JPH0819257B2 - Synthetic resin composition for electromagnetic wave shielding - Google Patents

Synthetic resin composition for electromagnetic wave shielding

Info

Publication number
JPH0819257B2
JPH0819257B2 JP3565187A JP3565187A JPH0819257B2 JP H0819257 B2 JPH0819257 B2 JP H0819257B2 JP 3565187 A JP3565187 A JP 3565187A JP 3565187 A JP3565187 A JP 3565187A JP H0819257 B2 JPH0819257 B2 JP H0819257B2
Authority
JP
Japan
Prior art keywords
alloy
synthetic resin
electromagnetic wave
resin composition
wave shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3565187A
Other languages
Japanese (ja)
Other versions
JPS63205362A (en
Inventor
充 梶田
秋男 安池
Original Assignee
旭化成工業株式会社
株式会社アドユニオン研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社, 株式会社アドユニオン研究所 filed Critical 旭化成工業株式会社
Priority to JP3565187A priority Critical patent/JPH0819257B2/en
Publication of JPS63205362A publication Critical patent/JPS63205362A/en
Publication of JPH0819257B2 publication Critical patent/JPH0819257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電磁波(広義)を遮蔽するのに有効な低融点
合金と繊維状フィラーと熱可塑性樹脂からなる新規な電
磁波遮蔽用合成樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a novel synthetic resin composition for electromagnetic wave shielding, which comprises a low melting point alloy effective for shielding electromagnetic waves (in a broad sense), a fibrous filler and a thermoplastic resin. Regarding

〔従来の技術〕[Conventional technology]

コンピューターや各種の通信機器等の電子機器は広義
の電磁波(以下電磁波といえば特に断りのない限り広義
の電磁波を意味する)の発生源となって種々の問題を発
生せしめると同時に、他の電子機器から漏洩してくる電
磁波によって自らも障害を受けるという問題がある。そ
こで、電磁波に関するこれらの問題を解決するため、金
属板等で発生源をシールする等の対策がとられてきた。
Electronic devices such as computers and various communication devices are sources of electromagnetic waves in a broad sense (hereinafter, electromagnetic waves refer to electromagnetic waves in a broad sense unless otherwise specified) and cause various problems, and at the same time, other electronic devices. There is a problem that the electromagnetic waves leaking from the device itself will cause damage. Therefore, in order to solve these problems relating to electromagnetic waves, measures such as sealing the source with a metal plate or the like have been taken.

しかし、近年の電子機器類の軽薄短小化の流れは、金
属製ハウジングから、電磁波を遮断するという立場から
は多くの場合に無力なプラスチック製ハウジングへと切
替えを余儀無くしている。
However, in recent years, the trend toward lighter, thinner, shorter, and smaller electronic devices has forced a switch from a metal housing to a plastic housing that is ineffective in many cases from the standpoint of blocking electromagnetic waves.

ここに、合成樹脂材料にも電磁波遮断能力を付与せし
めねばならぬ所以がある。
This is the reason why the synthetic resin material must also be provided with the electromagnetic wave shielding ability.

ところが、従来このためにとられてきた方法はプラス
チックスに鉛等の金属もしくはの化合物粒子、又は炭素
粉末等を混合したものを用いたり、或いはこれを塗料に
して塗布して用いるのが一般であった(例えば特公昭57
−11440号,特公昭59−30240号,特開昭54−16558号等
参照)。
However, the method conventionally used for this purpose is generally to use a mixture of plastics with metal particles such as lead or the like, or carbon powder, or to use it by applying it as a paint. There was (for example, Japanese Patent Publication Sho 57
-11440, JP-B-59-30240, JP-A-54-16558, etc.).

しかし、これらの方法ではいまだ充分な遮蔽効果が得
られていないというのが現状であった。
However, the current situation is that these methods have not yet obtained a sufficient shielding effect.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明者はその原因を究明し、従来の金属粒子等を合
成樹脂中に単に練り込む方法では、該樹脂中に分散した
金属粒子間にかなりの空隙が発生し、これが原因の1つ
となって電磁波の遮断が不完全になるということをつき
とめた。
The present inventor has investigated the cause, and in the conventional method of simply kneading metal particles and the like into a synthetic resin, considerable voids are generated between the metal particles dispersed in the resin, which is one of the causes. He found that the electromagnetic wave was not completely shielded.

そこでこの原因を取り除く方法について研究を進めた
結果、合成樹脂組成物が熱可塑化される際、混在してい
る金属粒子が溶融して均一に分散しさえすれば、そのよ
うな空隙もなくなるという着想を得、これを実現すべく
さらに研究を重ねた。
Therefore, as a result of research on a method for removing this cause, when the synthetic resin composition is thermoplasticized, if the mixed metal particles are melted and evenly dispersed, such voids disappear. Taking inspiration, I conducted further research to realize this.

ところが実際には、合成樹脂の熱可塑化温度で溶融す
る金属を選んでこれを混入してみても、可塑化して両者
に流動性が出た段階で、双方の顕著な比重差が原因とな
って溶融した金属が分離し、凝集してしまうという予期
しない問題が生じ、結果としては目的通りのものは得ら
れなかった。
However, in reality, even if a metal that melts at the plasticizing temperature of the synthetic resin is selected and mixed, even if it is plasticized and fluidity appears in both, the remarkable difference in specific gravity between the two causes There was an unexpected problem that the molten metal separated and aggregated, and as a result, the intended product was not obtained.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者は溶融した金属を樹脂中に均一に分
散させる方法について更に研究を進め、ついに金属とし
て合金を用い、かつガラス繊維等の繊維状フィラーを共
存させることにより目的とする溶融した合金が均一に分
散した合成樹脂成形物が得られることを見出し、この知
見にもとづき本発明を完成した。
Therefore, the present inventor has further researched a method of uniformly dispersing a molten metal in a resin, and finally uses an alloy as a metal, and a target molten alloy by coexisting a fibrous filler such as glass fiber. Based on this finding, it was found that a synthetic resin molded product in which is uniformly dispersed is obtained, and the present invention has been completed.

すなわち本発明は、熱可塑化時に溶融しうる合金と繊
維状フィラーと合成樹脂からなる電磁波遮蔽に有効な合
成樹脂組成物を提供するもである。
That is, the present invention provides a synthetic resin composition effective for electromagnetic wave shielding, which is composed of an alloy that can be melted during thermoplasticization, a fibrous filler, and a synthetic resin.

以下本発明を詳しく説明する。 The present invention will be described in detail below.

本発明で用いる合成樹脂は特に制限されず、従来電子
機器分野などで一般的に使用されてきたものが広く使用
される。
The synthetic resin used in the present invention is not particularly limited, and those generally used conventionally in the field of electronic devices are widely used.

しかし、成形の容易さ及び他の要求物性等の観点から
従来電子機器のハウジングに利用されてきた熱可塑性樹
脂が好ましい。
However, from the viewpoint of ease of molding and other required physical properties, the thermoplastic resin conventionally used for the housing of electronic equipment is preferable.

これらの樹脂としてはオレフィン系樹脂、スチレン系
樹脂、アクリレート系樹脂、塩化ビニル系樹脂、ポリア
ミド系樹脂、ポリエステル系樹脂、ポリカーボネート系
樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレン
スルフィド系樹脂、ポリアセタール系樹脂、ポリウレタ
ン系樹脂等があげられる。
These resins include olefin resins, styrene resins, acrylate resins, vinyl chloride resins, polyamide resins, polyester resins, polycarbonate resins, polyphenylene ether resins, polyphenylene sulfide resins, polyacetal resins, polyurethane resins. Examples include resins.

本発明で用いられる合金は、これを含む合成樹脂組成
物が熱可塑化する際、溶融しうる合金でなければならな
い。
The alloy used in the present invention must be an alloy capable of melting when the synthetic resin composition containing the same is thermoplasticized.

したがって熱可塑性樹脂の熱可塑化温度が通常350℃
以下であるので、これ以下の融点を持つ合金が好適であ
る。
Therefore, the thermoplastic temperature of the thermoplastic resin is usually 350 ° C.
Since it is below, an alloy having a melting point below this is preferable.

合金の形状は特に制限されないが、粒状又は粉状のも
のが取り扱いやすい。
The shape of the alloy is not particularly limited, but granular or powdery ones are easy to handle.

上記合金の具体例を示すと、亜鉛(Zn),鉛(Pb),
錫(Sn),ビスマス(Bi)、タリウム(Tl),アンチモ
ン(Sb),アルミニウム(Al),カドミウム(Cd),イ
ンジウム(In)等の合金をあげることができる。
Specific examples of the above alloys include zinc (Zn), lead (Pb),
Examples of the alloy include tin (Sn), bismuth (Bi), thallium (Tl), antimony (Sb), aluminum (Al), cadmium (Cd), and indium (In).

その合金の例としてはPb−Sn(半田)、Pb−Sn−Zn,S
n−Zn,Zn−Cd,Zn−Al,Tl−Cd,Bi−Tl,In−Sn等の低融点
合金があげられる。これらの中で特にPb−Snが好まし
い。
Examples of the alloy are Pb-Sn (solder), Pb-Sn-Zn, S
Low melting point alloys such as n-Zn, Zn-Cd, Zn-Al, Tl-Cd, Bi-Tl and In-Sn can be mentioned. Of these, Pb-Sn is particularly preferable.

なお、金属は合金の場合はその組成により、又金属の
形状等により明確な融点を示さないものや、合成樹脂中
で溶融する際、いわゆる融点降下を示すものもあるとい
う具合に複雑なので、実際には一度その組成物を熱可塑
化して形成品とし、その外観、特に金属光沢の分布状態
の観察を行って金属の融点の程度を見るのが実用的判定
法といえる。
It should be noted that in the case of an alloy, the metal is complicated because there are some that do not show a clear melting point depending on the composition of the alloy and the shape of the metal, and some show a so-called melting point drop when melting in synthetic resin. In order to determine the degree of melting point of a metal, the composition is once plasticized into a molded product, and the appearance, particularly the distribution state of metallic luster, is observed to determine the melting point of the metal.

この場合、該成形片を位相差顕微鏡で観察すればさら
に定量的で正確な判断が可能になる。ちなみに、本発明
者の研究によれば、良好な溶融分散状態を示すものは分
散金属粒子が添加時の金属粒子径に比べ一桁以上その粒
子径が小さくなっていることが観察されている。
In this case, if the molded piece is observed with a phase contrast microscope, it is possible to make a more quantitative and accurate judgment. By the way, according to the research by the present inventor, it has been observed that those exhibiting a good melt-dispersed state have dispersed metal particles having a particle diameter smaller by one digit or more than the metal particle diameter at the time of addition.

本発明において合金の使用量は5〜80重量%であり、
好ましくは10〜40重量%である。合金の使用量が多すぎ
ると繊維状フィラーの量とも相関するが成形品に金属析
出が生じるので避けるべきである。
In the present invention, the amount of the alloy used is 5 to 80% by weight,
It is preferably 10 to 40% by weight. If the amount of the alloy used is too large, it correlates with the amount of the fibrous filler, but metal precipitation occurs in the molded product, and therefore it should be avoided.

本発明で用いる繊維状フィラーはガラス繊維、炭素繊
維、鉄、ステンレス等の金属繊維、石綿、マイカ、無機
ウイスカー、その他無機繊維状フィラーが用いられる
が、入手し易く適当な物性のものが得やすいという点で
ガラス繊維が好ましい。
The fibrous filler used in the present invention includes glass fibers, carbon fibers, metal fibers such as iron and stainless steel, asbestos, mica, inorganic whiskers, and other inorganic fibrous fillers, but it is easy to obtain those having suitable physical properties. In that respect, glass fiber is preferable.

該繊維状フィラーの使用量は5〜30重量%であり、10
〜25重量%が好ましい。
The amount of the fibrous filler used is 5 to 30% by weight, and 10
-25% by weight is preferred.

又、本発明の組成物には各種の顔料、染料、難燃剤、
帯電防止剤、滑剤、可塑剤等を目的に応じて適宜配合し
てもよい。
Further, the composition of the present invention contains various pigments, dyes, flame retardants,
Antistatic agents, lubricants, plasticizers and the like may be appropriately blended according to the purpose.

電磁波遮蔽用本発明の合成樹脂組成物を製造するには
従来公知の配合方法を用いることができる。例えばオー
プンロール、インテンシブミキサー、インターナルミキ
サー、コニーダー、二軸ローター付の連続混練機、一軸
又は二軸押出機などの一般的な混和機を用いた溶融混練
方法等が用いられる。
Conventionally known compounding methods can be used for producing the synthetic resin composition of the present invention for electromagnetic wave shielding. For example, a melt-kneading method using a general kneader such as an open roll, an intensive mixer, an internal mixer, a cokneader, a continuous kneader with a twin-screw rotor, and a single-screw or twin-screw extruder is used.

又、各成分の混合順序も特に限定されず、同時でも勿
論よい。したがって、はじめにガラス繊維と合成樹脂で
ガラス繊維入り樹脂をつくっておき、これに合金を添加
する方法でもよい。又、ガラス繊維入り樹脂を熱可塑化
しておき、ここに定量フィダーで合金粒子を添加する方
法もとることができる。
Also, the order of mixing the respective components is not particularly limited, and may be simultaneous. Therefore, a method in which a resin containing glass fiber is first made of glass fiber and a synthetic resin and an alloy is added thereto may be used. It is also possible to use a method in which the glass fiber-containing resin is thermoplasticized and alloy particles are added thereto with a quantitative feeder.

〔作 用〕[Work]

本発明においては、溶融合金が可塑化した合成樹脂中
に均一に分散するが、そのメカニズムについては未だ確
立した結論は得ていない。しかし、仮説ではあるが、混
練過程においてガラス繊維等の繊維状フィラーが溶融し
た合金を細砕し、同時に該繊維状フィラーの間にその合
金細粒が介在することにより合金相互の凝集が防止さ
れ、片よりがなくなるのではないかと本発明者は考えて
いる。
In the present invention, the molten alloy is uniformly dispersed in the plasticized synthetic resin, but the established conclusion has not yet been reached regarding the mechanism. However, as a hypothesis, in the kneading process, the alloy in which the fibrous filler such as glass fiber is melted is crushed, and at the same time, the alloy fine particles are interposed between the fibrous fillers to prevent the mutual aggregation of the alloys. The present inventor believes that the pieces may be lost.

〔実施例〕〔Example〕

以下実施例、比較例により本発明を具体的に説明する
が、本発明はこれらによって限定されるものではない。
The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

なお、各例において用いた射出成型機は東芝機械社製
の12オンス機であり金型は5mm×200mm×200mmの平板用
金型を用いた。
The injection molding machine used in each example was a 12 ounce machine manufactured by Toshiba Machine Co., Ltd., and the mold used was a flat plate mold of 5 mm × 200 mm × 200 mm.

実施例1 旭化成社製のスチレン−アクリロニトリル共重合樹脂
(以下SAN樹脂と略記する)にガラス繊維を20重量%含
有せしめたガラス繊維強化SAN樹脂(スタイラック AS
−240A)に、厚さ0.4mm×縦3mm×横3mmのPb38重量%−S
n62重量%からなるPb−Sn合金を30重量%になるよう混
合機で混合した。
Example 1 Styrene-acrylonitrile copolymer resin manufactured by Asahi Kasei Corporation
(Hereinafter abbreviated as SAN resin) contains 20% by weight of glass fiber
Glass fiber reinforced SAN resin (Styrac AS
-240A), 0.4 mm thick × 3 mm long × 3 mm wide Pb38 wt% −S
Pb-Sn alloy consisting of n 62 wt% is mixed to 30 wt%.
Mix at a co-operation.

これを二軸押出機を用い230℃で熱可塑化せしめ、前
記の射出成型機及び金型を用いて射出成形した。得られ
た成形品(試験片)は金属の分離が全く認められず、均
一な表面を有していた。
This was thermoplasticized at 230 ° C. using a twin-screw extruder, and injection-molded using the injection molding machine and the mold. The obtained molded product (test piece) had no uniform metal separation and had a uniform surface.

又、本試験片(厚み5mm)を用いてX線の遮蔽度を測
定したところ、線量1500μA、電圧46KVにおいて、その
減衰率(I/IO)は0.026であった(IO:透過前のX線の強
さ,I:透過後のX線の強さ)。
Also, when the X-ray shielding degree was measured using this test piece (thickness 5 mm), the attenuation rate (I / I O ) was 0.026 at a dose of 1500 μA and a voltage of 46 KV (I O : before transmission) X-ray intensity, I: X-ray intensity after transmission).

なお、Pb−Sn合金のかわりに、本実施例の可塑化温度
では溶融しないPb粉(同粒径)を30重量%含ませたもの
につき測定したところ、その減衰率(I/IO)は0.06であ
り、本発明品に比べ効果がかなり劣ることが確認され
た。
It should be noted that, instead of the Pb-Sn alloy, when Pb powder that does not melt at the plasticizing temperature of this example (same particle size) was included in 30 wt% was measured, its attenuation rate (I / I O ) was It was 0.06, and it was confirmed that the effect was considerably inferior to that of the product of the present invention.

比較例1 実施例1のガラス繊維強化SAN樹脂のかわりにガラス
繊維の入っていないSAN樹脂を用いた他は実施例1と同
様にして実施した。得られた成形品(試験片)の外観は
表面全体に不規則な巾広の條痕があり、金属析出の後が
歴然としていた。
Comparative Example 1 The same procedure as in Example 1 was carried out except that a glass fiber-free SAN resin was used in place of the glass fiber-reinforced SAN resin of Example 1. The appearance of the obtained molded product (test piece) had irregular and wide dents on the entire surface, and it was obvious after metal deposition.

また、X線の減衰度も実施例1と同一条件下で0.38で
あり、1桁劣っていた。
Also, the X-ray attenuation was 0.38 under the same conditions as in Example 1, which was one digit inferior.

実施例2 実施例1と同じガラス繊維強化SAN樹脂を用い、これ
にPb30重量%−Sn70重量%からなる平均粒径100μmのP
b−Sn合金を30重量%になるよう混合機で混合した。
Example 2 The same glass fiber reinforced SAN resin as in Example 1 was used, and Pb containing 30% by weight of Pb and 70% by weight of Sn and having an average particle size of 100 μm was used.
The b-Sn alloy was mixed in a mixer so as to be 30% by weight.

これを二軸押出機を用い220℃で熱可塑化せしめ、前
記の射出成形機及び金型を用いて射出成形した。得られ
た成形品(試験片)は実施例1と同様金属の分離が全く
認められず、均一な表面を有していた。
This was thermoplasticized at 220 ° C. using a twin-screw extruder, and injection-molded using the above-mentioned injection molding machine and mold. As in Example 1, the obtained molded product (test piece) had no uniform metal separation and had a uniform surface.

又、本試験片(厚み5mm)を用いて実施例1と同様に
してX線の遮蔽度を測定したところ、減衰率(I/IO)は
0.023であった。
Moreover, when the X-ray shielding degree was measured using this test piece (thickness: 5 mm) in the same manner as in Example 1, the attenuation rate (I / I O ) was
It was 0.023.

比較例2 実施例2のガラス繊維強化SAN樹脂のかわりにガラス
繊維の入っていないSAN樹脂を用いた他は実施例2と同
様にして実施したところ成形品(試験片)の外観は表面
全体に不規則な條痕があり、金属析出が見られた。
Comparative Example 2 The same procedure as in Example 2 was carried out except that the glass fiber-reinforced SAN resin in Example 2 was replaced by a SAN resin containing no glass fiber. There were irregular dents and metal precipitation was observed.

実施例3 旭化成社製のアクリロニトリル−ブタジエン−スチレ
ン共重合樹脂(以下ABS樹脂と略記する)にガラス繊維
を20重量%含有せしめたガラス繊維強化ABS樹脂(スタ
イラック VGB−20)に、厚さ0.4mm×縦3mm×横3mmのPb
50重量%−Sn50重量%からなるPb−Sn合金を50重量%に
なるよう混合機で混合した。
Example 3 Acrylonitrile-butadiene-styrene manufactured by Asahi Kasei Corporation
Glass fiber as a copolymer resin (abbreviated as ABS resin below)
Glass fiber reinforced ABS resin containing 20% by weight of
Iraq VGB-20), 0.4 mm thick × 3 mm long × 3 mm wide Pb
50 wt% -Sn 50 wt% Pb-Sn alloy made up of 50 wt%
Were mixed with a mixer so that

これを二軸押出機を用い220℃で熱可塑化せしめ、前
記の射出成形機及び金型を用いて射出成形した。得られ
た成形品(試験片)は金属の分離が全く認められず、均
一な表面を有していた。
This was thermoplasticized at 220 ° C. using a twin-screw extruder, and injection-molded using the above-mentioned injection molding machine and mold. The obtained molded product (test piece) had no uniform metal separation and had a uniform surface.

音波の遮蔽性を調べるため300Hzから2000Hzまで100Hz
ごとに録音されたテープレコーダーを鋳鉄製BOX(200×
200×200mm)の中に入れ本実施例成形品でつくったフタ
をし、ボルトで固定した。その上にコンデンサマイクロ
ホンを置き、インパルス遮音計に入力し音量を測定し
た。400Hzに於ける音量はフタ無しの場合に比べ61%の
減衰を示していた。このときPb−Su合金を添加しないと
68%の減衰しかない。又、300Hzから2000Hzにおける音
量測定では、1300Hzまでは、Pb−Sn合金の添加量の増加
とともに遮蔽性が高まる傾向が認められ、その中でも特
に、300Hzより800Hzまでの低周波で遮蔽性が高いことが
認められた。
100Hz from 300Hz to 2000Hz to check the sound shielding property
A tape recorder that was recorded for each of the cast iron BOX (200 ×
(200 × 200 mm), the lid made from the molded product of this example was put, and fixed with bolts. A condenser microphone was placed on it, and the sound was measured by inputting it to an impulse sound insulation meter. The volume at 400Hz showed a 61% attenuation compared to the case without the lid. At this time, if Pb-Su alloy is not added
There is only 68% attenuation. Also, in the volume measurement from 300Hz to 2000Hz, up to 1300Hz, the shielding property tends to increase as the amount of Pb-Sn alloy added increases, and in particular, the shielding property is particularly high at low frequencies from 300Hz to 800Hz. Was recognized.

次に電波ノイズに対する遮蔽性を調べるため電波測定
(音圧レベルの測定)を行った。
Next, radio wave measurement (measurement of sound pressure level) was performed to examine the shielding property against radio wave noise.

電波測定は鋳鉄製BOXの中にAMラジオ(530KHz)とテ
ープレコーダーを接続していれ、音量測定の場合と同様
に、本発明成形品を取り付けた。試験片面から120cmの
位置にオートバイのプラグをセットし、1200rpmでアイ
ドリングさせて録音した。その音をインパルス騒音計に
入力し、FFTスペクトラムアナライザで周波分析し、ビ
デオフロッターでプリントした。
For radio wave measurement, an AM radio (530 KHz) and a tape recorder were connected in a cast iron BOX, and the molded product of the present invention was attached in the same manner as in the case of sound volume measurement. A motorcycle plug was set at a position 120 cm from the one side of the test piece, and it was recorded by idling at 1200 rpm. The sound was input to an impulse sound level meter, subjected to frequency analysis with an FFT spectrum analyzer, and printed with a video frotter.

その結果、音圧レベルはフタ無しの場合の−15dBに対
し本発明品の場合−17dBとなり明らかな低下が認めら
れ、電波が遮断されることがわかった。又、Pb−Sn合金
の添加量の増加とともに音圧レベルが減少する傾向が認
められた。
As a result, it was found that the sound pressure level was -17 dB in the case of the product of the present invention, which was -15 dB in the case without the lid, and a clear decrease was recognized, and the radio wave was blocked. It was also found that the sound pressure level tended to decrease as the amount of Pb-Sn alloy added increased.

実施例4 旭化成社製のスチレン変性ポリフェニレンエーテル樹
脂(以下PPE樹脂と略記する)にガラス繊維を20重量%
含有せしめたガラス繊維強化PPE樹脂(ザイロン G702
H)に、Pb25重量%−Sn75重量%からなるPb−Sn合金を2
0重量%になるよう混合機で混合した。
Example 4 Styrene-modified polyphenylene ether tree manufactured by Asahi Kasei Corporation
20% by weight of glass fiber in fat (hereinafter abbreviated as PPE resin)
Glass fiber reinforced PPE resin (Zylon G702
2) Pb-Sn alloy consisting of 25 wt% Pb-75 wt% Sn.
Mixing was carried out with a mixer so as to be 0% by weight.

これを二軸押出機を用い220℃で熱可塑化せしめ、前
記の射出成形機及び金型を用いて射出成形した。得られ
た成形品(試験片)は金属の分離が全く認められず、均
一な表面を有しているとともに、X線遮蔽性も優れてい
た。
This was thermoplasticized at 220 ° C. using a twin-screw extruder, and injection-molded using the above-mentioned injection molding machine and mold. The obtained molded product (test piece) had no metal separation at all, had a uniform surface, and had excellent X-ray shielding properties.

〔発明の効果〕〔The invention's effect〕

本発明の合成樹脂組成物においては、従来のものに比
べ非常に微細化した金属粒子が均一に分散しているの
で、電磁波遮蔽効果が優れているという長所を有してい
る。
The synthetic resin composition of the present invention has the advantage that the electromagnetic wave shielding effect is excellent because the metal particles that are extremely finely dispersed are uniformly dispersed as compared with the conventional one.

従って、本発明組成物は近年問題が大きくなってきて
いるコンピューター等の情報処理装置や電子事務機の電
磁ノイズによる誤動作の問題、或いはテレビ等から出る
X線の人体に対する問題の解決に貢献しうるものといえ
る。
Therefore, the composition of the present invention can contribute to solving the problem of malfunctions due to electromagnetic noise of information processing devices such as computers and electronic office machines, which have become more serious in recent years, or the problem of X-rays emitted from televisions and the like to the human body. It can be said to be a thing.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−207947(JP,A) 特開 昭61−246252(JP,A) 特開 昭61−155454(JP,A) 特開 昭60−243151(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-59-207947 (JP, A) JP-A-61-246252 (JP, A) JP-A-61-155454 (JP, A) JP-A-60- 243151 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鉛−錫合金、鉛−錫−亜鉛合金、錫−亜鉛
合金、亜鉛−アルミニウム合金、亜鉛−カドミウム合
金、タリウム−カドミウム合金、ビスマス−タリウム合
金、インジウム−錫合金からなる群から選ばれる1種以
上の熱可塑時に溶融し得る低融点合金と、繊維状フィラ
ーと、熱可塑性合成樹脂からなることを特徴とする電磁
波遮蔽用合成樹脂組成物。
1. A lead-tin alloy, a lead-tin-zinc alloy, a tin-zinc alloy, a zinc-aluminum alloy, a zinc-cadmium alloy, a thallium-cadmium alloy, a bismuth-thallium alloy, and an indium-tin alloy. A synthetic resin composition for electromagnetic wave shielding, comprising one or more selected low-melting-point alloys that can be melted when thermoplastic, a fibrous filler, and a thermoplastic synthetic resin.
【請求項2】低融点合金が鉛−錫合金又は鉛−錫−亜鉛
合金であることを特徴とする特許請求の範囲第1項記載
の電磁波遮蔽用合成樹脂組成物。
2. The electromagnetic wave shielding synthetic resin composition according to claim 1, wherein the low melting point alloy is a lead-tin alloy or a lead-tin-zinc alloy.
【請求項3】繊維状フィラーがガラス繊維であることを
特徴とする特許請求の範囲第1項記載の電磁波遮蔽用合
成樹脂組成物。
3. The synthetic resin composition for electromagnetic wave shielding according to claim 1, wherein the fibrous filler is glass fiber.
JP3565187A 1987-02-20 1987-02-20 Synthetic resin composition for electromagnetic wave shielding Expired - Lifetime JPH0819257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3565187A JPH0819257B2 (en) 1987-02-20 1987-02-20 Synthetic resin composition for electromagnetic wave shielding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3565187A JPH0819257B2 (en) 1987-02-20 1987-02-20 Synthetic resin composition for electromagnetic wave shielding

Publications (2)

Publication Number Publication Date
JPS63205362A JPS63205362A (en) 1988-08-24
JPH0819257B2 true JPH0819257B2 (en) 1996-02-28

Family

ID=12447779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3565187A Expired - Lifetime JPH0819257B2 (en) 1987-02-20 1987-02-20 Synthetic resin composition for electromagnetic wave shielding

Country Status (1)

Country Link
JP (1) JPH0819257B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008437A (en) * 2012-10-08 2015-10-28 M塑料有限责任公司 Composite materials for use in injection moulding methods
CN108858968A (en) * 2018-07-27 2018-11-23 昆山科佳电子科技有限公司 A kind of production method of top cover of computer main machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305168A (en) * 1987-06-05 1988-12-13 Matsushita Electric Works Ltd Resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008437A (en) * 2012-10-08 2015-10-28 M塑料有限责任公司 Composite materials for use in injection moulding methods
CN108858968A (en) * 2018-07-27 2018-11-23 昆山科佳电子科技有限公司 A kind of production method of top cover of computer main machine

Also Published As

Publication number Publication date
JPS63205362A (en) 1988-08-24

Similar Documents

Publication Publication Date Title
EP0117700A1 (en) Rigid resin composition having electromagnetic shielding properties
US4596670A (en) EMI shielding effectiveness of thermoplastics
US6638448B2 (en) Electrically conductive thermoplastic elastomer and product made thereof
EP0112197A1 (en) Synergistic effect of metal flake and metal or metal coated fiber on EMI shielding effectiveness of thermoplastics
GB2123838A (en) Fiber-reinforced composite materials
JP2956875B2 (en) Molding material for electromagnetic shielding
CA1206288A (en) Conductive thermoplastic compositions
US4675143A (en) Process for producing a shaped electroconductive thermoplastic resin composition article
JPH0416500B2 (en)
EP0185783A1 (en) Improved EMI shielding effecttiveness of thermoplastics
JPH0819257B2 (en) Synthetic resin composition for electromagnetic wave shielding
DE60216510T2 (en) ELECTRICALLY CONDUCTIVE RESIN COMPOSITION
JP3525071B2 (en) Conductive resin composition
JPH02242844A (en) Resin composition
JPH0987528A (en) Resin composition containing metal fiber
JPS5911332A (en) Blending of thermoplastic resin with additive
JP2001261975A (en) Electroconductive thermoplastic resin composition
KR870002144B1 (en) Impact electronic pulse cross of abs
JPS60112854A (en) Electrically conductive molding material and production thereof
KR870000059B1 (en) Abs resin compositions for electromagnetic interference shields
JPS58141244A (en) Blend
JPS59109537A (en) Production of electromagnetic shielding material
KR870002145B1 (en) High-strong electronic pulse cross of abs
KR870001535B1 (en) Electron wave sheter in hardness resin production
JPS6076542A (en) Electrically conductive resin