, characterized in consisting of.
【請求項3】請求項1において、前記送信用導波棒の放
射面を凸形状とした導波棒を用いた超音波距離計測装
置。
3. The ultrasonic distance measuring device according to claim 1, wherein the transmitting waveguide rod has a convex radiation surface.
JP7004677A 1995-01-17 1995-01-17 Supersonic wave distance measuring device using wave transmission bar Pending JPH08194050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7004677A JPH08194050A (en) 1995-01-17 1995-01-17 Supersonic wave distance measuring device using wave transmission bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7004677A JPH08194050A (en) 1995-01-17 1995-01-17 Supersonic wave distance measuring device using wave transmission bar

Publications (1)

Publication Number Publication Date
JPH08194050A true JPH08194050A (en) 1996-07-30

Family

ID=11590535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7004677A Pending JPH08194050A (en) 1995-01-17 1995-01-17 Supersonic wave distance measuring device using wave transmission bar

Country Status (1)

Country Link
JP (1) JPH08194050A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157631A (en) * 2015-09-28 2015-12-16 沈阳中科韦尔腐蚀控制技术有限公司 Arc surface sound gathering waveguide device applicable to ultrasound thickness measurement field
CN112285215A (en) * 2020-10-12 2021-01-29 浙江大学 Shielding type guided wave rod for acoustic emission detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157631A (en) * 2015-09-28 2015-12-16 沈阳中科韦尔腐蚀控制技术有限公司 Arc surface sound gathering waveguide device applicable to ultrasound thickness measurement field
CN112285215A (en) * 2020-10-12 2021-01-29 浙江大学 Shielding type guided wave rod for acoustic emission detection

Similar Documents

Publication Publication Date Title
JP2747618B2 (en) Ultrasonic flow velocity measuring method and apparatus
US5886250A (en) Pitch-catch only ultrasonic fluid densitometer
JPH0914949A (en) Delay line for ultrasonic waveform detector and using methodthereof
TWI408699B (en) Nuclear reactor vibration surveillance system and its method
JPS6219695B2 (en)
US4020679A (en) Sled for ultrasonic NDT system
JP2002213936A (en) Method and device for non-contact measurement of thickness of material
JPH08194050A (en) Supersonic wave distance measuring device using wave transmission bar
JPH021273B2 (en)
JPH08285938A (en) Ultrasonic distance measuring apparatus using wave-guiding rod
JP3589759B2 (en) Scale thickness measuring device for pipe inner surface
JPH10127632A (en) Ultrasonic diagnostic system
Fay et al. The thermoacoustic effect and its use in ultrasonic power determination
JPH05180810A (en) Ultrasonic transmitter-receiver for liquid concentration meter
JPS60125513A (en) Device for measuring plate thickness from above coated film by ultrasonic wave
JPH10300556A (en) Measuring apparatus for level of molten metal
JPS59151057A (en) Ultrasonic flaw detector
GB2172106A (en) Ultrasonic microstructural monitoring
KR101558922B1 (en) Dual type ultrasonic sensor for adjusting beam width
JPS6144349A (en) Method and apparatus for ultrasonic flaw detection
JPH09264735A (en) Method for measurement of thickness of refractory and apparatus therefor
KR100344144B1 (en) Medical ultrasonic probe using conductive epoxy
Chivers et al. Broadband measurements on ultrasonic tank lining materials
JP2000193674A (en) Bevel type ultrasonic sensor, ultrasonic flow velocity measuring device using the same and flow velocity measuring method
JPH07311184A (en) Sensor and method for measuring ultrasonic propagation time