JPH08193740A - Defrosting control method for air source heat pump water chiller boiler - Google Patents

Defrosting control method for air source heat pump water chiller boiler

Info

Publication number
JPH08193740A
JPH08193740A JP7004717A JP471795A JPH08193740A JP H08193740 A JPH08193740 A JP H08193740A JP 7004717 A JP7004717 A JP 7004717A JP 471795 A JP471795 A JP 471795A JP H08193740 A JPH08193740 A JP H08193740A
Authority
JP
Japan
Prior art keywords
heat exchanger
defrosting
side heat
air
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7004717A
Other languages
Japanese (ja)
Inventor
Takeshi Ito
毅 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7004717A priority Critical patent/JPH08193740A/en
Publication of JPH08193740A publication Critical patent/JPH08193740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE: To plan more effective defrosting of an air side heat exchanger by controlling a solenoid valve provided on upper one of upper and lower air side heat exchangers defined by dividing an air side heat exchanger according to information from a pressure sensor while an air source heat pump water chiller boiler is being operated in a defrosting mode. CONSTITUTION: An air side heat exchanger 2 is divided into upper and lower portions and the upper portion is provided with a solenoid valve 9 and a check valve 10, and refrigerant flows through the solenoid valve 9 during defrosting cycle and flows through the check valve 10 during heating cycle. When a high-pressure pressure sensor 7 detects a first defrosting-completion judging value after defrosting operation is started, a controller 6 judges that frost on the air side heat exchanger 2 has been removed to a certain extent, frost still remains partially, portion where defrosting has been completed is of low thermal efficiency so that high-pressure pressure abruptly rises and the high pressure sensor 7 judges that defrosting-completion judging value has been detected. The controller 6 closes the solenoid valve 9 in order to stop allowing refrigerant gas to flow into upper side of the heat exchanger and make the refrigerant forcedly flow into lower side of the heat exchanger.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空気熱源ヒートポンプ冷
温水機の除霜制御に係り、特に、大形の空気側熱交換器
を垂直方向に設置した空気熱源ヒートポンプ冷温水機に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to defrost control of an air heat source heat pump chiller / heater, and more particularly to an air heat source heat pump chiller / heater having a large air side heat exchanger installed vertically.

【0002】[0002]

【従来の技術】従来の技術は、空気側熱交換器が着霜す
ると暖房サイクルを冷房サイクルに切換えて圧縮機から
吐出された高温高圧のガス冷媒を空気側熱交換器に流し
除霜を行い、圧力又は時間を判定手段として元の暖房サ
イクルに戻す(除霜終了)制御を行っている。この時除
霜効率を図るため、圧縮機の容量制御を含めた制御もあ
る。類似した公知例として特開平2−208436 号公報があ
る。
2. Description of the Related Art In the prior art, when the air-side heat exchanger is frosted, the heating cycle is switched to the cooling cycle and the high-temperature and high-pressure gas refrigerant discharged from the compressor is flowed to the air-side heat exchanger for defrosting. The control for returning to the original heating cycle (end of defrosting) is performed by using the pressure or time as the determination means. At this time, in order to improve the defrosting efficiency, there is also control including capacity control of the compressor. As a similar known example, there is JP-A-2-208436.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は暖房サ
イクルを冷房サイクルに切換えて除霜する方式である
が、本方式は空気側熱交換器の構造まで考慮されていな
い。一般に空気側熱交換器は複数の伝熱管で構成されて
おり、また地面に対して垂直に設置されているのが普通
である。即ち、暖房サイクルを冷房サイクルに切換えて
(空気側熱交換器が着霜し熱交換能力が低下し、熱交換
器内に液冷媒が滞留しつつある)除霜を行ったとして
も、空気側熱交換器は垂直に設置されているので圧縮器
から吐出された高温高圧のガス冷媒は、液冷媒との圧力
差により複数の伝熱管に均等に流れようとせず、抵抗の
少ない熱交換器の上側に多く流れようとする。すると空
気側熱交換器は上側より除霜されるが下側にはなかなか
流れず、又空気側熱交換器用ファンが停止しているた
め、除霜の完了した部分では熱交換率が悪く高圧圧力が
上昇し、除霜不十分の部分があるにもかかわらず除霜終
了に至る恐れがある。また容量制御機構のある圧縮機を
有した冷凍サイクルの場合、十分除霜時間を確保するた
め圧縮機の容量を制御するが、本方式では圧縮機の吐出
量が少なくなるため上記と同様の不具合が生じる。この
ような状態になると暖房−除霜運転の切替頻度が多くな
り、又除霜運転になっても霜が完全にとれないため、非
常に効率が悪い運転となる。
The above-mentioned prior art is a method of defrosting by switching the heating cycle to the cooling cycle, but this method does not consider the structure of the air side heat exchanger. Generally, the air-side heat exchanger is composed of a plurality of heat transfer tubes and is usually installed vertically to the ground. That is, even if the heating cycle is switched to the cooling cycle (the air side heat exchanger is frosted and the heat exchange capacity is reduced, and the liquid refrigerant is staying in the heat exchanger), defrosting is performed. Since the heat exchanger is installed vertically, the high-temperature and high-pressure gas refrigerant discharged from the compressor does not try to flow evenly through the multiple heat transfer tubes due to the pressure difference with the liquid refrigerant, so that the resistance of the heat exchanger is low. Try to flow a lot to the upper side. Then, the air side heat exchanger is defrosted from the upper side, but it does not flow easily to the lower side, and the fan for the air side heat exchanger is stopped, so the heat exchange rate is poor at the part where defrosting is completed and the high pressure Rises, and there is a risk that defrosting will end even if there is insufficient defrosting. Also, in the case of a refrigeration cycle having a compressor with a capacity control mechanism, the capacity of the compressor is controlled in order to secure a sufficient defrosting time, but this method reduces the discharge amount of the compressor and the same problem as above. Occurs. In such a state, the frequency of switching the heating-defrosting operation increases, and even if the defrosting operation is performed, frost cannot be completely removed, resulting in extremely inefficient operation.

【0004】本発明の目的は、空気側熱交換器を効率よ
く除霜する方法を提供することにある。
An object of the present invention is to provide a method for efficiently defrosting an air side heat exchanger.

【0005】[0005]

【課題を解決するための手段】本発明の空気熱源ヒート
ポンプ冷温水機は特許請求の範囲の請求項に記載した構
成を有する。
The air heat source heat pump chiller / heater of the present invention has the construction described in the claims.

【0006】[0006]

【作用】空気側熱交換器に着霜し暖房運転から除霜運転
に切換えると、圧縮器から吐出された高温高圧の冷媒ガ
スは空気側熱交換器を流れ除霜を始める。ある判定値
(例えば高圧圧力)を満足すれば、空気側熱交換器の上
側は除霜が完了したと判断し、本発明の特徴である空気
側熱交換器の上側に設けた電磁弁を閉じ冷媒流路を遮断
し、強制的に空気側熱交換器の下側へ流す。このように
制御することにより、空気側熱交換器全域に高温高圧の
冷媒ガスが循環し効率のよい除霜運転をすることができ
る。
When the air-side heat exchanger is frosted and the heating operation is switched to the defrosting operation, the high-temperature and high-pressure refrigerant gas discharged from the compressor flows through the air-side heat exchanger to start defrosting. If a certain judgment value (for example, high pressure) is satisfied, it is determined that the upper side of the air side heat exchanger has completed defrosting, and the solenoid valve provided on the upper side of the air side heat exchanger, which is a feature of the present invention, is closed. The refrigerant flow path is shut off and forced to flow below the air side heat exchanger. By controlling in this way, high-temperature and high-pressure refrigerant gas circulates throughout the air-side heat exchanger, and efficient defrosting operation can be performed.

【0007】[0007]

【実施例】以下、本発明の一実施例を図1により説明す
る。図1は本実施例に係る冷凍サイクルの系統図であ
る。圧縮器1,空気側熱交換器2,膨張弁3,水側熱交
換器4,四方弁5、及びこれらを結ぶ冷媒配管により冷
凍サイクルが構成されており、これに制御器6,高圧圧
力センサ7が付属している。空気側熱交換器2は空気側
熱交換器用ファン8を送風することにより空気と熱交換
する。また空気側熱交換器2は本発明の特徴である上下
二段に分割されており、上段側には電磁弁(通常
“開”)9,逆止弁10が設けられ、除霜(冷房)サイ
クル時は電磁弁9,暖房サイクル時は逆止弁10を冷媒
は流れる。水側熱交換器4は、冷水又は温水11と熱交
換することにより冷水又は温水11を冷却又は加熱して
おり、この冷水又は温水11は他の冷却又は熱対象物を
冷却又は加熱することに用いられる。この装置は、冷却
運転時は空気側熱交換器2を凝縮器として、又水側熱交
換器4を蒸発器として用いることにより冷水を冷却対象
物に供給する。暖房運転時には冷却運転から四方弁5を
切換えることにより空気側熱交換器2を蒸発器として、
又水側熱交換器4を凝縮器として用いることにより温水
を加熱対象物に供給する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a system diagram of a refrigeration cycle according to this embodiment. A refrigeration cycle is configured by the compressor 1, the air side heat exchanger 2, the expansion valve 3, the water side heat exchanger 4, the four-way valve 5, and the refrigerant pipe connecting them, and the controller 6 and the high pressure sensor. 7 is attached. The air side heat exchanger 2 exchanges heat with the air by blowing the air side heat exchanger fan 8. Further, the air-side heat exchanger 2 is divided into upper and lower two stages, which is a feature of the present invention, and an electromagnetic valve (normally "open") 9 and a check valve 10 are provided on the upper stage side for defrosting (cooling). The refrigerant flows through the solenoid valve 9 during the cycle and the check valve 10 during the heating cycle. The water-side heat exchanger 4 cools or heats the cold water or the hot water 11 by exchanging heat with the cold water or the hot water 11, and the cold water or the hot water 11 cools or heats another cooling or heating object. Used. In the cooling operation, this device uses the air-side heat exchanger 2 as a condenser and the water-side heat exchanger 4 as an evaporator to supply cold water to an object to be cooled. During heating operation, the air-side heat exchanger 2 is used as an evaporator by switching the four-way valve 5 from cooling operation.
Further, by using the water side heat exchanger 4 as a condenser, hot water is supplied to the object to be heated.

【0008】暖房運転時では上記のように空気側熱交換
器2を蒸発器として用いるため空気側熱交換器2は低温
となり空気中の水分が空気側熱交換器2に結露及び着霜
する。従って空気側熱交換器2に着霜した霜を取り除く
ために、暖房運転中に四方弁5を切換えることにより一
時的に冷却運転を行い、空気側熱交換器用ファン8を停
止して除霜する。この除霜運転は高圧圧力センサ7で検
出した圧力が判定値に達した時点で終了する。ところで
除霜開始時、空気側熱交換器2内は液冷媒が滞留してお
りそこへ高温高圧のガス冷媒を流すわけだが、ガス冷媒
は抵抗の少ない方へ流れようとするため、熱交換器内部
を均等に流れようとせず、上側へ多く流れようとする。
その結果ガス冷媒が多く流れる熱交換器上部は除霜効率
が良く、下部はガス冷媒がなかなか流れないため除霜効
率が悪い。又除霜運転中は空気側熱交換器用ファン8が
停止している為除霜が完了し部分では熱交換率が悪く、
高圧圧力は急激に上昇し霜が完全に取れてない部分があ
るにもかかわらず高圧圧力センサ7は圧力が判定値に達
したと判定し、除霜を終了してしまう。これを回避すべ
く本発明は次のように制御を行う。即ち、除霜運転開始
後高圧圧力センサ7で1回目の除霜終了判定値を検出す
ると制御器6は空気側熱交換器2の霜はある程度まで取
れたが(熱交換器の上側は除霜が終了)、部分的に霜が
まだ有り(熱交換器の下側は除霜継続中)、又空気側熱
交換器用ファン8が停止している為除霜が完了した部分
では熱交換率が悪く、高圧圧力は急激に上昇し、高圧圧
力センサ7は除霜終了判定値を検出したと判断する。そ
こで制御器6は、電磁弁9を閉じ熱交換器の上側にガス
冷媒が流れないようにし(除霜完了部はガス冷媒を遮
断)、強制的に熱交換器の下側(除霜不完全部分)にガ
ス冷媒が流れるようにする。このようにして空気側熱交
換器2の全域にガス冷媒が流し、再度高圧圧力が上昇し
高圧圧力センサ7が除霜終了の判定値を検出したら制御
器6は空気側熱交換器2の霜は完全に取れたと判断し電
磁弁9を開き四方弁5を切換えて元の暖房サイクルへ戻
す。尚、この制御で、高圧圧力センサ7の代わりに圧力
スイッチを用いてもよい。また高圧圧力センサ7の代わ
りに温度センサを用いてもよい。
During the heating operation, since the air-side heat exchanger 2 is used as an evaporator as described above, the temperature of the air-side heat exchanger 2 becomes low and the moisture in the air is condensed and frosted on the air-side heat exchanger 2. Therefore, in order to remove the frost formed on the air-side heat exchanger 2, the four-way valve 5 is switched during the heating operation to temporarily perform the cooling operation, and the air-side heat exchanger fan 8 is stopped to defrost. . This defrosting operation ends when the pressure detected by the high pressure sensor 7 reaches the determination value. By the way, at the start of defrosting, the liquid refrigerant stays in the air-side heat exchanger 2, and the high-temperature and high-pressure gas refrigerant flows there. However, since the gas refrigerant tries to flow to the one with less resistance, the heat exchanger It does not try to flow evenly inside, but tries to flow more upward.
As a result, the defrosting efficiency is good in the upper part of the heat exchanger where a large amount of gas refrigerant flows, and the defrosting efficiency is poor in the lower part because the gas refrigerant does not flow easily. Further, since the air side heat exchanger fan 8 is stopped during the defrosting operation, the defrosting is completed and the heat exchange rate is poor in the portion.
The high-pressure pressure rapidly rises and the high-pressure sensor 7 determines that the pressure has reached the determination value even though there is a portion where frost is not completely removed, and the defrosting ends. In order to avoid this, the present invention controls as follows. That is, when the high pressure sensor 7 detects the first defrosting end determination value after the defrosting operation is started, the controller 6 can remove the frost on the air side heat exchanger 2 to some extent (the upper side of the heat exchanger is defrosted). However, there is still some frost (defrosting continues under the heat exchanger), and since the fan 8 for the air-side heat exchanger is stopped, the heat exchange rate in the part where defrosting is completed Poorly, the high pressure rises rapidly, and the high pressure sensor 7 determines that the defrosting end determination value is detected. Therefore, the controller 6 closes the solenoid valve 9 so that the gas refrigerant does not flow to the upper side of the heat exchanger (the defrosting completion section shuts off the gas refrigerant), and the lower side of the heat exchanger (incomplete defrosting) is forced. Allow the gas refrigerant to flow through the (part). In this way, the gas refrigerant flows in the entire area of the air-side heat exchanger 2, the high-pressure pressure rises again, and when the high-pressure sensor 7 detects the defrosting end determination value, the controller 6 controls the frost of the air-side heat exchanger 2. Is determined to be completely removed, the solenoid valve 9 is opened and the four-way valve 5 is switched to return to the original heating cycle. In this control, a pressure switch may be used instead of the high pressure sensor 7. A temperature sensor may be used instead of the high pressure sensor 7.

【0009】[0009]

【発明の効果】本発明によれば、空気側熱交換器の上側
に電磁弁を設けたことにより効率良く除霜を行なうた
め、除霜不良時における頻繁な暖房−除霜サイクル切換
えが生じず、その結果暖房運転の高効率化,冷凍サイク
ル構成部品の高信頼性を図ることが出来る。
According to the present invention, since the defrosting is efficiently performed by providing the solenoid valve on the upper side of the air side heat exchanger, frequent heating-defrosting cycle switching does not occur at the time of poor defrosting. As a result, the efficiency of heating operation can be improved and the reliability of refrigeration cycle components can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例に係る冷凍サイクルの系統
図。
FIG. 1 is a system diagram of a refrigeration cycle according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…空気側熱交換器、3…膨張弁、4…水
側熱交換器、5…四方弁、6…制御器、7…高圧圧力セ
ンサ、8…空気側熱交換器用ファン、9…電磁弁、10
…逆止弁、11…冷水または温水。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Air side heat exchanger, 3 ... Expansion valve, 4 ... Water side heat exchanger, 5 ... Four-way valve, 6 ... Controller, 7 ... High pressure sensor, 8 ... Air side heat exchanger fan , 9 ... Solenoid valve, 10
… Check valve, 11… Cold water or hot water.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機,空気側熱交換器,減圧装置,水側
熱交換器,四方弁を含む補器を冷媒配管で接続した冷凍
サイクルに圧力センサ,制御器を有し、暖房運転時に逆
サイクル除霜を行う空気熱源ヒートポンプ冷温水機にお
いて、前記空気側熱交換器を上下二段に分割し、上段空
気側熱交換器に電磁弁を設け前記空気熱源ヒートポンプ
冷温水機が除霜運転中に前記圧力センサから得られる情
報より前記制御器は前記電磁弁を制御し効率よく除霜を
行うことを特徴とする空気熱源ヒートポンプ冷温水機の
除霜制御方法。
1. A pressure sensor and a controller are provided in a refrigeration cycle in which a compressor, an air-side heat exchanger, a pressure reducing device, a water-side heat exchanger, and an auxiliary device including a four-way valve are connected by a refrigerant pipe, and have a pressure sensor and a controller during heating operation. In an air heat source heat pump chiller / heater that performs reverse cycle defrosting, the air side heat exchanger is divided into upper and lower two stages, and an electromagnetic valve is provided in the upper stage air side heat exchanger to defrost the air heat source heat pump chiller / heater. A defrosting control method for an air-heat source heat pump chiller-heater, wherein the controller controls the solenoid valve based on information obtained from the pressure sensor to efficiently defrost.
JP7004717A 1995-01-17 1995-01-17 Defrosting control method for air source heat pump water chiller boiler Pending JPH08193740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7004717A JPH08193740A (en) 1995-01-17 1995-01-17 Defrosting control method for air source heat pump water chiller boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7004717A JPH08193740A (en) 1995-01-17 1995-01-17 Defrosting control method for air source heat pump water chiller boiler

Publications (1)

Publication Number Publication Date
JPH08193740A true JPH08193740A (en) 1996-07-30

Family

ID=11591642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7004717A Pending JPH08193740A (en) 1995-01-17 1995-01-17 Defrosting control method for air source heat pump water chiller boiler

Country Status (1)

Country Link
JP (1) JPH08193740A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000015555A (en) * 1998-08-31 2000-03-15 구자홍 Outdoor device of heat pump
CN100460772C (en) * 2005-11-25 2009-02-11 珠海格力电器股份有限公司 Control method for intelligent defrosting of air conditioner
CN114294787A (en) * 2022-01-10 2022-04-08 宁波奥克斯电气股份有限公司 Defrosting control method and device and air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000015555A (en) * 1998-08-31 2000-03-15 구자홍 Outdoor device of heat pump
CN100460772C (en) * 2005-11-25 2009-02-11 珠海格力电器股份有限公司 Control method for intelligent defrosting of air conditioner
CN114294787A (en) * 2022-01-10 2022-04-08 宁波奥克斯电气股份有限公司 Defrosting control method and device and air conditioner
CN114294787B (en) * 2022-01-10 2023-10-20 宁波奥克斯电气股份有限公司 Defrosting control method and device and air conditioner

Similar Documents

Publication Publication Date Title
CN106871477A (en) Defroster, source pump and its Defrost method
JP2002228258A (en) Heat pump water heater
JPH05264133A (en) Air conditioner
JP2007255866A (en) Air conditioner
JP2008121918A (en) Air conditioner
JP3047831B2 (en) Heat pump system
JP2005227833A (en) Automatic vending machine
JPH08193740A (en) Defrosting control method for air source heat pump water chiller boiler
JPH0712437A (en) Defrosting method in heat pump type air conditioner
JP3050114B2 (en) Control method of ice storage type chiller
JPH07218055A (en) Defrosting control method for air conditioner
JPS58179764A (en) Heat pump water heater
JPS61262560A (en) Heat pump type air conditioner
JP2523534B2 (en) Air conditioner
JPH08285393A (en) Air conditioner for multi-room
JP2001201217A (en) Air conditioner
JP6327499B2 (en) Heat pump water heater
JP4165681B2 (en) Air-conditioning and hot-water supply system and control method thereof
JP3546102B2 (en) Engine driven air conditioner
KR100419480B1 (en) Multi heat pump system with advanced heating and cooling performance
JP7507378B2 (en) Heat pump hot water supply system
JPH09138024A (en) Air conditioner
KR20100088378A (en) Air conditioner and defrosting driving method of the same
JP2669069B2 (en) Heating and cooling machine
JPH06201233A (en) Defrosting method in heat pump type air-conditioner