JPH0819115B2 - Method for producing maleic anhydride - Google Patents

Method for producing maleic anhydride

Info

Publication number
JPH0819115B2
JPH0819115B2 JP61290165A JP29016586A JPH0819115B2 JP H0819115 B2 JPH0819115 B2 JP H0819115B2 JP 61290165 A JP61290165 A JP 61290165A JP 29016586 A JP29016586 A JP 29016586A JP H0819115 B2 JPH0819115 B2 JP H0819115B2
Authority
JP
Japan
Prior art keywords
catalyst
maleic anhydride
vanadium
reaction
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61290165A
Other languages
Japanese (ja)
Other versions
JPS63141977A (en
Inventor
正之 大竹
徹悟 川上
秀男 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP61290165A priority Critical patent/JPH0819115B2/en
Publication of JPS63141977A publication Critical patent/JPS63141977A/en
Publication of JPH0819115B2 publication Critical patent/JPH0819115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Furan Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無水マレイン酸の製造法に関する。詳しくは
本発明はバナジウム−リン系触媒の存在下に炭化水素を
気相で接触酸化して無水マレイン酸を製造する方法にお
ける高活性及び高選択性の触媒の使用に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing maleic anhydride. More specifically, the present invention relates to the use of a highly active and highly selective catalyst in a method for producing maleic anhydride by catalytically oxidizing a hydrocarbon in the gas phase in the presence of a vanadium-phosphorus catalyst.

〔従来の技術〕[Conventional technology]

炭素数4の飽和または不飽和の直鎖状炭化水素を気相
酸化して無水マレイン酸を製造する技術はよく知られて
おり、従来多くの触媒が提案されてきたが、活性の向
上、収率の向上に向けての改良検討は一層重要となつて
きている。
A technique for producing maleic anhydride by subjecting a saturated or unsaturated straight-chain hydrocarbon having 4 carbon atoms to gas-phase oxidation is well known, and many catalysts have been proposed in the past. It is becoming more and more important to consider improvements to improve the rate.

一般にこの反応の触媒としてバナジウム及びリンを含
有する複合酸化物が古くから用いられてきたが、基質が
炭素数4の飽和の直鎖状炭化水素、即ちn−ブタンであ
る場合には、特定のX線回折ピークを示す、結晶性のピ
ロリン酸ジバナジル((VO)2P2O7)が特異的に高活性で
ある。しかしこの場合にもリン成分の揮散等のために、
高活性を維持するのは容易ではなく、活性と選択性を一
層向上させる目的で広汎な修飾成分の添加が検討されて
きた。例えば特公昭53-43,929ではリン及びバナジウム
の他に鉄とニツケル、ホウ素、銀、カドミウム及びバリ
ウム、更にはクロムを添加した触媒系が、また、特公昭
57-45,253ではリン及びバナジウムにコバルト、ニツケ
ル、カドミウムを添加した触媒系が提案されている。更
に、米国特許第4,151,116号ではリン−バナジウム系複
合酸化物にマグネシウム、亜鉛、コバルト、鉄、マンガ
ン、ニツケル、インジウム、銅を始め、広汎な種類の金
属塩溶液を後含浸担持させた触媒系が優れた性能を有す
ることが主張されている。また、特開昭58-150,437では
バナジウムにケイ素、及びインジウム、アンチモン、タ
ンタルからなる修飾成分を接触させ、ついでリンと反応
させることが主張されており、単なる混合物として修飾
成分を添加した場合よりも添加方法を工夫して修飾効果
をより大きく発揮させる方向に研究が志向されている。
In general, complex oxides containing vanadium and phosphorus have long been used as catalysts for this reaction, but when the substrate is a saturated linear hydrocarbon having 4 carbon atoms, that is, n-butane, Crystalline divanadyl pyrophosphate ((VO) 2 P 2 O 7 ) showing an X-ray diffraction peak is specifically highly active. However, in this case as well, due to volatilization of the phosphorus component,
It is not easy to maintain high activity, and addition of a wide range of modifying components has been studied for the purpose of further improving activity and selectivity. For example, in Japanese Examined Patent Publication No. 53-43,929, in addition to phosphorus and vanadium, a catalyst system in which iron, nickel, boron, silver, cadmium and barium, and chromium are added is also disclosed.
57-45,253 proposes a catalyst system in which cobalt, nickel, and cadmium are added to phosphorus and vanadium. Furthermore, in U.S. Pat.No. 4,151,116, a catalyst system in which a wide variety of metal salt solutions are post-impregnated and supported on a phosphorus-vanadium complex oxide, including magnesium, zinc, cobalt, iron, manganese, nickel, indium and copper, is provided. It is claimed to have excellent performance. Further, in JP-A-58-150,437, it is claimed that silicon, and indium, antimony, and a modifying component consisting of tantalum are brought into contact with vanadium and then reacted with phosphorus, which is more than a case where the modifying component is added as a simple mixture. Research has been aimed at improving the effect of modification by devising the addition method.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、これらの方法では修飾成分使用時に触媒活性
成分の溶出や形状破壊あるいは化学的不安定化等を起こ
すことから、工業的規模での触媒製造を考えた場合、欠
点が多いことが判明した。
However, these methods cause elution of the catalytically active component, destruction of the shape, chemical destabilization, etc. when the modifying component is used. Therefore, it was found that there are many drawbacks when the catalyst production is considered on an industrial scale.

特に本発明者らの検討によると、ピロリン酸バナジル
の結晶構造を明確に有するリン−バナジウム複合酸化物
に、各種金属成分を担持又は添加すると、多くの場合、
燃焼活性のみが強調されるため、活性が向上して比較的
低温で反応させることが可能になつても目的とする無水
マレイン酸の収率は低下する傾向が強い。従つてこのよ
うな場合には修飾成分の質ばかりでなく、添加量、添加
方法に多大の工夫を要するのが通例であつた。
In particular, according to the study of the present inventors, in the phosphorus-vanadium composite oxide clearly having the crystal structure of vanadyl pyrophosphate, when various metal components are supported or added, in many cases,
Since only the combustion activity is emphasized, the target yield of maleic anhydride tends to decrease even if the activity is improved and the reaction can be performed at a relatively low temperature. Therefore, in such a case, it is customary that not only the quality of the modifying component but also the addition amount and the addition method need to be devised.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明者らはブタン、ブテン、ブタジエン等の炭素数
4の不飽和又は飽和の炭化水素の気相酸化により無水マ
レイン酸を製造する反応において、顕著に高性能を有す
る触媒を開発し、可及的に低い反応温度で反応を実施す
ることを可能にすることにより、自然発火の危険性を回
避し、かつ、目的生成物の収率を向上するべく鋭意検討
した結果、本発明に到達したものである。
The present inventors have developed a catalyst having remarkably high performance in a reaction for producing maleic anhydride by vapor phase oxidation of an unsaturated or saturated hydrocarbon having 4 carbon atoms such as butane, butene, butadiene, etc. By carrying out the reaction at a relatively low reaction temperature, avoiding the risk of spontaneous combustion, and as a result of intensive studies to improve the yield of the desired product, the present invention has been achieved. Is.

即ち、本発明は、炭素数4の炭化水素を気相酸化して無
水マレイン酸を製造するに際し、反応系中に活性成分が
主としてバナジウム、リン及び酸素からなり、かつその
少なくとも一部がピロリン酸ジバナジル((VO)2P2O7
の構造を有する複合酸化物であって、更に該複合酸化物
に活性修飾成分としてインジウム並びにニッケル、
コバルト及び銅からなる群から選ばれる一種以上の元素
を添加してなる触媒を存在させることを特徴とする無水
マレイン酸の製造法を要旨とするものである。
That is, according to the present invention, when producing a maleic anhydride by vapor-phase oxidizing a hydrocarbon having 4 carbon atoms, the active components in the reaction system mainly consist of vanadium, phosphorus and oxygen, and at least a part of them is pyrophosphoric acid. Divanadyl ((VO) 2 P 2 O 7 )
A composite oxide having the structure of, wherein indium and nickel are added to the composite oxide as active modifying components,
It is a gist of a method for producing maleic anhydride, which is characterized in that a catalyst formed by adding one or more elements selected from the group consisting of cobalt and copper is present.

以下に本発明につき、詳細に説明する。 The present invention will be described in detail below.

本発明においては、炭素数4の炭化水素を気相酸化し
て無水マレイン酸を製造するに際し、反応系中に活性成
分が主としてバナジウム、リン及び酸素からなり、その
少なくとも一部がピロリン酸ジバナジル((VO)2P2O7
の構造を有する複合酸化物であって、更に該複合酸化物
に活性修飾成分としてインジウム並びにニッケル、
コバルト及び銅からなる群から選ばれる一種以上の元素
を添加してなる触媒を存在させる。
In the present invention, when producing a maleic anhydride by vapor-phase oxidizing a hydrocarbon having 4 carbon atoms, the active components in the reaction system mainly consist of vanadium, phosphorus and oxygen, at least a part of which is divanadyl pyrophosphate ( (VO) 2 P 2 O 7 )
A composite oxide having the structure of, wherein indium and nickel are added to the composite oxide as active modifying components,
A catalyst containing one or more elements selected from the group consisting of cobalt and copper is present.

本発明で使用する触媒を構成するバナジウム、リン及
び酸素からなる複合酸化物(以下「V−P系複合酸化
物」という)の製造法としては種々の方法が提案されて
いる。
Various methods have been proposed as a method for producing a composite oxide composed of vanadium, phosphorus and oxygen (hereinafter referred to as “VP composite oxide”) that constitutes the catalyst used in the present invention.

例えば、特公昭53-39,037、特開昭50-35,088、特開昭
53-91,110、特開昭56-91,845、特開昭56-168,837及び米
国特許第4,283,288号等においては有機溶媒中でのバナ
ジウム化合物、リン化合物の反応により、また、特開昭
51-95,990や特開昭58-151,313においては水溶液中での
反応により、結晶性前駆体を製造し、次いでこれを窒素
等の不活性ガスやブタン−空気混合ガスや低酸素濃度に
窒素、炭酸ガス、不活性ガス等で希釈しても良い空気等
の雰囲気下に焼成して製造されている。そして、この結
晶性前駆体は、次のような特徴的なX線回折ピークを与
えることが知られている。
For example, JP-B-53-39,037, JP-A-50-35,088,
53-91,110, JP-A-56-91,845, JP-A-56-168,837 and US Pat. No. 4,283,288, etc., by the reaction of a vanadium compound and a phosphorus compound in an organic solvent.
51-95,990 and JP-A-58-151313, a crystalline precursor is produced by a reaction in an aqueous solution, and then this is added to an inert gas such as nitrogen or a butane-air mixed gas or to a low oxygen concentration with nitrogen or carbon dioxide. It is manufactured by firing in an atmosphere such as air that may be diluted with a gas or an inert gas. It is known that this crystalline precursor gives the following characteristic X-ray diffraction peak.

2θ(±0.2°)=15.6°、19.7°、24.3°、27.1°、2
8.8°、30.5°、32.2°、33.7° この結晶性前駆体の化合物は最近X線構造解析がなさ
れ、VO(HPO4)・0.5H2Oまたは(VO)2H4P2O9であること
が判明している。
2θ (± 0.2 °) = 15.6 °, 19.7 °, 24.3 °, 27.1 °, 2
8.8 °, 30.5 °, 32.2 °, 33.7 ° This crystalline precursor compound has recently been subjected to X-ray structural analysis and is VO (HPO 4 ) .0.5H 2 O or (VO) 2 H 4 P 2 O 9 . It turns out.

〔C.C.Torardi,J.C.Calabrese,Inorg.Chem.,23,1310
(′84) Jack W.Johnson,David C.Johnston,Allan J.Jacobson
and John F.Brody,J.Am.Chem.Soc.,106,8123(′8
4)〕 V−P系複合酸化物には種々のものがあり、大別する
と結晶性のものと無定形のものとがある。その選択は必
要とする触媒活性のレベル、具体的には原料炭化水素の
選択に依存し、反応性の低い飽和炭化水素、即ちブタ
ン、を原料とする場合には触媒活性の大きい結晶性のも
のを使用するのが好ましい。
(CC Torardi, JC Calabrese, Inorg. Chem., 23 , 1310
('84) Jack W. Johnson, David C. Johnston, Allan J. Jacobson
and John F. Brody, J. Am. Chem. Soc., 106 , 8123 ('8
4)] There are various types of VP-based composite oxides, which are roughly classified into crystalline ones and amorphous ones. The selection depends on the level of the required catalytic activity, specifically the selection of the starting hydrocarbon, and when a low-reactivity saturated hydrocarbon, that is, butane, is used as the starting material, a crystalline one with a high catalytic activity is used. Is preferably used.

本発明方法のV−P系複合酸化物は、少なくとも一部
がピロリン酸ジバナジル((VO)2P2O7)の構造を有する
ものであり、これはX線回折(Cu−Kα対陰極)で次の
ような特性回折線により特徴づけられる。
The VP composite oxide of the method of the present invention has at least a part of the structure of divanadyl pyrophosphate ((VO) 2 P 2 O 7 ), which is X-ray diffraction (Cu-Kα anticathode). Is characterized by the following characteristic diffraction line.

2θ(±0.2°)=142°、15.7°、18.5°、23.0°、2
8.4°、30.0°、33.7°、36.8° 本発明方法においては、V−P系複合酸化物として上
記した結晶性複合酸化物の外に更にX線的に無定形の複
合酸化物を主要成分または副成分として含有させても良
い。この無定形複合酸化物は、例えば塩酸バナジウムや
シユウ酸バナジウム及びリン酸を含む水溶液を蒸発乾固
し、更に必要に応じて結晶性ピロリン酸バナジウムと同
様に焼成することによつて製造することが可能である
が、例えば、特開昭58-151,312で示されたように、安定
化されたリン酸バナジウム溶液の蒸発乾固による方法が
有利である場合が多い。
2θ (± 0.2 °) = 142 °, 15.7 °, 18.5 °, 23.0 °, 2
8.4 °, 30.0 °, 33.7 °, 36.8 ° In the method of the present invention, in addition to the crystalline complex oxide described above as the VP-based complex oxide, a complex oxide that is X-ray amorphous is added as a main component or It may be contained as an accessory component. This amorphous complex oxide can be produced, for example, by evaporating an aqueous solution containing vanadium hydrochloride or vanadium oxalate and phosphoric acid to dryness, and then, if necessary, firing in the same manner as the crystalline vanadium pyrophosphate. Although possible, a method of evaporating the stabilized vanadium phosphate solution to dryness is often advantageous, for example, as shown in JP-A-58-151,312.

更に本発明方法においては触媒成分を工業的に使用し
得る各種の担体に担持させることもできる。例えばアル
ミナ、シリカ、珪藻土、ジルコニア、ゼオライト、炭化
ケイ素、軽石等各種の担体が使用可能である。しかし、
一般にはシリカ、シリカゾル等の珪酸質担体が好まし
く、特に流動床触媒として使用する場合にはシリカゾル
の使用が好ましい。
Furthermore, in the method of the present invention, the catalyst component may be supported on various carriers that can be used industrially. For example, various carriers such as alumina, silica, diatomaceous earth, zirconia, zeolite, silicon carbide and pumice can be used. But,
In general, siliceous carriers such as silica and silica sol are preferred, and silica sol is particularly preferred when used as a fluidized bed catalyst.

また、本発明方法においては、V−P系複合酸化物の
触媒に、インジウム並びにニッケル、コバルト及び
銅からなる群から選ばれる一種以上の元素を活性修飾成
分として添加する。
Further, in the method of the present invention, one or more elements selected from the group consisting of indium and nickel, cobalt and copper are added as an active modifying component to the catalyst of the VP composite oxide.

上記した活性修飾成分の添加の中でもインジウム−ニ
ツケルの組合せが特に好ましい。
Among the above-mentioned addition of the active modifying component, the combination of indium-nickel is particularly preferable.

活性修飾成分の添加量については前記したバナジウム
及びリンを含め、その原子比が以下の範囲にあることが
好ましい。(XはNi、Co及びCuからなる群から選ばれる
一種以上の元素を表わす。) V:P:In:X =1:1.0〜2.0:0.001〜0.2:0.001〜0.2 活性修飾成分の原料化合物としては工業的に使用し得
る種々の形態の化合物が採用できる。例えば、インジウ
ム、ニツケル、コバルト及び銅の酸化物、水酸化物、ハ
ロゲン化物、モリブテン酸塩、硫化物、硫酸、硝酸、リ
ン酸等の鉱酸塩、ギ塩、酢酸、クエン酸、シユウ酸等の
有機酸の塩等が使用される。イソプロパノールのような
アルコールとの化合物も必要に応じて使用できる。
Regarding the amount of addition of the activity-modifying component, the atomic ratio of vanadium and phosphorus is preferably in the following range, including vanadium and phosphorus. (X represents one or more elements selected from the group consisting of Ni, Co and Cu.) V: P: In: X = 1: 1.0 to 2.0: 0.001 to 0.2: 0.001 to 0.2 As a raw material compound for the active modifying component Can employ various forms of compounds that can be industrially used. For example, oxides of indium, nickel, cobalt and copper, hydroxides, halides, molybdates, sulfides, mineral salts such as sulfuric acid, nitric acid, phosphoric acid, formate salts, acetic acid, citric acid, oxalic acid, etc. The salts of organic acids are used. A compound with an alcohol such as isopropanol can also be used if necessary.

活性修飾成分の原料化合物は前記した結晶性V−P系
複合酸化物、或いはバナジウム及びリンを含有する水性
溶液、或いはこれらの混合物のいずれに添加しても良
い。
The raw material compound of the activity modifying component may be added to any of the above-mentioned crystalline VP-based complex oxide, an aqueous solution containing vanadium and phosphorus, or a mixture thereof.

また、本発明の触媒には、更に必要に応じて鉄、ジル
コニウム、マグネシウム、カルシウム、亜鉛を始め、各
種の副次的修飾成分を添加してもよい。
Further, to the catalyst of the present invention, various secondary modifying components such as iron, zirconium, magnesium, calcium and zinc may be added, if necessary.

上記した手順で得られた触媒組成物は、反応に使用す
るに際して、通常、300〜700℃、好適には350〜620℃の
温度で焼成され活性化される。
When used in the reaction, the catalyst composition obtained by the above-mentioned procedure is usually calcined and activated at a temperature of 300 to 700 ° C, preferably 350 to 620 ° C.

焼成の雰囲気としては空気或いは窒素、炭酸ガス、ヘ
リウム等の不活性ガス、更にこれ等で希釈された低酸素
空気等が使用できる。0.05〜2%程度の濃度のブタンや
ブテン類を含有する空気で反応ガス焼成して活性化する
方法を採用することもできる。焼成にはマツフル炉、ト
ンネル炉、ロータリーキルン、流動床焼成炉等の公知の
種々の装置が使用可能であるが昇温により発生する水を
連続的に系外に除去するように上記ガスの気流流通下に
実施するのが好ましい。
As a firing atmosphere, air or an inert gas such as nitrogen, carbon dioxide or helium, or low oxygen air diluted with these can be used. It is also possible to employ a method in which the reaction gas is fired with air containing butane or butene at a concentration of about 0.05 to 2% for activation. For the calcination, various known devices such as a pine furnace, a tunnel furnace, a rotary kiln, a fluidized bed calcination furnace, etc. can be used, but the gas flow is passed so as to continuously remove the water generated by the temperature rise out of the system. It is preferably carried out below.

本発明方法において用いられる原料は炭素原子数4の
炭化水素であり、好ましくは炭素原子数4の直鎖状炭化
水素である。具体的には例えばn−ブタン、1−ブテ
ン、2−ブテン、ブタジエンあるいはそれ等の混合物が
挙げられる。炭素原子数4で側鎖を有する脂肪族炭化水
素、例えばイソブタン、イソブチレンからもより低収率
ではあるが、無水マレイン酸が生成する。最も経済的に
有利な原料はn−ブタン及びブテン類であり、通常、天
然ガスからの分離或いはナフサクラツキング又はFCC反
応によつて得られるC4留分として、また希望すればこれ
らからブタジエンやイソブチレンを抽出した残りの混合
物として使用される。これらの場合には通常、C3又はC5
の炭化水素類も不純物として混入するが、特に問題はな
い。
The raw material used in the method of the present invention is a hydrocarbon having 4 carbon atoms, preferably a linear hydrocarbon having 4 carbon atoms. Specific examples include n-butane, 1-butene, 2-butene, butadiene and mixtures thereof. Maleic anhydride is produced, albeit in a lower yield, from an aliphatic hydrocarbon having 4 carbon atoms and a side chain, such as isobutane or isobutylene. The most economically advantageous feedstocks are n-butane and butenes, usually as C 4 cuts obtained by separation from natural gas or by naphtha cracking or FCC reactions and, if desired, butadiene. It is used as the remaining mixture after extraction of isobutylene. In these cases, usually C 3 or C 5
The hydrocarbons mentioned above are also mixed as impurities, but there is no particular problem.

本発明方法においてこれらの炭化水素は、前記バナジウ
ム−リン系触媒の存在下に、気相で接触酸化された無水
マレイン酸を生成する。酸化剤としては分子状酸素含有
ガス、通常は空気が使用される。原料炭化水素は、空気
中の濃度として通常0.1〜8%(vol)、より好適には1.
0〜4.5%程度の範囲で、触媒層に空気と同時にまたは個
別に導入されて酸化される。反応温度は通常、300〜550
℃、より好適には350〜500℃の範囲であり、反応圧力は
通常、常圧以上、より好適には0.1〜10kg/cm2Gの範囲で
ある。
In the method of the present invention, these hydrocarbons form maleic anhydride which is catalytically oxidized in the gas phase in the presence of the vanadium-phosphorus catalyst. A molecular oxygen-containing gas, usually air, is used as the oxidant. The raw material hydrocarbon is usually 0.1 to 8% (vol) as the concentration in the air, and more preferably 1.
In the range of 0 to 4.5%, the catalyst layer is introduced simultaneously with air or individually to be oxidized. The reaction temperature is usually 300 to 550.
° C., more preferably in the range of 350 to 500 ° C., the reaction pressure is usually normal pressure on, and more preferably in the range of 0.1 to 10 / cm 2G.

ブタン等の反応性の低い基質の酸化を行なうにあたつ
ては、V−P系複合酸化物原料溶液及びシリカゾル等の
担体成分と活性修飾成分とを混合し、均密なスラリーと
して噴霧乾燥して真球に近い流動床反応用触媒とするこ
とにより、活性を高めることができる。V−P系複合酸
化物として、結晶性のものと共に無定形のものを併用す
ることは、得られる流動床触媒の活性安定化と機械的強
度の向上に極めて有効である場合が多い。
In oxidizing a substrate having low reactivity such as butane, a carrier component such as a VP-based complex oxide raw material solution and silica sol and an active modifying component are mixed and spray-dried as a uniform slurry. The activity can be enhanced by using a catalyst for a fluidized bed reaction close to a sphere. The combined use of a crystalline and an amorphous VP-based composite oxide is often extremely effective in stabilizing the activity of the resulting fluidized bed catalyst and improving its mechanical strength.

ブタンのような反応性の低い基質の気相酸化反応では
反応温度を低くしても充分活性の高い触媒が望まれてお
り、本発明方法においてはこの酸化反応に有効な結晶性
のピロリン酸ジバナジル構造を有する組成物と、特定の
活性修飾成分とを共存させることにより、一層活性を高
め、かつ高選択率を得ることができる。一般に工業用触
媒として、強い発熱を有する気相酸化反応の場合には発
熱の制御のために流動床触媒を使用することが望ましい
が、本発明における活性修飾成分は、結晶性ピロリン酸
ジバナジルを含有する流動床触媒系にも充分高性能を賦
与する効果がある。
In the gas-phase oxidation reaction of a substrate having low reactivity such as butane, a catalyst having sufficiently high activity is desired even if the reaction temperature is lowered. In the method of the present invention, crystalline divanadyl pyrophosphate effective for this oxidation reaction is desired. By allowing a composition having a structure and a specific activity-modifying component to coexist, the activity can be further enhanced and a high selectivity can be obtained. Generally, as a catalyst for industrial use, it is desirable to use a fluidized bed catalyst for the control of heat generation in the case of a gas phase oxidation reaction having a strong heat generation, but the active modification component in the present invention contains crystalline divanadyl pyrophosphate. It also has the effect of imparting sufficiently high performance to the fluidized bed catalyst system.

〔実施例〕〔Example〕

次に実施例により本発明の実施の態様をより具体的に
説明するが、本発明は、その要旨を越えない限り、以下
の実施例によつて限定されるものではない。
Next, the embodiments of the present invention will be described more specifically with reference to Examples, but the present invention is not limited to the following Examples without departing from the gist thereof.

触媒の製造例−1 (A)結晶性酸化物の前駆体の製造: 下記表A:表A X線回折ピーク (対陰極:Cu−Kα)2θ(±0.2°) 15.7° 19.6° 24.2° 27.1° 28.8° 30.4° に示すX線回折ピークを示す結晶性酸化物の前駆体を次
のようにして製造した。
Catalyst Production Example-1 (A) Production of crystalline oxide precursor: Table A below: Table A X-ray diffraction peaks (cathode: Cu-Kα) 2θ (± 0.2 °) 15.7 ° 19.6 ° 24.2 ° 27.1 A crystalline oxide precursor having an X-ray diffraction peak at 28.8 ° and 30.4 ° was prepared as follows.

グラスライニングを施した容積100lのジヤケツト付き
耐圧容器に、脱塩水38.0kg、85%リン酸21.83kg、80%
抱水ヒドラジン溶液2.85kgを仕込み、次いで攪拌しなが
ら五酸化バナジウム粉末16.40kgを発泡に注意しながら
少量ずつ添加溶解した。この間、発熱による温度上昇を
抑えて液温を60〜80℃に保つために、熱媒をジヤケツト
内に循環させて除熱した。五酸化バナジウムの添加を約
4時間で終了し、青色のリン酸バナジル溶液を得た。こ
れに種結晶1.0kgを添加し、次いで160℃の熱媒をジヤケ
ツト内に循環させて加熱した。液温度140℃まで2時間
で昇温し、そのまま10時間の水熱処理を行なつた。この
間圧力は約0.24MPa(ゲージ圧)であつた。90℃まで冷
却した後、脱塩水10.3kgを加えてスラリー中の固体濃度
を約35%に調節して抜出した。
A glass-lined pressure-resistant container with a volume of 100 l and a jacket, deionized water 38.0 kg, 85% phosphoric acid 21.83 kg, 80%
2.85 kg of a hydrazine hydrate solution was charged, and then 16.40 kg of vanadium pentoxide powder was added and dissolved little by little while stirring while paying attention to foaming. During this period, in order to suppress the temperature rise due to heat generation and keep the liquid temperature at 60 to 80 ° C., the heat medium was circulated in the jacket to remove heat. The addition of vanadium pentoxide was completed in about 4 hours, and a blue vanadyl phosphate solution was obtained. To this, 1.0 kg of seed crystals was added, and then a heating medium at 160 ° C. was circulated in the jacket for heating. The liquid temperature was raised to 140 ° C. in 2 hours, and hydrothermal treatment was carried out for 10 hours as it was. During this time, the pressure was about 0.24 MPa (gauge pressure). After cooling to 90 ° C., 10.3 kg of demineralized water was added to adjust the solid concentration in the slurry to about 35%, and the mixture was extracted.

このスラリー中の固体のX線回折測定を行なつたとこ
ろ、表Aに示す主要回折ピークを示すことが判明し、純
粋な結晶性酸化物であることが確認された。またコール
ター・カウンター法でスラリー中の固体の粒子径分布を
調べたところ、0.7μmの平均粒子径を示した。この酸
化物スラリーを噴霧乾燥機を用いて乾燥し、酸化物の淡
青色の酸化物粉体29.8kgを得た。酸化物スラリーの仕込
み基準のP/V原子比は1.05であるが、過、洗浄して得
られる結晶性酸化物の前駆体は実質的に(VO)2H4P2O9
組成式で表わされることを確認した。
When X-ray diffraction measurement of the solid in this slurry was carried out, it was found that the main diffraction peaks shown in Table A were exhibited, and it was confirmed to be a pure crystalline oxide. When the particle size distribution of the solid in the slurry was examined by the Coulter counter method, the average particle size was 0.7 μm. The oxide slurry was dried using a spray dryer to obtain 29.8 kg of a pale blue oxide powder of oxide. The P / V atomic ratio of the charged standard of the oxide slurry is 1.05, but the precursor of the crystalline oxide obtained by overwashing is substantially (VO) 2 H 4 P 2 O 9 in the composition formula. Confirmed that it is represented.

(B)結晶性酸化物の製造: 上記(A)で得た前駆体を焼成し、下記表B:表B X線回折ピーク (対陰極:Cu−Kα)2θ(±0.2°) 14.2° 15.7° 18.5° 23.0° 28.4° 30.0° 33.7° 36.8° に示すX線回折ピークを示す結晶性酸化物を製造した。(B) Production of crystalline oxide: The precursor obtained in (A) above was fired, and the following Table B: Table B X-ray diffraction peaks (anticathode: Cu-Kα) 2θ (± 0.2 °) 14.2 ° 15.7 A crystalline oxide having an X-ray diffraction peak at 18.5 ° 23.0 ° 28.4 ° 30.0 ° 33.7 ° 36.8 ° was produced.

容量500lのマツフル炉内に、10個の2l容量の磁製皿に
上記(A)で得た前駆体10kgを分納して並べ、炉内を充
分窒素ガスで置換した後、昇温し、550℃で2時間加熱
した。次いで炉内に徐々に空気を導入して更に1時間加
熱した後、放冷した。
In a pine-furnace having a capacity of 500 liters, 10 kg of the precursor obtained in the above (A) was placed in 10 porcelain dishes having a capacity of 2 liters and arranged side by side, and the inside of the furnace was sufficiently replaced with nitrogen gas and then heated to 550 Heated at ° C for 2 hours. Next, air was gradually introduced into the furnace, the mixture was heated for another 1 hour, and then allowed to cool.

X線回折測定の結果、焼成後の粉体は前記表Bに示す
回折ピーク以外のピークは一切示さず、高純度の結晶性
酸化物であることを確認した。また酸化還元定法により
全バナジウム原子中の5価のバナジウムの割合を測定し
たところ、23.4%であつた。即ち(VO)2P2O7中のバナジ
ウムの少なくとも一部は結晶構造を保持したまま酸素吸
収をして5価の原子価状態をとり得る。
As a result of X-ray diffraction measurement, the powder after firing showed no peaks other than the diffraction peaks shown in Table B, and it was confirmed that the powder was a highly pure crystalline oxide. The proportion of pentavalent vanadium in all vanadium atoms was measured by a redox method, and it was 23.4%. That is, at least a part of vanadium in (VO) 2 P 2 O 7 can absorb oxygen while maintaining its crystal structure and assume a pentavalent valence state.

(C)リン酸バナジル溶液の製造: 無定形バナジウム−リン系複合酸化物の原料としてリ
ン酸バナジル溶液を製造した。
(C) Production of vanadyl phosphate solution: A vanadyl phosphate solution was produced as a raw material for the amorphous vanadium-phosphorus complex oxide.

85%リン酸2.956kgを脱塩水3.0kgに溶解し、更にシユ
ウ酸(H2C2O4・2H2O)2.55kgを添加し、加温溶解し
た。液を80℃に加熱し、五酸化バナジウム1.842kgを発
泡に注意しながら少量ずつ添加、溶解した後、煮沸状態
で更に10分間加熱して還元を完了させた。液を放冷し、
脱塩水を加えて全量を10.00kgに調節した。この溶液のP
/V原子比は1.2666、酸化物(V204+P205)濃度は35.0%
である。
2.956 kg of 85% phosphoric acid was dissolved in 3.0 kg of demineralized water, 2.55 kg of oxalic acid (H 2 C 2 O 4 .2H 2 O) was further added, and dissolved by heating. The liquid was heated to 80 ° C., 1.842 kg of vanadium pentoxide was added little by little while paying attention to foaming, dissolved, and then heated in a boiling state for 10 minutes to complete the reduction. Allow the liquid to cool,
Demineralized water was added to adjust the total amount to 10.00 kg. P of this solution
/ V atomic ratio is 1.2666, oxide (V 2 0 4 + P 2 0 5) concentration of 35.0%
Is.

(D)触媒の製造: 触媒−1 前記(B)で製造した焼成粉体8.95g、前記(C)で
製造したリン酸バナジル溶液27.97g、及び20%濃度のシ
リカゾル30.19gを混合し、得られたスラリーに活性修飾
成分として塩化インジウム(Incl3・4H2O)0.499g及び
酢酸ニツケル(Ni(CH3COO)2・4H2O)0.424gを添加
し、高速回転型ホモジナイザーで30分混合し、充分均密
なスラリーを得た。これを180℃に加熱したホツトプレ
ート上に滴下して乾燥し、次いでこの固体を300℃で空
気気流下に20分間焼成し、更に570℃、窒素気流下に25
分間焼成した。得られた固体を打錠成型器を用いて6mm
φ×2mm厚にペレツト化し、更に破砕して24〜40メツシ
ユに篩分して使用する触媒とした。この触媒はV1.0P
1.16In0.015Ni0.015の原子比組成を有する。
(D) Production of catalyst: Catalyst-1 8.95 g of the calcined powder produced in the above (B), 27.97 g of the vanadyl phosphate solution produced in the above (C), and 30.19 g of 20% concentration silica sol were mixed to obtain was chloride indium (Incl 3 · 4H 2 O) 0.499g and acetic acid nickel (Ni (CH 3 COO) 2 · 4H 2 O) 0.424g added as active modifying component in the slurry, 30 minutes mixing at high speed homogenizer Then, a sufficiently uniform slurry was obtained. This was dropped onto a hot plate heated to 180 ° C and dried, and then this solid was calcined at 300 ° C for 20 minutes in an air stream, and further heated to 570 ° C under a nitrogen stream for 25 minutes.
Bake for minutes. 6 mm of the obtained solid using a tablet molding machine
Pelletized to a thickness of φ × 2 mm, further crushed and sieved to 24-40 mesh to obtain a catalyst for use. This catalyst is V 1.0 P
1.16 In 0.015 Ni has an atomic ratio composition of 0.015 .

触媒−2〜4 触媒−1で使用した活性修飾成分において、塩化イン
ジウムの量を表−1に示すように変更し、また酢酸コバ
ルト(CO(CH3COO)2・4H2O)及び酢酸銅(Cu(CH3COO)
2・4H2O)を表−1に示す量で使用した以外は触媒−1
と同様の手順で触媒−2、3、4を製造した。
In activity modifying components used in catalyst -2~4 catalyst -1, to change the amount of indium chloride as shown in Table 1, also cobalt acetate (CO (CH 3 COO) 2 · 4H 2 O) and copper acetate (Cu (CH 3 COO)
2 · 4H 2 O), except that was used in amounts shown in Table 1. The catalyst -1
Catalysts-2, 3 and 4 were produced by the same procedure as in.

比較触媒−1 塩化インジウム、酢酸ニツケルの添加をしなかつた以
外は触媒−1と全く同様の手順で比較触媒−1を製造し
た。
Comparative catalyst-1 Comparative catalyst-1 was produced by the same procedure as catalyst-1, except that indium chloride and nickel acetate were not added.

実施例1〜4及び比較例1 固定床反応テストにより触媒−1〜4(実施例1〜
4)及び比較触媒−1の活性を測定した。反応には外径
6mmの管型小型反応器を使用した。各触媒4mlを夫々充填
し、2%ブタン/空気混合ガスを用い、GHSV2,000の条
件で反応させた。生成物を分析した結果を表−1に示
す。反応成績は無水マレイン酸収率が最大となる温度で
比較してある。
Examples 1 to 4 and Comparative Example 1 According to a fixed bed reaction test, catalysts 1 to 4 (Examples 1 to 1)
4) and the activity of comparative catalyst-1 were measured. Outer diameter for reaction
A 6 mm small tubular reactor was used. 4 ml of each catalyst was filled in each and the reaction was carried out under the condition of GHSV 2,000 using 2% butane / air mixed gas. The results of analyzing the product are shown in Table 1. The reaction results are compared at the temperature at which the maximum yield of maleic anhydride is obtained.

実施例5及び比較例2 触媒−1及び比較触媒−1を夫々実施例−1で用いた
ものと同じ反応器に充填し、95%のブタン変換率を維持
するように温度を調節しながら600hrのライフテストを
行なつた以外は実施例1と同様の反応条件で反応を行な
つた。
Example 5 and Comparative Example 2 Catalyst-1 and Comparative Catalyst-1 were charged into the same reactors used in Example-1, respectively, and 600 hours while controlling the temperature to maintain 95% butane conversion. The reaction was performed under the same reaction conditions as in Example 1 except that the life test of Example 1 was performed.

反応結果を表−1に示す。 The reaction results are shown in Table 1.

表−1から明らかなように、実施例1〜5においては
触媒活性が高く、比較例1及び2に比して同一条件で10
〜20℃も低温で反応させることができるため、安全性向
上に極めて効果的であるほか、目的とする無水マレイン
酸の収率が高いことが明らかである。
As is clear from Table 1, in Examples 1 to 5, the catalytic activity was high, and compared with Comparative Examples 1 and 2, 10
Since the reaction can be carried out at a low temperature of up to -20 ° C, it is very effective in improving safety and it is clear that the target maleic anhydride yield is high.

実施例−6及び比較例−3 触媒−1及び比較触媒−1と同一の組成を有する流動
床触媒を以下のように調製した。
Example-6 and Comparative Example-3 A fluidized bed catalyst having the same composition as Catalyst-1 and Comparative Catalyst-1 was prepared as follows.

前記触媒の製造例−1の(A)で製造した結晶性前駆
体の噴霧乾燥品粉体をロータリーキルンを使用し、8%
酸素濃度に希釈した空気気流下に焼成し、表−Bに示す
X線回折ピークを示す結晶性酸化物8.95kgを製造した。
また前記触媒の製造例−1の(C)と同様の工程で酸化
物濃度43.9%のリン酸バナジル溶液22.3kgを調製した。
得られた結晶性酸化物及びリン酸バナジル溶液と、20%
のシリカゾル31.2kgとを混合し、更に0.6kgの水に溶解
した塩化インジウム0.5kg及び1.7kgの水に溶解した酢酸
ニツケル0.4kgを添加し、湿式粉砕機で充分混合粉砕し
た。このスラリーを噴霧乾燥機で噴霧し、平均粒子径65
μmの乾燥粉体を得た後、キルンで焼成して流動床触媒
(触媒−5)を調製した。
Using a rotary kiln, the spray-dried powder of the crystalline precursor prepared in (A) of Production Example-1 of the above catalyst was 8%.
Firing was performed under an air flow diluted with oxygen concentration to produce 8.95 kg of a crystalline oxide having the X-ray diffraction peak shown in Table-B.
In addition, 22.3 kg of a vanadyl phosphate solution having an oxide concentration of 43.9% was prepared in the same step as in (C) of Production Example-1 of the catalyst.
20% with the obtained crystalline oxide and vanadyl phosphate solution
Was mixed with 31.2 kg of silica sol, and 0.5 kg of indium chloride dissolved in 0.6 kg of water and 0.4 kg of nickel acetate dissolved in 1.7 kg of water were added, and the mixture was sufficiently mixed and pulverized by a wet pulverizer. This slurry was sprayed with a spray dryer to give an average particle size of 65
After obtaining a dry powder of μm, it was calcined in a kiln to prepare a fluidized bed catalyst (catalyst-5).

また、修飾成分を添加しなかつた以外は触媒−5と同
様にして比較触媒−2の流動床触媒を調製した。なお、
上記キルンでの焼成条件は350℃での空気気流下での焼
成及び600℃での窒素気流下での焼成の二段階で実施し
た。
A fluidized bed catalyst of Comparative Catalyst-2 was prepared in the same manner as Catalyst-5 except that the modifying component was not added. In addition,
The firing conditions in the above kiln were two steps: firing at 350 ° C. in an air stream and firing at 600 ° C. in a nitrogen stream.

これらの触媒25gを用い、夫々硬質ガラス製の小型流
動床反応器でn−ブタンの酸化反応を行なつた。ブタン
濃度2%、GHSV700での反応結果は次のとおりであつ
た。
Using 25 g of these catalysts, the oxidation reaction of n-butane was carried out in a small fluidized bed reactor made of hard glass. The reaction results for butane concentration 2% and GHSV700 are as follows.

〔発明の効果〕 本発明に従い、高活性かつ高選択性の触媒を使用して
炭素数4の炭化水素の気相酸化により無水マレイン酸を
製造することができる。
[Effect of the Invention] According to the present invention, maleic anhydride can be produced by gas phase oxidation of a hydrocarbon having 4 carbon atoms using a highly active and highly selective catalyst.

特に、高い反応熱の制御に適した流動床反応において
性能を一層向上させることができる。
In particular, the performance can be further improved in a fluidized bed reaction suitable for controlling high reaction heat.

本発明により反応温度の低下が達成され、経済性の向
上と爆発の危険性の減少がもたらされる。
The present invention achieves a lower reaction temperature, resulting in improved economy and reduced risk of explosion.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭素数4の炭化水素を気相酸化して無水マ
レイン酸を製造するに際し、反応系中に活性成分が主と
してバナジウム、リン及び酸素からなり、かつその少な
くとも一部がピロリン酸ジバナジル((VO)2P2O7)の構
造を有する複合酸化物であって、更に該複合酸化物に活
性修飾成分としてインジウム並びにニッケル、コバ
ルト及び銅からなる群から選ばれる一種以上の元素を添
加してなる触媒を存在させることを特徴とする無水マレ
イン酸の製造法。
1. When producing a maleic anhydride by vapor-phase oxidizing a hydrocarbon having 4 carbon atoms, the active component mainly consists of vanadium, phosphorus and oxygen in the reaction system, and at least a part thereof is divanadyl pyrophosphate. A composite oxide having a structure of ((VO) 2 P 2 O 7 ), further comprising one or more elements selected from the group consisting of indium, nickel, cobalt and copper as an active modifying component in the composite oxide. A method for producing maleic anhydride, characterized by comprising the presence of a catalyst as described above.
【請求項2】特許請求の範囲第1項に記載の無水マレイ
ン酸の製造法において、活性修飾成分がインジウム及び
ニッケルから構成されることを特徴とする方法。
2. A method for producing maleic anhydride according to claim 1, wherein the active modifying component is composed of indium and nickel.
JP61290165A 1986-12-05 1986-12-05 Method for producing maleic anhydride Expired - Fee Related JPH0819115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61290165A JPH0819115B2 (en) 1986-12-05 1986-12-05 Method for producing maleic anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61290165A JPH0819115B2 (en) 1986-12-05 1986-12-05 Method for producing maleic anhydride

Publications (2)

Publication Number Publication Date
JPS63141977A JPS63141977A (en) 1988-06-14
JPH0819115B2 true JPH0819115B2 (en) 1996-02-28

Family

ID=17752596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61290165A Expired - Fee Related JPH0819115B2 (en) 1986-12-05 1986-12-05 Method for producing maleic anhydride

Country Status (1)

Country Link
JP (1) JPH0819115B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3603331B2 (en) * 1994-06-30 2004-12-22 住友化学株式会社 Method for producing oxygenated compound using C4-LPG

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151116A (en) * 1977-08-05 1979-04-24 Halcon Research And Development Corporation Preparation of maleic anhydride

Also Published As

Publication number Publication date
JPS63141977A (en) 1988-06-14

Similar Documents

Publication Publication Date Title
US4056487A (en) Vanadium phosphorus oxygen oxidation catalysts useful for preparing anhydrides from alkanes
US4668652A (en) Catalyst for oxidation reactions and process for its production
EP0799795B1 (en) Vanadium-phosphorus oxide, method for production thereof, catalyst for vapor phase oxidation formed of the oxide, and method for partial vapor phase oxidation of hydrocarbon
JPH0532323B2 (en)
JPH08141401A (en) Catalyst for production of nitrile
JPH02192410A (en) Production of vanadium-phosphorus-based crystalline oxide and catalyst containing same
JPS6352612B2 (en)
US4000176A (en) Process for simultaneously producing methacrylo-nitrile and butadiene by vapor-phase catalytic oxidation of mixed butenes
US4105586A (en) Oxidation catalysts and process for preparing anhydride from alkanes
JP3974651B2 (en) Improved method for calcination / activation of V / P / O catalyst
JPH0819115B2 (en) Method for producing maleic anhydride
JP3502526B2 (en) Vanadium-phosphorus oxide, method for producing the same, catalyst for gas phase oxidation comprising the oxide, and method for partial gas phase oxidation of hydrocarbons
JP2008037693A (en) Oxide containing vanadium, oxide having vanadium and phosphorus, catalyst, and manufacturing method of maleic anhydride
EP0655951B1 (en) Static condition process for the preparation of phosphorus/vanadium oxidation catalyst
GB2090155A (en) Process for producing phosphorous-vanadium-oxygen catalysts
US4560674A (en) Catalysts for the production of maleic anhydride
JPH0637484B2 (en) Method for producing maleic anhydride
JPH031059B2 (en)
JPH0249781B2 (en)
JPS6116508B2 (en)
US4202826A (en) Process for preparing anhydride from alkanes
US4515973A (en) Process for producing maleic anhydride
JP2778055B2 (en) Method for producing vanadium-phosphorus crystalline oxide or catalyst containing same
JPH07227545A (en) Production of precursor of phosphorus-vanadium oxide catalyst
JPH01201016A (en) Production of vanadium-phosphorus-based crystalline oxide or catalyst containing same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees