JPH08189342A - Exhaust gas purifying device - Google Patents

Exhaust gas purifying device

Info

Publication number
JPH08189342A
JPH08189342A JP7017526A JP1752695A JPH08189342A JP H08189342 A JPH08189342 A JP H08189342A JP 7017526 A JP7017526 A JP 7017526A JP 1752695 A JP1752695 A JP 1752695A JP H08189342 A JPH08189342 A JP H08189342A
Authority
JP
Japan
Prior art keywords
exhaust gas
layer
adsorbent
exhaust
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7017526A
Other languages
Japanese (ja)
Inventor
Kenji Kanehara
賢治 金原
Jun Yamada
潤 山田
Shingo Morishima
信悟 森島
Toru Yoshinaga
融 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP7017526A priority Critical patent/JPH08189342A/en
Priority to US08/574,044 priority patent/US5701736A/en
Publication of JPH08189342A publication Critical patent/JPH08189342A/en
Priority to US08/937,741 priority patent/US5873242A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE: To prevent discharge of an unpurified HC, and to prevent thermal deterioration of a HC absorbing material due to high temperature by delaying temperature rising speed of HC absorbing material so as to improve absorbing efficiency. CONSTITUTION: Absorbing material layers 4a-4d for absorbing an unburned component, which is included in exist gas, are fixed to a wall surface, which are arranged opposite to exhaust ports 1a-1d, inside of an exhaust manifold 2 communicated with an exhaust ports 1a-1d of an engine 1, and a three way catalyst 5 is arranged in an exhaust passage 3 in the downstream of the exhaust manifold 2. The front surface of the absorbing material layer 4a is formed with a heat radiating layer 6 formed of a honeycomb structure layer so as to improve the heat radiating property, and temperature of the exhaust of be led into the absorbing material layer 4a is lowered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガソリンエンジン等の
内燃機関の冷間始動時に比較的多量に排出される炭化水
素(HC)を無害化するための排気ガス浄化装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying device for detoxifying a relatively large amount of hydrocarbons (HC) discharged during cold start of an internal combustion engine such as a gasoline engine.

【0002】[0002]

【従来の技術】従来より、エンジンの排気ガス中に含ま
れる未燃成分、例えば炭化水素(HC)を、排気通路途
中に配した触媒によって浄化することが行なわれてい
る。ところが、上記触媒はエンジン始動時、一定の浄化
温度に達するまでは十分に機能せず、その間にHCが浄
化されずに排出させるという問題があった。このため、
エンジンの排気ポートに対向する排気マニホールド壁面
に沿ってゼオライト系のHC吸着材を設け、エンジン始
動直後はHCを上記吸着材にて捕捉し、吸着材温度の上
昇によって脱離を開始するHCを、下流の排気通路内に
配した触媒によって浄化する排気ガス浄化装置がある
(特開平6−212951号公報)。
2. Description of the Related Art Conventionally, unburned components, such as hydrocarbons (HC), contained in the exhaust gas of an engine have been purified by a catalyst arranged in the exhaust passage. However, there is a problem that the above catalyst does not function sufficiently at the time of starting the engine until it reaches a certain purification temperature, during which HC is discharged without being purified. For this reason,
A zeolite-based HC adsorbent is provided along the wall surface of the exhaust manifold facing the exhaust port of the engine. Immediately after starting the engine, HC is captured by the adsorbent, and HC that starts desorption due to a rise in adsorbent temperature is There is an exhaust gas purification device that purifies by a catalyst arranged in a downstream exhaust passage (Japanese Patent Laid-Open No. 6-212951).

【0003】エンジン始動直後は燃焼室の温度が低いた
め、排出されるHCは比較的粒径が大きく、比重も大き
いものとなる。従って、HCを多量に含む排気ガスが排
気ポートより排出されると、ガス成分のほとんどは排気
の流れに乗って下流の排気通路へ流出するが、比重の大
きいHC粒子は、慣性力によって少量の排気ガスととも
に対向するHC吸着材に導入され、捕捉される。
Since the temperature of the combustion chamber is low immediately after the engine is started, the discharged HC has a relatively large particle size and a large specific gravity. Therefore, when the exhaust gas containing a large amount of HC is discharged from the exhaust port, most of the gas components ride on the flow of the exhaust gas and flow out to the exhaust passage downstream, but the HC particles having a large specific gravity are small in amount due to the inertial force. It is introduced into the opposing HC adsorbent together with the exhaust gas and captured.

【0004】[0004]

【発明が解決しようとする課題】上記構成では、排気ガ
スの全量が吸着材に導入されないため、吸着材の温度上
昇が比較的遅く、その間に下流の触媒を昇温させること
ができる。しかしながら、導入される排気量が吸着材の
各部で異なるため、導入量の多い吸着材中心部等で局所
的に温度が上昇し、あるいはHCの飽和吸着量に達し
て、早期にHCの脱離を開始するおそれがあった。この
ため、吸着材の昇温速度を極力小さくして吸着材をHC
の脱離温度以下(一般に100℃程度)に維持し、吸着
効率を向上させてHCの保持能力を高めることが望まれ
ている。また、ゼオライト系のHC吸着材は耐熱性がや
や低く、排気ガスが高温となる高回転、高負荷運転時
に、過度に温度上昇して熱劣化するおそれがあった。
In the above-mentioned structure, since the exhaust gas is not entirely introduced into the adsorbent, the temperature rise of the adsorbent is relatively slow, and the temperature of the downstream catalyst can be raised during that time. However, since the amount of exhaust gas introduced is different in each part of the adsorbent, the temperature locally rises in the central part of the adsorbent, etc. where the amount of adsorbent is large, or the saturated adsorption amount of HC is reached, and desorption of HC occurs early. Could start. For this reason, the temperature rise rate of the adsorbent is minimized and the adsorbent is
It is desired to maintain the temperature below the desorption temperature (generally about 100 ° C.) to improve the adsorption efficiency and enhance the HC retention capacity. Further, the zeolite-based HC adsorbent has a slightly low heat resistance, and there is a risk of excessive temperature rise and thermal deterioration during high rotation and high load operation in which the exhaust gas has a high temperature.

【0005】さらに、上記構成では、吸着材の後端面が
排気マニホールド壁で閉鎖されており、排気ガスによっ
て生じる圧力波が吸着材後端で反射するため、排気ガス
が吸着材後部まで流入されず、吸着材の利用効率を低く
する要因となっていた。
Further, in the above construction, since the rear end face of the adsorbent is closed by the exhaust manifold wall and the pressure wave generated by the exhaust gas is reflected at the rear end of the adsorbent, the exhaust gas does not flow into the rear part of the adsorbent. However, it has been a factor of lowering the utilization efficiency of the adsorbent.

【0006】しかして、本発明は、排気ポートに対向し
てHC吸着材を設けた排気ガス浄化装置において、HC
吸着材の昇温速度を遅くし、吸着効率を向上させて、H
Cが未浄化のまま排出されることを防止すること、およ
びHC吸着材が高温により熱劣化するのを防止すること
を目的とするものである。
Therefore, according to the present invention, in the exhaust gas purifying apparatus provided with the HC adsorbent facing the exhaust port,
By lowering the temperature rise rate of the adsorbent and improving the adsorption efficiency,
It is intended to prevent C from being discharged unpurified and to prevent the HC adsorbent from being thermally deteriorated due to high temperature.

【0007】[0007]

【課題を解決するための手段】本発明は上記実情に鑑み
なされたもので、図1(A)(B)に示すように、内燃
機関1の排気ポート1a〜1dに連通する排気マニホー
ルド2内の、上記排気ポート1a〜1dに対向する壁面
に、排気ガス中に含まれる未燃成分を吸着する吸着材層
4a〜4dを固定し、上記排気マニホールド2下流の排
気通路3内に、排気ガス浄化用の触媒5を配設した排気
ガス浄化装置において、上記吸着材層4a〜4dの前面
に、ハニカム構造体層よりなる放熱層6を設けたもので
ある(請求項1)。
The present invention has been made in view of the above circumstances, and as shown in FIGS. 1A and 1B, inside an exhaust manifold 2 communicating with exhaust ports 1a to 1d of an internal combustion engine 1. The adsorbent layers 4a to 4d for adsorbing unburned components contained in the exhaust gas are fixed to the wall surfaces facing the exhaust ports 1a to 1d, and the exhaust gas is introduced into the exhaust passage 3 downstream of the exhaust manifold 2. An exhaust gas purifying device having a purifying catalyst 5 is provided with a heat dissipation layer 6 made of a honeycomb structure layer in front of the adsorbent layers 4a to 4d (claim 1).

【0008】具体的には(図1(B))、上記放熱層6
はこれを構成するハニカム構造体の少なくとも一部に排
気ガス中の未燃成分を浄化する触媒成分を担持して触媒
層61、62となしてある(請求項2)。さらに、上記
放熱層6には、これを構成するハニカム構造体壁に、上
記排気ポート1aから導入される排気ガスをより外方の
セルへ導く切り起こし64が形成してある(請求項
3)。あるいは、上記吸着材層4aから脱離して放熱層
6内に流入する未燃成分をより内方のセルへ導く切り起
こし65を形成することもできる(請求項4)。また、
上記放熱層6と上記吸着材層4aとを間隙をおいて配
し、この間隙で空気層よりなる他の放熱層7を設けてあ
る(請求項5)。
Specifically (FIG. 1B), the heat dissipation layer 6 is
The catalyst layers 61 and 62 are formed by carrying a catalyst component for purifying unburned components in the exhaust gas on at least a part of the honeycomb structure forming the catalyst layers (claim 2). Further, the heat dissipation layer 6 is provided with cut-and-raised parts 64 for guiding the exhaust gas introduced from the exhaust port 1a to the outer cells on the wall of the honeycomb structure constituting the heat dissipation layer 6 (claim 3). . Alternatively, a cut-and-raised part 65 may be formed to guide the unburned component which is desorbed from the adsorbent layer 4a and flows into the heat dissipation layer 6 to the inner cell (claim 4). Also,
The heat dissipation layer 6 and the adsorbent layer 4a are arranged with a gap, and another heat dissipation layer 7 made of an air layer is provided in this gap (claim 5).

【0009】上記吸着材層4a〜4dを内燃機関の各気
筒に対応して複数設けた場合には、それぞれを各気筒に
連通する各排気ポート1a〜1dに対向して配し、これ
ら吸着材層4a〜4dの後端部間を連通する流路8a〜
8dを設ける(請求項6)。さらに、上記流路8dの一
端を内燃機関の吸気マニホールド11に接続するととも
に、上記流路8d途中に、上記流路8a〜8dより上記
吸気マニホールド11に導入される排気量を制御する制
御弁9を設けることもできる(請求項7)。
When a plurality of the adsorbent layers 4a to 4d are provided corresponding to each cylinder of the internal combustion engine, the adsorbent layers 4a to 4d are arranged so as to oppose the exhaust ports 1a to 1d communicating with the cylinders. Channels 8a that connect the rear ends of the layers 4a to 4d
8d is provided (Claim 6). Further, one end of the flow passage 8d is connected to the intake manifold 11 of the internal combustion engine, and a control valve 9 for controlling the amount of exhaust gas introduced into the intake manifold 11 from the flow passages 8a to 8d in the middle of the flow passage 8d. Can be provided (Claim 7).

【0010】[0010]

【作用】エンジン始動時に排気ポート1aから排出され
るHC粒子は、ガス成分に比し比重が大きいため慣性力
によって直進し、少量の排気ガスとともに対向する吸着
材層4a方向へ向かう。請求項1の構成では、上記吸着
材層4aの前面に放熱層6を設けたので、排気ガスはこ
れら放熱層6を流通する間にその熱を放出し、温度の低
下した排気ガスが上記吸着材層4aに導入される。従っ
て、上記吸着材層4aの昇温が抑制され、HC吸着量が
増加するとともに、HCの脱離開始を遅くすることがで
きる。また、高回転、高負荷時のように排気ガスから供
給される熱量が多い場合でも、吸着材層4aへの伝熱量
を大幅に低減可能であるので吸着材層4aの熱劣化を防
止する。請求項5のように、放熱層6と吸着材層4aの
間に他の放熱層7を設けて2層構造とすれば、放熱性が
さらに向上する。
Since the HC particles discharged from the exhaust port 1a at the time of engine start-up have a larger specific gravity than the gas components, they travel straight due to inertial force, and head toward the adsorbent layer 4a facing with the small amount of exhaust gas. According to the configuration of claim 1, since the heat dissipation layer 6 is provided on the front surface of the adsorbent layer 4a, the exhaust gas releases its heat while flowing through the heat dissipation layer 6, and the exhaust gas having a lowered temperature absorbs the heat. It is introduced into the material layer 4a. Therefore, the temperature rise of the adsorbent layer 4a is suppressed, the amount of adsorbed HC increases, and the start of desorption of HC can be delayed. Further, even when the amount of heat supplied from the exhaust gas is large, such as during high rotation and high load, the amount of heat transferred to the adsorbent layer 4a can be significantly reduced, and therefore thermal deterioration of the adsorbent layer 4a is prevented. When the other heat dissipation layer 7 is provided between the heat dissipation layer 6 and the adsorbent layer 4a to form a two-layer structure, the heat dissipation is further improved.

【0011】請求項2の構成のように、ハニカム構造体
よりなる放熱層6の一部に触媒層61、62を設けた構
成では、放熱機能に加えて触媒機能が付与され、吸着材
層4aより脱離するHCを、温度上昇の早い排気マニホ
ールド2内で浄化することができる。請求項3のよう
に、放熱層6を構成するハニカム構造体壁に切り起こし
64を設けると、排気が外方のセルへ向かって流れるの
で、吸着材層4aに流入する排気ガス速度が均一化され
る。従って、吸着材層4aの全面より排気が均一に導入
されるので吸着材層4aの利用効率が向上し、吸着量を
増大させる。さらに、請求項4において、上記切り起こ
し64と逆向きの切り起こし65を設けた場合には、吸
着材層4a側から放熱層6内へ流入する流れが、放熱層
6の中心に向かう。すなわち、吸着材層4aから脱離す
るHC粒子が、触媒層61の温度の上昇しやすい中心部
に向かうので、HC浄化効率がさらに向上する。
According to the second aspect of the present invention, in the structure in which the catalyst layers 61 and 62 are provided in a part of the heat dissipation layer 6 of the honeycomb structure, the catalyst function is provided in addition to the heat dissipation function, and the adsorbent layer 4a is provided. The more desorbed HC can be purified in the exhaust manifold 2 whose temperature rises quickly. When the honeycomb structure walls forming the heat dissipation layer 6 are provided with the cut-and-raised parts 64, the exhaust gas flows toward the outer cells, so that the exhaust gas velocity flowing into the adsorbent layer 4a becomes uniform. To be done. Therefore, since the exhaust gas is uniformly introduced from the entire surface of the adsorbent layer 4a, the utilization efficiency of the adsorbent layer 4a is improved and the adsorption amount is increased. Further, in the present invention, when the cut-and-raised parts 64 are provided in the opposite direction to the cut-and-raised parts 64, the flow flowing into the heat-dissipating layer 6 from the adsorbent layer 4a side is directed to the center of the heat-dissipating layer 6. That is, since the HC particles desorbed from the adsorbent layer 4a head toward the central portion where the temperature of the catalyst layer 61 is likely to rise, the HC purification efficiency is further improved.

【0012】また、請求項6の構成では、各吸着材層4
a〜4dが流路8a〜8dにて連通しており、吸着材層
4a内を流通した排気が流路8a〜8dを介して他の吸
着材層へ流出可能となる。この排気の流れにより、吸着
材層4aの後端部まで排気を導入することが可能とな
り、吸着材の利用効率が向上する。さらに、請求項7の
ように、この流路8を吸気マニホールド11に接続した
場合、制御弁9を開弁すると、吸着材層4a〜4dより
吸気マニホールド11に至る排気の流れが生じ、吸着材
層4a〜4dが加熱されてHCの脱離が促進される。ま
た、脱離したHCは吸気マニホールド11より燃焼室に
送られ、燃焼除去される。
In the structure of claim 6, each adsorbent layer 4 is
The a to 4d are in communication with the flow paths 8a to 8d, and the exhaust gas flowing through the adsorbent layer 4a can flow out to the other adsorbent layers via the flow paths 8a to 8d. Due to this flow of the exhaust gas, the exhaust gas can be introduced to the rear end portion of the adsorbent layer 4a, and the utilization efficiency of the adsorbent is improved. Further, when the flow path 8 is connected to the intake manifold 11 as in claim 7, when the control valve 9 is opened, a flow of exhaust gas from the adsorbent layers 4a to 4d to the intake manifold 11 is generated, and the adsorbent is generated. The layers 4a to 4d are heated to promote desorption of HC. The desorbed HC is sent from the intake manifold 11 to the combustion chamber where it is burned and removed.

【0013】[0013]

【実施例】以下に本発明の一実施例を図面に基づいて説
明する。図1(A)において、4気筒のガソリンエンジ
ン1は4つの排気ポート1a〜1dを有し、これら排気
ポート1a〜1dは排気マニホールド2の側面部に連結
される。上記排気ポート1a〜1dより排出される排気
ガスは、排気マニホールド2で集合せしめられ、その下
面に連結した排気管3より排出される。上記排気管3に
は、途中、大径部を設けてあって、その内部に3元触媒
5が配設してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1A, a 4-cylinder gasoline engine 1 has four exhaust ports 1a to 1d, and these exhaust ports 1a to 1d are connected to a side surface portion of an exhaust manifold 2. The exhaust gas discharged from the exhaust ports 1a to 1d is collected in the exhaust manifold 2 and discharged from the exhaust pipe 3 connected to the lower surface thereof. The exhaust pipe 3 is provided with a large-diameter part in the middle thereof, and the three-way catalyst 5 is arranged therein.

【0014】上記排気マニホールド2内の、上記4つの
排気ポート1a〜1dに対向する位置にはHC吸着材層
4a〜4dがそれぞれ配設してある。図1(B)に吸着
材層4aの詳細を示す。なお、他の吸着材層4b〜4d
の構造も同様であるので、ここでは説明を省略する。図
において、上記吸着材層4aは、上記排気マニホールド
2壁の一部をなす略コ字断面の容器体41の右半部内に
収納されており、例えば金属箔やアルミナ等のセラミッ
クスによって構成されたハニカム構造の担体に、ゼオラ
イト等の吸着剤をコーティングしてなる。
HC adsorbent layers 4a to 4d are arranged in the exhaust manifold 2 at positions facing the four exhaust ports 1a to 1d, respectively. FIG. 1B shows the details of the adsorbent layer 4a. The other adsorbent layers 4b to 4d
Since the structure is the same, the description is omitted here. In the figure, the adsorbent layer 4a is housed in the right half portion of a container body 41 having a substantially U-shaped cross section and forming a part of the wall of the exhaust manifold 2, and is made of, for example, metal foil or ceramics such as alumina. A honeycomb structure carrier is coated with an adsorbent such as zeolite.

【0015】上記容器体41内の左半部内には(排気ポ
ート1a側)、第1の放熱層6が配設されている。上記
第1の放熱層6はハニカム構造の担体よりなり、例えば
図2(A)に示すように、平板6aと波板6bを渦巻き
状に積層して構成される。そして、外周が接する上記容
器体41壁より放熱することにより、上記吸着材層4a
に導入される排気温度を低減させる作用を有する。ま
た、上記第1の放熱層6は、上流側端面および下流側端
面において、上記担体にパラジウム、プラチナ等の触媒
成分を担持してあり、触媒層61、62として機能する
ようになしてある(図1(B))。しかして、上記吸着
材層4aより脱離してくるHCを、下流の触媒5より早
く浄化温度に達する上記触媒層61、62にて浄化する
ことができる。
A first heat dissipation layer 6 is arranged in the left half of the container body 41 (on the side of the exhaust port 1a). The first heat dissipation layer 6 is made of a carrier having a honeycomb structure, and is formed by spirally laminating a flat plate 6a and a corrugated plate 6b, for example, as shown in FIG. Then, heat is radiated from the wall of the container body 41 with which the outer periphery is in contact, so that the adsorbent layer 4a is formed.
It has the effect of reducing the temperature of the exhaust gas introduced into the. Further, the first heat dissipation layer 6 has catalyst components such as palladium and platinum supported on the carrier at the upstream end face and the downstream end face, and functions as the catalyst layers 61 and 62 ( FIG. 1B). Thus, the HC desorbed from the adsorbent layer 4a can be purified by the catalyst layers 61 and 62 that reach the purification temperature earlier than the downstream catalyst 5.

【0016】上記第1の放熱層6の中間部は、排気ガス
の流れを外方に導く拡散層63として機能する。すなわ
ち、図2(A)(B)に示すように、上流側の触媒層6
1に続く平板6a面には、上流に向けて開口し突出部が
中心方向を向く、多数の切り起こし64が形成してあっ
て、排気ポート1aより導入される排気ガスの一部が上
記切り起こし64に案内されて外方に流れを変えること
により、排気速度が均一化する。また、拡散層63に
は、下流側の触媒層62よりに、下流に向けて開口し突
出部が外方を向く、多数の切り起こし65が形成してあ
って(図1(B))、上記吸着材層4a側から脱離して
くるHCの流れが、上記触媒層61の温度の高い中心部
に集中するようになしてある。
The middle portion of the first heat dissipation layer 6 functions as a diffusion layer 63 that guides the flow of exhaust gas to the outside. That is, as shown in FIGS. 2A and 2B, the upstream catalyst layer 6
A large number of cut-and-raised parts 64 are formed on the surface of the flat plate 6a subsequent to 1 with the projecting portion facing the center, and a part of the exhaust gas introduced from the exhaust port 1a is cut. The exhaust velocity is made uniform by changing the flow outward by being guided by the raising 64. Further, in the diffusion layer 63, a large number of cut-and-raised parts 65 are formed, which are open toward the downstream side and the protrusions are directed outward, as compared with the catalyst layer 62 on the downstream side (FIG. 1 (B)). The flow of the HC desorbed from the adsorbent layer 4a side is concentrated in the high temperature central portion of the catalyst layer 61.

【0017】上記吸着材層4aと上記第1の放熱層6の
間には、空気層よりなる第2の放熱層7が設けてあり、
放熱により上記吸着材層4aに導入される排気ガス温度
をさらに低下させるようになしてある。ここで、上記容
器体41は中間部に上記第1の放熱層6の位置決め用の
段差411を形成してあり、上記第1の放熱層6の後端
面が上記段差411に当接して、上記第2の放熱層7の
幅を一定とするようにしてある。なお、この第2の放熱
層7は、触媒成分または吸着剤を担持していないハニカ
ム構造体で構成してもよい。
A second heat dissipation layer 7 made of an air layer is provided between the adsorbent layer 4a and the first heat dissipation layer 6.
The temperature of the exhaust gas introduced into the adsorbent layer 4a is further lowered by heat dissipation. Here, the container body 41 has a step 411 for positioning the first heat dissipation layer 6 formed in an intermediate portion thereof, and the rear end surface of the first heat dissipation layer 6 abuts on the step 411, The width of the second heat dissipation layer 7 is made constant. The second heat dissipation layer 7 may be composed of a honeycomb structure that does not carry a catalyst component or an adsorbent.

【0018】上記吸着材層4aには、後端部において各
セル間を連通するスリット42が設けてある(図1
(B))。また、上記スリット42形成位置の吸着材層
4a外周に空隙43を形成する一方、上記容器体41の
後部側壁に該空隙43に連通する連通管8aを連結し
て、隣合う吸着材層4bと連通せしめてある(図1
(A))。吸着材層4bと吸着材層4c、吸着材層4c
と吸着材層4dもそれぞれ連通管8b、連通管8cにて
連通しており、さらに、上記吸着材層4dから延びる連
通管8dの他端は、EGR制御弁9を介して吸気マニホ
ールド11壁に開口せしめてある。かくして上記吸着材
層4a〜4d間を連通し、吸気マニホールド11に至る
流路が形成される。上記EGR制御弁9は制御回路91
および駆動弁92にて駆動され、公知のEGR(排気ガ
ス再循環)制御を行なうことができるようになしてあ
る。なお、上記空隙43は上記連通管8aに流入する排
気の流通抵抗を小さくするために形成される。
The adsorbent layer 4a is provided with slits 42 at the rear end thereof for communicating the cells (FIG. 1).
(B)). A void 43 is formed on the outer circumference of the adsorbent layer 4a at the position where the slit 42 is formed, and a communication pipe 8a communicating with the void 43 is connected to the rear side wall of the container body 41 to form an adsorbent layer 4b adjacent to the adsorbent layer 4b. It is in communication (Fig. 1
(A)). Adsorbent layer 4b, adsorbent layer 4c, adsorbent layer 4c
The adsorbent layer 4d and the adsorbent layer 4d are also communicated with each other through the communicating pipe 8b and the communicating pipe 8c, respectively, and the other end of the communicating pipe 8d extending from the adsorbent layer 4d is connected to the intake manifold 11 wall via the EGR control valve 9. It has been opened. In this way, a flow path that connects the adsorbent layers 4a to 4d and reaches the intake manifold 11 is formed. The EGR control valve 9 is a control circuit 91.
It is driven by the drive valve 92, and the known EGR (exhaust gas recirculation) control can be performed. The space 43 is formed to reduce the flow resistance of the exhaust gas flowing into the communication pipe 8a.

【0019】上記構成において、エンジン始動時に排出
されるHCを多量に含んだ排気ガスが、排気ポート1a
に対向する第1の放熱層6に導入されると(図1
(B))、排気ガスの一部は、拡散層63の上流側に設
けた切り起こし64より外方のセルに流入し、さらに後
流側の切り起こし65によって外方に向きを変えて流れ
る。その結果、図3に示すように、拡散層63内の流速
分布が均一化され、上記吸着材層4aの全面よりHC濃
度が均一化された排気ガスが導入されるので、吸着材層
4aの利用効率が向上する。また、排気ガスは第1の放
熱層6および第2の放熱層7を通過する間に冷却される
ので、HC粒子は吸着しやすい粒径の大きい状態を保持
したまま上記吸着材層4aに流入し、吸着効率を大きく
向上する。
In the above structure, the exhaust gas containing a large amount of HC exhausted when the engine is started is the exhaust port 1a.
When introduced into the first heat dissipation layer 6 facing (see FIG.
(B)) A part of the exhaust gas flows into the cell outside the cut-and-raised portion 64 provided on the upstream side of the diffusion layer 63, and further turns outward by the cut-and-raised portion 65 on the downstream side and flows. . As a result, as shown in FIG. 3, the flow velocity distribution in the diffusion layer 63 is made uniform, and exhaust gas having a uniform HC concentration is introduced from the entire surface of the adsorbent layer 4a. Use efficiency is improved. Further, since the exhaust gas is cooled while passing through the first heat dissipation layer 6 and the second heat dissipation layer 7, the HC particles flow into the adsorbent layer 4a while maintaining a state in which the HC particles are easily adsorbed and having a large particle size. And greatly improves the adsorption efficiency.

【0020】ここで、上記吸着材層4aは上記連通管8
aにより他の吸着材層と連通しており、従って、例えば
対向する気筒が排気行程の時、上記吸着材層4a内の圧
力が他の吸着材層より高くなると、その内部の排気ガス
は上記連通管8aを経て、隣合う吸着材層4bへ流出す
る。次いで流出したガスと同体積のガスが流入する。こ
のような排気の流れによって、従来より多くの排気ガス
が導入されるようになり、また、排気脈動によって生じ
る圧力波のはねかえりもなくなるので、排気が吸着材層
4aの後端部まで流入し、吸着材の利用効率が向上す
る。
Here, the adsorbent layer 4a is the communication pipe 8
Therefore, when the pressure in the adsorbent layer 4a becomes higher than that in the other adsorbent layer during the exhaust stroke, the exhaust gas inside the adsorbent layer is It flows out to the adsorbent layer 4b adjacent to it via the communication pipe 8a. Then, the same volume of gas as the gas that has flowed out flows in. By such a flow of exhaust gas, more exhaust gas than before can be introduced, and since the pressure wave caused by exhaust pulsation is not repelled, the exhaust gas flows into the rear end portion of the adsorbent layer 4a, The utilization efficiency of the adsorbent is improved.

【0021】エンジン始動後は、排気ガス温度が上昇す
るのに伴い、吸着材層4a温度も上昇するが、排気ガス
は、第1の放熱層6および第2の放熱層7によって冷却
されるので、図4に示すように、吸着材層4aの昇温速
度を遅くすることができる。従って、HCの脱離開始が
遅くなり、その間に三元触媒5の温度を上昇することが
できる。また、エンジンの高回転、高負荷時において
も、同様にして吸着材層4aの昇温が抑制されるので、
過度の温度上昇が防止でき、吸着材の劣化を防止でき
る。
After the engine is started, the temperature of the adsorbent layer 4a also rises as the exhaust gas temperature rises, but the exhaust gas is cooled by the first heat radiation layer 6 and the second heat radiation layer 7. As shown in FIG. 4, the temperature rising rate of the adsorbent layer 4a can be slowed down. Therefore, the start of desorption of HC is delayed, and the temperature of the three-way catalyst 5 can be increased during that time. In addition, since the temperature rise of the adsorbent layer 4a is suppressed in the same manner even at the time of high engine rotation and high load,
It is possible to prevent excessive temperature rise and prevent deterioration of the adsorbent.

【0022】吸着材層4aが一定温度に達すると、HC
が脱離を開始し、第1の放熱層6を経て下流の三元触媒
5へ向けて流れる。この時、第1の放熱層6に設けた触
媒層61、62は上記三元触媒5より温度上昇が早いの
で、HCが早期に脱離してもこれを確実に浄化すること
ができる。また、拡散層63の後流側の切り起こし65
によりHCの流れは、温度の高い触媒層61の中心に向
かうので、脱離したHCを効率よく浄化することができ
る。
When the adsorbent layer 4a reaches a certain temperature, HC
Starts desorption and flows toward the downstream three-way catalyst 5 through the first heat dissipation layer 6. At this time, the temperature of the catalyst layers 61 and 62 provided in the first heat dissipation layer 6 rises faster than that of the three-way catalyst 5, so that even if HC is desorbed early, it can be surely purified. Also, the cut-and-raised part 65 on the wake side of the diffusion layer 63
As a result, the flow of HC is directed to the center of the catalyst layer 61 having a high temperature, so that the desorbed HC can be efficiently purified.

【0023】エンジンの暖気が進行し、エンジンの運転
状態が通常のEGR条件を満たすようになったら、上記
制御回路91により駆動弁92を作動させ、EGR制御
弁9を開く。これにより、上記吸気マニホールド11と
上記吸着材層4a〜4dが導通し、排気ガスの一部は上
記吸着材層4a〜4dを通過して流れるようになる。こ
の排気ガスの流入により、吸着材層4a〜4d全体が加
熱されてHCの脱離が促進され、吸着したHCを完全に
脱離できる。脱離したHCはEGRガスの流れとともに
吸気マニホールド11に導入され、燃焼室で燃焼され
る。かくして、HCを効率よく除去することができる。
When the engine warms up and the operating condition of the engine satisfies the normal EGR condition, the drive valve 92 is operated by the control circuit 91 to open the EGR control valve 9. As a result, the intake manifold 11 and the adsorbent layers 4a to 4d are electrically connected, and a part of the exhaust gas flows through the adsorbent layers 4a to 4d. By the inflow of the exhaust gas, the entire adsorbent layers 4a to 4d are heated to promote the desorption of HC, and the adsorbed HC can be completely desorbed. The desorbed HC is introduced into the intake manifold 11 together with the EGR gas flow, and is burned in the combustion chamber. Thus, HC can be removed efficiently.

【0024】なお、高負荷時には排気ガス温度が上昇す
るが、通常、高負荷時にはEGRを行なわないので、E
GR制御弁9が閉じて排気ガスが流通しなくなり、上記
吸着材層4a〜4dの温度が過度に上昇することはな
い。また、エンジン始動時においてもEGRは行なわれ
ないので、上記吸気マニホールド11に向かうEGRガ
スの流れはなく、上記吸着材層4a〜4dに吸着された
HCは一時的に吸着材に保持される。
Although the exhaust gas temperature rises at high load, EGR is not normally performed at high load, so E
The GR control valve 9 is closed and exhaust gas does not flow, and the temperature of the adsorbent layers 4a to 4d does not rise excessively. Further, since EGR is not performed even when the engine is started, there is no EGR gas flow toward the intake manifold 11, and the HC adsorbed by the adsorbent layers 4a to 4d is temporarily retained by the adsorbent.

【0025】図5に本発明の他の実施例を示す。本実施
例では、上記容器体41後面の中央に筒状取付け部44
を設けて、該取付け部44に、吸着材層4aと隣合う吸
着材層4bを連通する連通管8aが連結されるようにし
てある。他の構成は上記実施例と同じである。このよう
な構成とすることで、排気を吸着材層4aのより後方ま
で導入することができる。また、連通管8aの取付け性
が向上し、通気抵抗を低減する吸着材層4a外周の空隙
43(図1(B)参照)が不要となるので吸着材層4a
の加工が不要で製作が容易にできる等の利点がある。
FIG. 5 shows another embodiment of the present invention. In this embodiment, the cylindrical mounting portion 44 is provided at the center of the rear surface of the container body 41.
The attachment pipe 44 is provided with a communication pipe 8a for connecting the adsorbent layer 4a and the adsorbent layer 4b adjacent thereto. The other structure is the same as that of the above embodiment. With such a structure, the exhaust gas can be introduced to the rear side of the adsorbent layer 4a. Further, the attachment property of the communication pipe 8a is improved, and the air gap 43 (see FIG. 1B) on the outer periphery of the adsorbent layer 4a for reducing the air flow resistance is not required.
There is an advantage that the process is unnecessary and the manufacturing is easy.

【0026】[0026]

【発明の効果】以上のように、本発明によれば、HC吸
着材の昇温速度を遅くし、吸着効率を大幅に向上してH
Cの早期脱離を防止することができる。また、エンジン
高負荷時に吸着材が熱劣化するのを防止することができ
る。
As described above, according to the present invention, the rate of temperature rise of the HC adsorbent is slowed down, and the adsorption efficiency is significantly improved, so that H
Premature detachment of C can be prevented. Further, it is possible to prevent the adsorbent from being thermally deteriorated when the engine load is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(A)は本発明の一実施例を示す排気ガス
浄化装置の部分断面平面図、図1(B)は図1(A)の
部分拡大断面図である。
1 (A) is a partial cross-sectional plan view of an exhaust gas purifying apparatus showing an embodiment of the present invention, and FIG. 1 (B) is a partially enlarged cross-sectional view of FIG. 1 (A).

【図2】図2(A)は吸着材層の分解斜視図、図2
(B)は吸着材層の部分拡大斜視図である。
2A is an exploded perspective view of an adsorbent layer, FIG.
(B) is a partially enlarged perspective view of the adsorbent layer.

【図3】本発明の作用を説明するための排気ガス浄化装
置の部分拡大断面図である。
FIG. 3 is a partially enlarged cross-sectional view of an exhaust gas purification device for explaining the operation of the present invention.

【図4】本発明装置と従来装置のHC吸着材層の昇温特
性を示す図である。
FIG. 4 is a diagram showing the temperature rise characteristics of the HC adsorbent layer of the device of the present invention and the conventional device.

【図5】本発明の他の実施例を示す排気ガス浄化装置の
部分拡大断面図である。
FIG. 5 is a partially enlarged cross-sectional view of an exhaust gas purification device showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 エンジン(内燃機関) 2 排気マニホールド 1a〜1d 排気ポート 3 排気管(排気通路) 4a〜4d 吸着材層 41 容器体 42 スリット 43 空隙 5 3元触媒 6 第1の放熱層(放熱層) 61、62 触媒層 63 拡散層 64、65 切り起こし 7 第2の放熱層(他の放熱層) 8a〜8d 連通管(流路) 9 EGR制御弁 91 制御回路 92 駆動弁 DESCRIPTION OF SYMBOLS 1 engine (internal combustion engine) 2 exhaust manifold 1a-1d exhaust port 3 exhaust pipe (exhaust passage) 4a-4d adsorbent layer 41 container 42 slit 43 void 5 three-way catalyst 6 first heat dissipation layer (heat dissipation layer) 61, 62 catalyst layer 63 diffusion layers 64, 65 cut and raised 7 second heat dissipation layer (other heat dissipation layer) 8a to 8d communication pipe (flow path) 9 EGR control valve 91 control circuit 92 drive valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉永 融 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Yoshinaga 14 Iwatani, Shimohakaku-cho, Nishio-shi, Aichi Japan Auto Parts Research Institute, Inc.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気ポートに連通する排気マ
ニホールド内の、上記排気ポートに対向する壁面に、排
気ガス中に含まれる未燃成分を吸着する吸着材層を設
け、上記排気マニホールド下流の排気通路内に、排気ガ
ス浄化用の触媒を配設した排気ガス浄化装置において、
上記吸着材層の前面に、ハニカム構造体層よりなる放熱
層を設けたことを特徴とする排気ガス浄化装置。
1. An adsorbent layer for adsorbing unburned components contained in exhaust gas is provided on a wall surface facing an exhaust port in an exhaust manifold communicating with an exhaust port of an internal combustion engine, and an adsorbent layer downstream of the exhaust manifold is provided. In an exhaust gas purification device having a catalyst for purifying exhaust gas in the exhaust passage,
An exhaust gas purification device comprising a heat dissipation layer made of a honeycomb structure layer provided on the front surface of the adsorbent layer.
【請求項2】 上記放熱層を構成するハニカム構造体の
少なくとも一部に排気ガス中の未燃成分を浄化する触媒
成分を担持して触媒層となした請求項1記載の排気ガス
浄化装置。
2. The exhaust gas purification apparatus according to claim 1, wherein a catalyst component for purifying unburned components in exhaust gas is carried on at least a part of the honeycomb structure forming the heat dissipation layer to form a catalyst layer.
【請求項3】 上記放熱層を構成するハニカム構造体壁
に、上記排気ポートから導入される排気ガスをより外方
のセルへ導く切り起こしを形成した請求項1または2記
載の排気ガス浄化装置。
3. The exhaust gas purifying apparatus according to claim 1, wherein a cut-and-raised portion for guiding the exhaust gas introduced from the exhaust port to outer cells is formed on a honeycomb structure wall forming the heat dissipation layer. .
【請求項4】 上記放熱層を構成するハニカム構造体壁
に、上記吸着材から脱離して上記放熱層内へ流入する未
燃成分をより内方のセルへ導く切り起こしを形成した請
求項1ないし3記載の排気ガス浄化装置。
4. The honeycomb structure wall forming the heat dissipation layer is provided with cut-and-raised parts that guide unburned components that are desorbed from the adsorbent and flow into the heat dissipation layer to inner cells. The exhaust gas purification device according to any one of claims 1 to 3.
【請求項5】 上記放熱層と上記吸着材層とを間隙をお
いて配設し、両者の間に空気層よりなる他の放熱層を設
けた請求項1ないし4記載の排気ガス浄化装置。
5. The exhaust gas purifying apparatus according to claim 1, wherein the heat dissipation layer and the adsorbent layer are disposed with a gap, and another heat dissipation layer composed of an air layer is provided between the heat dissipation layer and the adsorbent layer.
【請求項6】 上記吸着材層を複数設けて、それぞれを
内燃機関の各気筒に連通する各排気ポートに対向して配
するとともに、これら吸着材層の後端部間を連通する流
路を形成した請求項1ないし5記載の排気ガス浄化装
置。
6. A plurality of the adsorbent layers are provided, arranged so as to oppose each exhaust port communicating with each cylinder of an internal combustion engine, and a flow path communicating between the rear end portions of these adsorbent layers is provided. The exhaust gas purification device according to claim 1, which is formed.
【請求項7】 上記流路の一端を内燃機関の吸気マニホ
ールドに接続するとともに、上記流路途中に、上記流路
より上記吸気マニホールドに導入される排気量を制御す
る制御弁を設けた請求項6記載の排気ガス浄化装置。
7. A control valve for connecting one end of the flow passage to an intake manifold of an internal combustion engine, and for providing a control valve for controlling the amount of exhaust gas introduced from the flow passage to the intake manifold, in the middle of the flow passage. 6. The exhaust gas purification device according to 6.
JP7017526A 1994-12-19 1995-01-09 Exhaust gas purifying device Withdrawn JPH08189342A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7017526A JPH08189342A (en) 1995-01-09 1995-01-09 Exhaust gas purifying device
US08/574,044 US5701736A (en) 1994-12-19 1995-12-18 Apparatus for purifying exhaust gas
US08/937,741 US5873242A (en) 1994-12-19 1997-09-25 Apparatus for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7017526A JPH08189342A (en) 1995-01-09 1995-01-09 Exhaust gas purifying device

Publications (1)

Publication Number Publication Date
JPH08189342A true JPH08189342A (en) 1996-07-23

Family

ID=11946381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7017526A Withdrawn JPH08189342A (en) 1994-12-19 1995-01-09 Exhaust gas purifying device

Country Status (1)

Country Link
JP (1) JPH08189342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123011A1 (en) * 2006-04-10 2007-11-01 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
JP2009236058A (en) * 2008-03-27 2009-10-15 Toyota Motor Corp Exhaust gas recirculation device of internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123011A1 (en) * 2006-04-10 2007-11-01 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
US8056321B2 (en) 2006-04-10 2011-11-15 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
EP2006504A4 (en) * 2006-04-10 2017-06-28 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
JP2009236058A (en) * 2008-03-27 2009-10-15 Toyota Motor Corp Exhaust gas recirculation device of internal combustion engine
JP4670884B2 (en) * 2008-03-27 2011-04-13 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine

Similar Documents

Publication Publication Date Title
US5497619A (en) Exhaust gas purification apparatus
US6572682B2 (en) Self-cleaning filter system using direct electrically heated sintered metal fiber filter media
US6296813B1 (en) Exhaust emission control catalyst apparatus in internal combustion engine
CN102076935A (en) Exhaust gas purification apparatus
US6155044A (en) Exhaust gas purifying system for internal combustion engine
EP0945178B1 (en) Exhaust emission control catalyst for diesel engines
US6113864A (en) Adsorber-catalyst combination for internal combustion engines
JP2011033039A (en) Exhaust system
JP3116628B2 (en) Suction device
JP3772583B2 (en) Exhaust gas purification device for internal combustion engine
JP2022114539A (en) Exhaust purification catalytic device and exhaust purification method using the device
JP2004138013A (en) Exhaust emission control structure
JPH08189342A (en) Exhaust gas purifying device
JP3304678B2 (en) Exhaust gas purification device for internal combustion engine
US6447735B1 (en) Exhaust purifier and manufacturing method of same
JPH11324662A (en) Catalyst converter device
JP2722988B2 (en) Exhaust gas purification device for internal combustion engine
CN100428980C (en) Exhausting purifying installation
JP4055475B2 (en) Exhaust purification device
JP2000008841A (en) Exhaust emission control device
CN113389621B (en) Exhaust gas purification system for internal combustion engine
JP2001115832A (en) Exhaust emission control device
JP3402132B2 (en) Engine exhaust purification device
JP3900011B2 (en) Exhaust purification device
JP3882670B2 (en) Catalytic converter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402