JPH08191572A - Output voltage controlling method of inverter circuit - Google Patents

Output voltage controlling method of inverter circuit

Info

Publication number
JPH08191572A
JPH08191572A JP7002360A JP236095A JPH08191572A JP H08191572 A JPH08191572 A JP H08191572A JP 7002360 A JP7002360 A JP 7002360A JP 236095 A JP236095 A JP 236095A JP H08191572 A JPH08191572 A JP H08191572A
Authority
JP
Japan
Prior art keywords
voltage
phase
signal
circuit
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7002360A
Other languages
Japanese (ja)
Other versions
JP3252634B2 (en
Inventor
Yoshihiro Konishi
義弘 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP00236095A priority Critical patent/JP3252634B2/en
Publication of JPH08191572A publication Critical patent/JPH08191572A/en
Application granted granted Critical
Publication of JP3252634B2 publication Critical patent/JP3252634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE: To reduce the load feeder voltage fluctuation of an inverter device when a load fluctuates by using a voltage compensation signal in a filter circuit and the output voltage setting signal and the addition signal of the inverter device as an output voltage command signal of the inverter circuit. CONSTITUTION: A compensation operation circuit 13 has an equivalent circuit constant corresponding to a filter circuit consisting of a reactor 3 and a capacitor 5 and calculates the voltage drop caused at the filter circuit by a load current with the load current detection signal of a load current detector 11 as input and used it as a voltage compensation signal. Then, the addition signal of the voltage compensation signal and the output voltage setting signal of the inverter device by a voltage setting circuit 7 is used as the output voltage command signal of an inverter circuit 2, thus reducing the load feeder voltage fluctuation of the inverter device when a load 6 fluctuates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、インバータ回路とそ
の負荷側に設置したフィルタ回路とから成る3相インバ
ータ装置において、負荷変動に応答し前記装置の負荷給
電電圧を所定値に維持する前記インバータ回路の出力電
圧制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-phase inverter device comprising an inverter circuit and a filter circuit installed on the load side of the inverter circuit, wherein the inverter keeps a load power supply voltage of the device at a predetermined value in response to load fluctuation. The present invention relates to an output voltage control method for a circuit.

【0002】[0002]

【従来の技術】従来のこの種インバータ装置におけるイ
ンバータ回路出力電圧の制御方法としては、図2の回路
図に示す回路構成に従って行われるものが知られてい
る。先ず、図2において1は直流電源、2はトランジス
タ等のスイッチング素子とこれに逆並列されたダイオー
ドとをそのアーム要素となしてブリッジ構成されたイン
バータ回路、3と5とはそれぞれフィルタ回路を構成す
るリアクトルとコンデンサ、4はリアクトル3及びこれ
と直列状態にある配線の合成抵抗である。
2. Description of the Related Art As a conventional method of controlling the output voltage of an inverter circuit in this type of inverter device, there is known a method which is performed according to the circuit configuration shown in the circuit diagram of FIG. First, in FIG. 2, 1 is a direct current power source, 2 is an inverter circuit which is bridge-structured with a switching element such as a transistor and a diode anti-parallel to the switching element as its arm elements, and 3 and 5 respectively form a filter circuit. The reactor, the capacitor, and 4 are the combined resistance of the reactor 3 and the wiring in series with it.

【0003】なお、前記インバータ装置は、前記のイン
バータ回路とフィルタ回路の両者により構成されたもの
である。更に、14はインバータ回路2により前記フィ
ルタ回路を経由して負荷6に与えられる負荷給電電圧を
検出する電圧検出器であり、また、15は電圧演算器で
あり、前記インバータ装置の出力電圧に関する電圧設定
器7による設定値と電圧検出器14による検出値との差
を零となす如く、前記インバータ回路を構成する各スイ
ッチング素子に対する駆動信号を演算出力する電圧演算
器である。
The inverter device is composed of both the inverter circuit and the filter circuit. Further, 14 is a voltage detector that detects the load power supply voltage applied to the load 6 by the inverter circuit 2 via the filter circuit, and 15 is a voltage calculator, which is a voltage related to the output voltage of the inverter device. It is a voltage calculator that calculates and outputs a drive signal for each switching element forming the inverter circuit so that the difference between the set value by the setter 7 and the detected value by the voltage detector 14 becomes zero.

【0004】即ち、図2の如き回路構成に従い行われる
従来のインバータ回路出力電圧制御方法は、負荷変動に
よる前記の負荷給電電圧即ちインバータ装置出力電圧の
変動を抑制するために、このインバータ装置出力電圧を
その帰還対象とするフィードバック制御を行うものであ
る。
That is, in the conventional inverter circuit output voltage control method performed according to the circuit configuration as shown in FIG. 2, in order to suppress the variation of the load power supply voltage, that is, the inverter device output voltage due to the load variation, this inverter device output voltage is controlled. Is performed as feedback target.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、その出
力側にフィルタ回路を有するインバータ装置を対象とす
る前記の如き従来のインバータ回路出力電圧の制御方法
においては、負荷変動に伴う負荷電流変動の発生時点に
比して、この電流変動が前記フィルタ回路に形成する電
圧変動に影響される前記負荷給電電圧の変動の検出時点
は、前記フィルタ回路の時定数分だけ遅れたものとな
る。
However, in the conventional inverter circuit output voltage control method as described above, which is intended for the inverter device having the filter circuit on the output side thereof, the time at which the load current fluctuation occurs due to the load fluctuation. In contrast to this, the detection time point of the fluctuation of the load power supply voltage affected by the voltage fluctuation formed in the filter circuit due to the current fluctuation is delayed by the time constant of the filter circuit.

【0006】従って、前記の負荷給電電圧即ちインバー
タ装置出力電圧をその帰還対象としてフィードバック制
御する前記インバータ回路の出力電圧制御は、前記フィ
ルタ回路時定数に対応する制御遅れ時間の補償をなし前
記負荷給電電圧の安定化を図るために、制御回路構成と
その定数調整とが煩雑なものとなると共に、前記電圧制
御の安定性と即応性の両者の並立には限界があるため、
前記の負荷給電電圧の変動は比較的大なるものとならざ
るを得なかった。
Therefore, in the output voltage control of the inverter circuit for feedback-controlling the load power supply voltage, that is, the output voltage of the inverter device as a feedback target, the output voltage control of the inverter circuit does not compensate for the control delay time corresponding to the time constant of the filter circuit. In order to stabilize the voltage, the control circuit configuration and its constant adjustment become complicated, and there is a limit to the parallelism of both the stability and responsiveness of the voltage control.
The fluctuation of the load power supply voltage has to be relatively large.

【0007】上記に鑑みこの発明は、その出力側にフィ
ルタ回路を有するインバータ装置を対象とし、その負荷
変動時の負荷給電電圧変動のより一層の低減を図る電圧
制御方法の提供を目的とするものである。
In view of the above, the present invention is directed to an inverter device having a filter circuit on its output side, and an object thereof is to provide a voltage control method for further reducing the load power supply voltage fluctuation when the load changes. Is.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、この発明のインバータ回路の出力電圧制御方法にお
いては、 1)請求項1に従い、直流電圧を入力としてこれを所定
の3相交流電圧に変換するインバータ回路と、このイン
バータ回路とその負荷間に設置されたフィルタ回路とか
ら成るインバータ装置に関し、負荷変動に応答し前記装
置の出力電圧即ち負荷給電電圧を所定値に維持する前記
インバータ回路の出力電圧制御方法において、負荷電流
検出手段と、前記フィルタ回路に対応する等価回路定数
を有し且つ前記電流検出手段の負荷電流検出信号を入力
とし負荷電流が前記フィルタ回路に形成する電圧降下を
演算する電圧補正手段とを設け、この補正手段による電
圧補正信号と電圧設定手段による前記インバータ装置の
出力電圧設定信号との加算信号を以て前記インバータ回
路の出力電圧指令信号となすものとする。
In order to achieve the above object, in the output voltage control method for an inverter circuit according to the present invention, 1) According to claim 1, a direct current voltage is input, and this is applied to a predetermined three-phase alternating current voltage. An inverter device comprising an inverter circuit for converting into an inverter circuit and a filter circuit installed between the inverter circuit and a load thereof, the inverter circuit maintaining an output voltage of the device, that is, a load power supply voltage at a predetermined value in response to a load variation. In the output voltage control method of (1), a load current detection means and an equivalent circuit constant corresponding to the filter circuit are provided, and a load current detection signal of the current detection means is input to a voltage drop formed by the load current in the filter circuit. A voltage correction means for calculating is provided, and a voltage correction signal by the correction means and an output voltage of the inverter device by the voltage setting means It is assumed that the output voltage command signal of the inverter circuit is formed by the addition signal of the setting signal.

【0009】2)請求項2に従い、請求項1に記載のイ
ンバータ回路の出力電圧制御方法において、前記電圧補
正手段を、前記の負荷電流検出手段による3相電流検出
信号を回転座標系の2相信号に変換する3相/2相変換
器と、この変換器による2相電流信号を入力とし前記の
フィルタ回路電圧降下をその大きさと位相の両者に関し
前記回転座標系の2相電圧状態で演算する補正演算回路
と、前記電圧設定手段によるインバータ装置出力電圧設
定信号を前記回転座標系の2相電圧状態に換算する電圧
演算器と、この電圧演算器と前記補正演算回路両者の各
出力信号の加算演算を行う加算演算器と、この加算演算
器の出力信号を受けてこれを前記のインバータ装置出力
電圧の属する3相座標系における3相信号に変換する2
相/3相変換器と、から構成し、この2相/3相変換器
の出力信号を以て前記インバータ回路の出力電圧指令信
号となすものとする。
2) According to a second aspect, in the output voltage control method for an inverter circuit according to the first aspect, the voltage correction means is a three-phase current detection signal by the load current detection means and is a two-phase coordinate system in a rotating coordinate system. A three-phase / two-phase converter for converting into a signal and a two-phase current signal by this converter are input, and the voltage drop of the filter circuit is calculated in both the magnitude and the phase in the two-phase voltage state of the rotating coordinate system. A correction arithmetic circuit, a voltage arithmetic unit for converting an inverter device output voltage setting signal by the voltage setting means into a two-phase voltage state of the rotating coordinate system, and addition of output signals of both the voltage arithmetic unit and the correction arithmetic circuit. An addition operator for performing an operation and an output signal of the addition operator, which is converted into a three-phase signal in the three-phase coordinate system to which the output voltage of the inverter device belongs 2
And a phase / 3-phase converter, and the output signal of the 2-phase / 3-phase converter is used as the output voltage command signal of the inverter circuit.

【0010】[0010]

【作用】この発明は、インバータ回路とその出力側に設
けたフィルタ回路とを有して成るインバータ装置を対象
とし、負荷電流変動分が前記フィルタ回路において形成
する電圧降下を演算により推定し、この推定結果に従っ
て前記インバータ回路の出力電圧を補正するフィードフ
ォワード制御を行い、前述の如きインバータ装置の出力
電圧即ち負荷給電電圧のフィードバック制御による場合
に比しその即応性の向上を図り、前記負荷給電電圧の変
動低減を図るものである。
The present invention is intended for an inverter device having an inverter circuit and a filter circuit provided on the output side of the inverter device. The voltage drop formed in the filter circuit by the load current fluctuation is estimated by calculation. Feedforward control is performed to correct the output voltage of the inverter circuit according to the estimation result, and as a result, the responsiveness is improved as compared with the case where feedback control of the output voltage of the inverter device, that is, the load supply voltage is performed, and the load supply voltage is improved. Is intended to reduce the fluctuation.

【0011】一般に、図2に示す如き回路をなす3相の
インバータ装置においては、その主回路に関して以下の
如き関係式が成り立つ。なお、以下に記載する諸元の添
A B C はこれら諸元がそれぞれ3相回路における
A相、B相、C相の何れの相に属するかを示すものであ
る。先ず、前記インバータ回路の各相出力電圧vA ,v
B ,vC は、直流電源電圧をPWM制御により裁断して
得た断続波の基本波からなるものとして、式(1)の如
く示される。
In general, in a three-phase inverter device having a circuit as shown in FIG. 2, the following relational expression holds for its main circuit. The subscripts A , B , and C of the specifications described below indicate which of the A phase, the B phase, and the C phase in the three-phase circuit the specifications belong to. First, each phase output voltage v A , v of the inverter circuit
B and v C are represented by the formula (1) as consisting of a fundamental wave of an intermittent wave obtained by cutting the DC power supply voltage by PWM control.

【0012】[0012]

【数1】 [Equation 1]

【0013】ここに、Eは直流電源電圧、λはPWM制
御における変調率、kは変調方式に従う定数である。ま
た、図示諸元間には式(2)に示す関係が成り立つ。
Here, E is a DC power supply voltage, λ is a modulation factor in PWM control, and k is a constant according to the modulation method. Further, the relationship shown in Expression (2) is established between the illustrated specifications.

【0014】[0014]

【数2】 [Equation 2]

【0015】ここに、iA ,iB ,iC はそれぞれ前記
インバータ回路の出力電流であり、vOA,vOB,vOC
LA,iLB,iLCとはそれぞれ前記フィルタ回路の出力
端における電圧と電流即ち前記インバータ装置の負荷に
対する給電電圧と負荷電流とである。また、LA
B ,LC とCA ,CB ,CC とはそれぞれ前記フィル
タ回路におけるリアクトル3のリアクタンスとコンデン
サ4のキャパシタンスとである。更に、RA ,RB 、R
C はそれぞれ前記リアクトル3及びこれと直列状態にあ
る配線における抵抗の合成抵抗である。
Here, i A , i B and i C are output currents of the inverter circuit, respectively, and v OA , v OB and v OC and i LA , i LB and i LC are output from the filter circuit, respectively. The voltage and current at the ends, that is, the power supply voltage to the load of the inverter device and the load current. Also, L A ,
L B , L C and C A , C B , C C are the reactance of the reactor 3 and the capacitance of the capacitor 4 in the filter circuit, respectively. Furthermore, R A , R B , R
C is a combined resistance of the reactor 3 and the resistance in the wiring in series with the reactor 3.

【0016】また、それぞれの角周波数をωとし互いに
2π/3の位相差を有して平衡状態にある3組の交流電
圧或いは交流電流は、角周波数ωで回転する1組のベク
トル電圧或いは電流に合成することが出来る。従って前
記3組の交流電圧或いは交流電流は角周波数ωで回転す
る直交座標軸(d軸−q軸)からなる回転座標系上の静
止成分として取り扱うことが出来る。即ち、時間軸上の
3相交流成分を前記の回転座標系上の直交2相成分に3
相/2相変換して取り扱うことが出来る。
Further, three sets of AC voltages or currents in equilibrium with each angular frequency being ω and having a phase difference of 2π / 3 with each other are one set of vector voltage or current rotating at the angular frequency ω. Can be synthesized into Therefore, the three sets of AC voltages or AC currents can be treated as stationary components on a rotating coordinate system composed of orthogonal coordinate axes (d axis-q axis) rotating at an angular frequency ω. That is, the three-phase AC component on the time axis is converted into the orthogonal two-phase component on the rotating coordinate system.
It can be handled by converting the phase into two phases.

【0017】上記に従い、前記各関係式における各変数
を角周波数ωの回転座標系における直交するd−q両軸
上に3相/2相変換すれば、下記の各関係式(4)〜
(6)を得る。
In accordance with the above, if each variable in each of the above relational expressions is subjected to three-phase / two-phase conversion on both dq axes orthogonal to each other in the rotational coordinate system of angular frequency ω, the following relational expressions (4)-
(6) is obtained.

【0018】[0018]

【数3】 (Equation 3)

【0019】[0019]

【数4】 [Equation 4]

【0020】但し、前記3相/2相変換の諸元間の対応
は下記の通りである。 [ vA ,vB 、vC ] →[ vq , vd ] [ iA ,iB 、iC ] →[ iq , id ] [ vOA,vOB、vOC] →[ vOq, vOd] [ iLA,iLB、iLC] →[ iLq, iLd] なお、前記3相各相交流成分の平衡状態を得るために回
路定数に関して下記の関係があるものとする。即ち、 LA =LB =LC =L、CA =CB =CC =C、RA
B =RC =R また、式(5),(6)をラプラス変換すれば下記の式
(7)を得る。
However, the correspondence between the specifications of the three-phase / two-phase conversion is as follows. [V A, v B, v C] → [v q, v d] [i A, i B, i C] → [i q, i d] [v OA, v OB, v OC] → [v Oq , v Od ] [i LA , i LB , i LC ] → [i Lq , i Ld ] In addition, the following relationships are assumed regarding the circuit constants in order to obtain the equilibrium state of the three-phase alternating current components. That is, L A = L B = L C = L, C A = C B = C C = C, R A =
The R B = R C = R, the formula (5) to obtain Equation (7) below if Laplace transform (6).

【0021】[0021]

【数5】 (Equation 5)

【0022】式(7)の示す如く、ラプラス変換による
S−関数領域において、3相/2相変換後の諸元に関し
て、前記インバータ回路の出力電圧(Vq , Vd ) は、前
記のフィルタ回路出力端電圧(Voq, Vod) に関数A(S)
を乗じたものと出力端電流即ち負荷電流(ILq, ILd) に
関数B(S) を乗じたものとの和として一義的に決定され
るものとなる。
As shown in the equation (7), in the S-function region by the Laplace transform, the output voltage (V q , V d ) of the inverter circuit is the filter after the three-phase / two-phase conversion. The function A (S) is applied to the circuit output voltage (V oq , V od ).
And the output terminal current, that is, the load current (I Lq , I Ld ) multiplied by the function B (S), are uniquely determined.

【0023】ここに、前記のフィルタ回路出力端電圧(V
oq, Vod) は前記インバータ装置の負荷給電電圧として
その所要値がインバータ出力電圧設定手段により指定さ
れるものであり、また、前記の負荷電流(ILq, ILd) と
関数B(S) との積は前記フィルタ回路における電圧降下
分を示すものである。なお、上記の関係はラプラス逆変
換による時間関数領域においても同様に成り立つもので
ある。
Here, the output voltage (V
oq , V od ) is a load supply voltage of the inverter device whose required value is designated by the inverter output voltage setting means, and the load current (I Lq , I Ld ) and the function B (S) The product of and indicates the voltage drop in the filter circuit. Note that the above relationship holds similarly in the time function domain by Laplace inverse transformation.

【0024】この発明は、前記の3相負荷電流の検出値
とインバータ装置出力電圧の設定値とを所要入力信号と
し、上記行列関数A(S) 及びB(S) の演算器等を介し、
前記インバータ装置出力電圧の所要値を得るに要するイ
ンバータ回路出力電圧を上記の式(7)に従い演算し、
この演算された所要の出力電圧(Vq , Vd ) を2相/3
相変換器により所要の3相信号に変換し、この3相信号
により前記インバータ回路を構成する各スイッチング素
子を駆動し、前記所要の出力電圧(Voq, Vod)を維持し
得る各相の出力vA ,vB 、vC を得るものである。
According to the present invention, the detected value of the three-phase load current and the set value of the output voltage of the inverter device are used as required input signals, and through the arithmetic units of the matrix functions A (S) and B (S),
The inverter circuit output voltage required to obtain the required value of the inverter output voltage is calculated according to the above equation (7),
This calculated required output voltage (V q , V d ) is 2 phase / 3
A phase converter converts the required three-phase signals, each switching element that constitutes the inverter circuit is driven by the three-phase signals, and each of the phases capable of maintaining the required output voltage (V oq , V od ). The outputs v A , v B and v C are obtained.

【0025】[0025]

【実施例】以下この発明の実施例を図1の回路図に従っ
て説明する。ここに、図1は従来技術の実施例を示す図
2とその主回路構成においては同一となされ、その制御
回路構成において異なるものである。即ち、図1の制御
回路構成に関し、10はリアクトル3とコンデンサ4と
から成る前記フィルタ回路の出力端電流即ち前記インバ
ータ装置の3相負荷電流iLA,iLB,iLCを検出する変
流器、11は検出された前記3相負荷電流を所要信号状
態に変換する電流検出器、12は前記の変換された3相
電流信号をインバータ回路交流出力電圧の角周波数ωで
回転する回転座標系の直交するd−q両軸上に前記の2
相電流信号iLq, iLdとして変換する3相/2相変換器
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to the circuit diagram of FIG. Here, FIG. 1 is the same as FIG. 2 showing an embodiment of the prior art in its main circuit configuration, but is different in its control circuit configuration. That is, regarding the control circuit configuration of FIG. 1, 10 is a current transformer that detects the output terminal current of the filter circuit including the reactor 3 and the capacitor 4, that is, the three-phase load currents i LA , i LB , and i LC of the inverter device. , 11 is a current detector that converts the detected three-phase load current into a required signal state, and 12 is a rotary coordinate system that rotates the converted three-phase current signal at the angular frequency ω of the inverter circuit AC output voltage. The above-mentioned 2 is set on both dq axes which are orthogonal to each other.
A three-phase / two-phase converter that converts the phase current signals i Lq and i Ld .

【0026】また、13は式(7)における行列関数B
(S) の演算を行う補正演算回路であり、前記フィルタ回
路に対応する等価回路定数を有し且つ前記変換器12の
出力する前記の電流信号iLq, iLdをその入力として、
前記負荷電流がフィルタ回路に形成する電圧降下分を、
式(7)中の項B(S) [ILq(S) ILd(S)]T の如く演算す
るものである。
Further, 13 is the matrix function B in the equation (7).
(S) is a correction arithmetic circuit, which has an equivalent circuit constant corresponding to the filter circuit and uses the current signals i Lq and i Ld output from the converter 12 as its inputs,
The voltage drop that the load current forms in the filter circuit,
It is calculated as the term B (S) [I Lq (S) I Ld (S)] T in the equation (7).

【0027】また、8は電圧演算器であり、前記インバ
ータ装置の3相出力電圧,即ち前記の負荷給電電圧を指
定する電圧設定器7からの電圧設定信号を受け、これを
前記回転座標系における2相電圧信号に変換するもので
あり、式(7)における行列関数A(S) の演算を行い、
式(7)中の項A(S) [VOq(S) VOd(S)]T を演算出力す
るものである。
A voltage calculator 8 receives a voltage setting signal from a voltage setting device 7 for designating a three-phase output voltage of the inverter device, that is, the load power supply voltage, and receives it in the rotating coordinate system. It is converted into a two-phase voltage signal, and the matrix function A (S) in equation (7) is calculated,
The term A (S) [V Oq (S) V Od (S)] T in the equation (7) is calculated and output.

【0028】また、9は2相/3相変換器であり、加算
演算器により加算合成された前記両2相信号項,A(S)
[VOq(S) VOd(S)]T とB(S) [ILq(S) ILd(S)]T の和信
号をその入力とし、これを前記インバータ装置出力電圧
の属する3相座標系における3相信号に変換するもので
あり、この変換器9の3相出力信号を以てインバータ回
路2を構成する各スイッチング素子に対する駆動信号と
なすものである。
Reference numeral 9 is a 2-phase / 3-phase converter, and the two-phase signal terms A (S), which have been added and synthesized by the addition calculator.
The sum signal of [V Oq (S) V Od (S)] T and B (S) [I Lq (S) I Ld (S)] T is used as its input, and this is the three-phase to which the inverter output voltage belongs. The signal is converted into a three-phase signal in the coordinate system, and the three-phase output signal of the converter 9 is used as a drive signal for each switching element forming the inverter circuit 2.

【0029】[0029]

【発明の効果】この発明によれば、直流入力電圧を所定
の3相交流電圧に変換するインバータ回路とその出力側
に設置されたフィルタ回路とから成るインバータ装置を
対象とし、負荷変動に応答して前記インバータ装置の負
荷給電電圧を所定値に維持する前記インバータ回路の出
力電圧制御方法に関し、請求項1による如く、前記フィ
ルタ回路に対応する等価回路定数を有し且つ負荷電流の
検出信号をその入力とする電圧補正手段により、前記負
荷電流が前記フィルタ回路に形成する電圧降下分を演算
してこれを電圧補正信号となし、この電圧補正信号と電
圧設定手段による前記インバータ装置の出力電圧設定信
号との加算信号を以て前記インバータ回路の出力電圧指
令信号となすことにより、また、請求項2による如く、
請求項1に記載の電圧制御方法において、前記の負荷電
流の検出信号と出力電圧設定信号の両者をインバータ出
力電圧の角周波数ωで回転する直交座標軸(d軸−q
軸)からなる回転座標系上の2相静止成分に変換し、請
求項1における諸演算を前記の回転座標系上の2相成分
に関して行い、その最終演算結果を、前記のインバータ
出力電圧の属する3相座標系における3相信号に変換
し、この3相変換信号を以て前記インバータ回路の出力
電圧指令信号となすことにより、負荷電流変動分が前記
フィルタ回路に形成する電圧降下分が演算により推定さ
れ、この推定結果に従って前記インバータ回路の出力電
圧を補正することにより前記インバータ装置の出力電圧
をその所定値に維持するフィードフォワード制御が行わ
れることになり、前記インバータ装置の出力電圧即ち負
荷給電電圧のフィードバック制御による従来の場合に比
しその即応性の向上を図り、前記負荷給電電圧における
変動の一層の低減を図ることが出来る。また前記の如
く、出力電圧補正演算に係わる諸演算を前記回転座標系
上の静止した2相信号により取り扱うことにより、所要
諸演算の簡易化と正確化とを図ることが出来る。
According to the present invention, an inverter device including an inverter circuit for converting a DC input voltage into a predetermined three-phase AC voltage and a filter circuit installed on the output side of the inverter device is provided. A method for controlling an output voltage of the inverter circuit for maintaining a load power supply voltage of the inverter device at a predetermined value by means of an output circuit having an equivalent circuit constant corresponding to the filter circuit and a load current detection signal according to claim 1. The voltage correction means as an input calculates the voltage drop formed by the load current in the filter circuit and forms this as a voltage correction signal. This voltage correction signal and the output voltage setting signal of the inverter device by the voltage setting means The output voltage command signal of the inverter circuit is formed by the addition signal of
The voltage control method according to claim 1, wherein both the load current detection signal and the output voltage setting signal are rotated at an angular frequency ω of an inverter output voltage in an orthogonal coordinate axis (d-axis-q).
Axis) to a two-phase stationary component on the rotating coordinate system, and various calculations according to claim 1 are performed on the two-phase component on the rotating coordinate system, and the final calculation result belongs to the inverter output voltage. By converting into a three-phase signal in a three-phase coordinate system and using this three-phase conversion signal as the output voltage command signal of the inverter circuit, the voltage drop amount that the load current fluctuation amount forms in the filter circuit is estimated by calculation. , The feedforward control for maintaining the output voltage of the inverter device at its predetermined value by correcting the output voltage of the inverter circuit according to this estimation result is performed. The feedback control improves the responsiveness compared to the conventional case, and further reduces the fluctuation in the load power supply voltage. Rukoto can be. Further, as described above, the various calculations related to the output voltage correction calculation are handled by the stationary two-phase signals on the rotating coordinate system, whereby the required calculations can be simplified and made accurate.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示すインバータ装置の回路
FIG. 1 is a circuit diagram of an inverter device showing an embodiment of the present invention.

【図2】従来技術の実施例を示すインバータ装置の回路
FIG. 2 is a circuit diagram of an inverter device showing an example of a conventional technique.

【符号の説明】[Explanation of symbols]

1 直流電源 2 インバータ回路 3 フィルタリアクトル 4 合成抵抗 5 フィルタコンデンサ 6 負荷 7 電圧設定器 8 電圧演算器 9 2相/3相変換器 10 変流器 11 電流検出器 12 3相/2相変換器 13 補正演算回路 14 電圧検出器 15 電圧演算器 1 DC power supply 2 Inverter circuit 3 Filter reactor 4 Combined resistance 5 Filter capacitor 6 Load 7 Voltage setting device 8 Voltage calculator 9 2 phase / 3 phase converter 10 Current transformer 11 Current detector 12 3 phase / 2 phase converter 13 Correction calculation circuit 14 Voltage detector 15 Voltage calculator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】直流電圧をその入力としこれを所定の3相
交流電圧に変換するインバータ回路と、このインバータ
回路とその負荷との間に設置されたフィルタ回路とから
成るインバータ装置に関して、負荷変動に応答し前記装
置の出力電圧即ち負荷給電電圧を所定値に維持する前記
インバータ回路の出力電圧制御方法であって、負荷電流
検出手段と、前記フィルタ回路に対応する等価回路定数
を有し且つ前記電流検出手段の負荷電流検出信号を入力
として負荷電流が前記フィルタ回路に形成する電圧降下
を演算する電圧補正手段とを設け、この補正手段による
電圧補正信号と電圧設定手段による前記インバータ装置
の出力電圧設定信号との加算信号を以て前記インバータ
回路の出力電圧指令信号となすことを特徴とするインバ
ータ回路の出力電圧制御方法。
1. An inverter device comprising an inverter circuit which receives a DC voltage as an input and converts the DC voltage into a predetermined three-phase AC voltage, and a filter circuit installed between the inverter circuit and a load thereof. Is a method for controlling the output voltage of the inverter circuit for maintaining the output voltage of the device, that is, the load power supply voltage at a predetermined value, in response to the load current detection means and the equivalent circuit constant corresponding to the filter circuit, A voltage correction means for calculating a voltage drop formed by the load current in the filter circuit is provided with the load current detection signal of the current detection means as an input, and the voltage correction signal by the correction means and the output voltage of the inverter device by the voltage setting means. An output voltage command signal for the inverter circuit is obtained by using an addition signal of the setting signal and the output voltage of the inverter circuit. Control method.
【請求項2】請求項1記載のインバータ回路の出力電圧
制御方法において、前記電圧補正手段を、前記負荷電流
検出手段による3相電流検出信号を回転座標系の2相信
号に変換する3相/2相変換器と、この変換器による2
相電流信号を入力とし前記のフィルタ回路電圧降下をそ
の大きさと位相の両者に関し前記回転座標系の2相電圧
状態で演算する補正演算回路と、前記電圧設定手段によ
るインバータ装置出力電圧の設定信号を前記回転座標系
の2相電圧状態に換算する電圧演算器と、この電圧演算
器と前記補正演算回路両者の各出力信号の加算演算を行
う加算演算器と、この加算演算器の出力信号を受けてこ
れを前記インバータ装置出力電圧の属する3相座標系に
おける3相信号に変換する2相/3相変換器と、から構
成し、この2相/3相変換器の出力信号を以て前記イン
バータ回路の出力電圧指令信号となすことを特徴とする
インバータ回路の出力電圧制御方法。
2. The output voltage control method for an inverter circuit according to claim 1, wherein the voltage correction means converts a three-phase current detection signal from the load current detection means into a two-phase signal in a rotating coordinate system. Two-phase converter and two by this converter
A correction operation circuit for inputting a phase current signal and calculating the voltage drop of the filter circuit with respect to both the magnitude and the phase in the two-phase voltage state of the rotating coordinate system, and a setting signal of the output voltage of the inverter device by the voltage setting means. A voltage calculator for converting into a two-phase voltage state of the rotating coordinate system, an addition calculator for performing addition calculation of output signals of both the voltage calculator and the correction calculation circuit, and an output signal of the addition calculator And a two-phase / three-phase converter for converting this into a three-phase signal in a three-phase coordinate system to which the output voltage of the inverter device belongs, and the output signal of the two-phase / three-phase converter is used for the inverter circuit. An output voltage control method for an inverter circuit, wherein the output voltage command signal is used.
JP00236095A 1995-01-11 1995-01-11 Inverter circuit output voltage control method Expired - Fee Related JP3252634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00236095A JP3252634B2 (en) 1995-01-11 1995-01-11 Inverter circuit output voltage control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00236095A JP3252634B2 (en) 1995-01-11 1995-01-11 Inverter circuit output voltage control method

Publications (2)

Publication Number Publication Date
JPH08191572A true JPH08191572A (en) 1996-07-23
JP3252634B2 JP3252634B2 (en) 2002-02-04

Family

ID=11527103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00236095A Expired - Fee Related JP3252634B2 (en) 1995-01-11 1995-01-11 Inverter circuit output voltage control method

Country Status (1)

Country Link
JP (1) JP3252634B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529464A (en) * 2005-01-25 2008-07-31 アーベーベー・シュバイツ・アーゲー Method and apparatus for operation of a converter circuit with an LCL filter
WO2011108169A1 (en) * 2010-03-03 2011-09-09 株式会社安川電機 Inverter device and control method thereof
CN104601070A (en) * 2014-12-29 2015-05-06 中冶南方(武汉)自动化有限公司 Feedforward decoupling vector control method for operation of frequency converter with output reactor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529464A (en) * 2005-01-25 2008-07-31 アーベーベー・シュバイツ・アーゲー Method and apparatus for operation of a converter circuit with an LCL filter
WO2011108169A1 (en) * 2010-03-03 2011-09-09 株式会社安川電機 Inverter device and control method thereof
CN102783008A (en) * 2010-03-03 2012-11-14 株式会社安川电机 Inverter device and control method thereof
US8525466B2 (en) 2010-03-03 2013-09-03 Kabushiki Kaisha Yaskawa Denki Inverter device and control method thereof
CN102783008B (en) * 2010-03-03 2015-01-21 株式会社安川电机 Inverter device and control method thereof
CN104601070A (en) * 2014-12-29 2015-05-06 中冶南方(武汉)自动化有限公司 Feedforward decoupling vector control method for operation of frequency converter with output reactor
CN104601070B (en) * 2014-12-29 2017-04-05 中冶南方(武汉)自动化有限公司 The Feedforward Decoupling vector control method that converter is run with output reactance device

Also Published As

Publication number Publication date
JP3252634B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
KR960000802B1 (en) Parallel operation system of ac output inverters
US7683568B2 (en) Motor drive using flux adjustment to control power factor
Kumsuwan et al. Modified direct torque control method for induction motor drives based on amplitude and angle control of stator flux
Qasim et al. Artificial-neural-network-based phase-locking scheme for active power filters
US5212630A (en) Parallel inverter system
EP1100191A2 (en) Inverter control apparatus and method for controlling an inverter
US5065304A (en) Controller for AC power converter
CN110365039B (en) Microgrid inverter and control method and control device thereof
CN110365038B (en) Microgrid inverter and control method and control device thereof
JPH0783615B2 (en) Three-phase converter
KR20200001300A (en) System for controlling grid-connected apparatus for distributed generation
Marei et al. A speed estimation unit for induction motors based on adaptive linear combiner
JPH08251987A (en) Output voltage control method for three-phase pwm inverter
JP2887013B2 (en) Parallel operation control device for three-phase AC output converter
JPH08191572A (en) Output voltage controlling method of inverter circuit
JP3315874B2 (en) Power converter
JP2674402B2 (en) Parallel operation control device for AC output converter
JPS6194585A (en) Controller for pwm inverter
JPH07123726A (en) Power converter
Rocha et al. A discrete current control for PWM rectifier
JPH0553668A (en) Reactive power compensator
JP3770286B2 (en) Vector control method for induction motor
JP2774246B2 (en) Control device for current source converter
Heidaripour Shahrbjari et al. Sensorless direct vector control technique for induction motor drives under single-phase open-circuit fault
JPH10248300A (en) Power converter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees