JPH08188837A - Lead splash condenser equipment - Google Patents

Lead splash condenser equipment

Info

Publication number
JPH08188837A
JPH08188837A JP1751295A JP1751295A JPH08188837A JP H08188837 A JPH08188837 A JP H08188837A JP 1751295 A JP1751295 A JP 1751295A JP 1751295 A JP1751295 A JP 1751295A JP H08188837 A JPH08188837 A JP H08188837A
Authority
JP
Japan
Prior art keywords
lead
condenser
splash
exhaust gas
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1751295A
Other languages
Japanese (ja)
Inventor
Kimiaki Utsunomiya
公昭 宇都宮
Takeo Katagiri
丈雄 片桐
Keiji Fujita
敬二 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP1751295A priority Critical patent/JPH08188837A/en
Publication of JPH08188837A publication Critical patent/JPH08188837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: To improve the condenser efficiency of an equipment by allowing a reducing furnace flue gas contg. zinc vapor to contact with the splashed molten lead and placing an impingement plate(s) in a gas space where the molten lead droplets are splashed within a lead splash condenser for dissolving zinc vapor in molten lead. CONSTITUTION: In this equipment, at least one impingement plate is placed in a space where molten lead droplets are splashed, within the condenser, preferably at a position between lead splash rotors, at the position of both the upstream and downstream side ends of the condenser or a position above the agitating blades of any of the splash rotors and also, the shape of each of the impingement plates is platelike, punched-platelike or suspended-chainlike. Thus, the molten lead droplets are positively allowed to impinge on the impingement plates to subject them to secondary splashing and thereby, the lead droplets are more finely divided to increase their specific surface area and to enhance the splashing efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、亜鉛蒸気を含有した還
元炉排ガスから該亜鉛蒸気を熔融鉛中に溶解させて回収
するための鉛スプラッシュコンデンサー設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead splash condenser facility for recovering zinc vapor from a reducing furnace exhaust gas containing the zinc vapor by dissolving the zinc vapor in molten lead.

【0002】[0002]

【従来の技術】鉛を含む亜鉛精鉱より、鉛と亜鉛とを同
時に回収する代表的な乾式亜鉛製錬法としてISP法が
ある。このISP法では、還元炉で該亜鉛原料を還元熔
融し、亜鉛と鉛を揮発させ排ガスと共に後工程の回収工
程に送り鉛と亜鉛とを回収している。そしてこの回収工
程で熔体鉛を吸収剤とする鉛スプラッシュコンデンサー
を用いる。この鉛スプラッシュコンデンサーは、図5の
概略平面図に示すように一端が還元炉1出口に結合され
他端に排煙道2が設けられたコンデンサー本体3と、冷
却樋4と、冷却樋4よりオーバーフローで流出する熔体
に塩化アンモニウムを添加するフラックス炉5と、鉛と
亜鉛とを分離する分離炉6と、回収した亜鉛の温度を一
定に維持するための加熱炉11と、回収した熔体をコン
デンサー本体3に戻すためのリターン炉7から構成され
ている。また、コンデンサー本体3には、その中央部に
鉛スプラッシュローター8と、鉛スプラッシュローター
8の排ガス上流側に熔体鉛でシールされアンダーフロー
構造のサンプ9と、サンプ9に鉛ポンプ10とが設けら
れている。
2. Description of the Related Art The ISP method is a typical dry zinc smelting method for simultaneously recovering lead and zinc from a zinc concentrate containing lead. In this ISP method, the zinc raw material is reduced and melted in a reducing furnace, and zinc and lead are volatilized, and the lead and zinc are recovered together with the exhaust gas in a recovery process in a subsequent process. Then, in this recovery step, a lead splash capacitor using molten lead as an absorbent is used. As shown in the schematic plan view of FIG. 5, the lead splash condenser includes a condenser body 3 having one end connected to the outlet of the reduction furnace 1 and a smoke exhaust passage 2 provided at the other end, a cooling gutter 4, and a cooling gutter 4. A flux furnace 5 for adding ammonium chloride to the melt flowing out by overflow, a separation furnace 6 for separating lead and zinc, a heating furnace 11 for keeping the temperature of the recovered zinc constant, and a recovered melt. It is composed of a return furnace 7 for returning to the condenser body 3. Further, the condenser main body 3 is provided with a lead splash rotor 8 in a central portion thereof, a sump 9 having an underflow structure sealed with molten lead on the exhaust gas upstream side of the lead splash rotor 8, and a lead pump 10 provided in the sump 9. Has been.

【0003】上記鉛スプラッシュコンデンサー操業に際
しては、熔体鉛をサンプ9より鉛ポンプ10を用いて冷
却樋4に供給し、リターン炉7より熔体鉛をコンデンサ
ー本体3に戻して熔体鉛の循環系を構成する。このよう
なコンデンサー本体3に還元炉1出口より還元炉排ガス
を導入し、コンデンサー本体3に設けられた鉛スプラッ
シュローター8を用いて還元炉排ガス温度より低温で循
環している熔体鉛(循環鉛)をスプラッシュさせ、循環
鉛と還元炉排ガスとを接触させる。それにより、還元炉
排ガス中の亜鉛蒸気を循環鉛中に冷却溶解させる。続い
て亜鉛を溶解した循環鉛を冷却樋4で冷却して、循環鉛
中に溶解していた亜鉛を析出させ、その後分離炉6で亜
鉛と循環鉛との分離をさせ、亜鉛は加熱炉11に導入し
て所定温度とした後に粗亜鉛として鋳造する。そして循
環鉛は、リターン炉7を介してコンデンサー本体3の排
ガス下流側に戻す。
During the operation of the lead splash condenser, the molten lead is supplied from the sump 9 to the cooling gutter 4 by using the lead pump 10, and the return furnace 7 returns the molten lead to the condenser body 3 to circulate the molten lead. Make up the system. The reduction furnace exhaust gas is introduced into the condenser main body 3 from the outlet of the reduction furnace 1, and the lead splash rotor 8 provided in the condenser main body 3 is used to circulate the molten lead at a temperature lower than the reduction furnace exhaust gas temperature (circulation lead). ) Is splashed, and circulating lead and reducing furnace exhaust gas are brought into contact with each other. Thereby, the zinc vapor in the reducing furnace exhaust gas is cooled and dissolved in the circulating lead. Then, the circulating lead in which zinc is dissolved is cooled in a cooling gutter 4 to precipitate the dissolved zinc in the circulating lead, and then the separation furnace 6 separates the zinc from the circulating lead. After being introduced into a steel plate to a predetermined temperature, it is cast as crude zinc. Then, the circulating lead is returned to the exhaust gas downstream side of the condenser body 3 via the return furnace 7.

【0004】この鉛スプラッシュコンデンサーの操業に
おいて、還元炉排ガス中の亜鉛蒸気を循環鉛中へ移行さ
せる効率即ちコンデンサー効率を良好に維持することは
極めて重要である。コンデンサ効率に影響を与える要因
には、化学反応を主とした化学的要因として還元炉排ガ
ス中の亜鉛蒸気の再酸化を起こす原因となる還元炉排ガ
スの諸条件即ち(a)温度、(b)CO2/COおよび
(c)亜鉛蒸気、H2O、ダスト等の含有率が挙げら
れ、一方機械的要因としては(d)還元炉排ガスと循環
鉛を効率良く接触させるための鉛スプラッシュローター
による鉛スプラッシュの状況(以後スプラッシュ効率と
いう)および(e)スプラッシュされた鉛粒に還元炉排
ガス中の亜鉛蒸気を効率良く吸収させるための整流板の
配置等が挙げられる。
In the operation of this lead splash condenser, it is extremely important to maintain good efficiency of transferring zinc vapor in the exhaust gas of the reducing furnace into circulating lead, that is, condenser efficiency. Factors that affect the condenser efficiency include various conditions of the reducing furnace exhaust gas that cause reoxidation of zinc vapor in the reducing furnace exhaust gas, that is, (a) temperature and (b), which are chemical factors mainly including chemical reactions. CO 2 / CO and (c) contents of zinc vapor, H 2 O, dust, etc. may be mentioned, while mechanical factors are (d) a lead splash rotor for efficiently contacting the reducing furnace exhaust gas and circulating lead. The situation of lead splash (hereinafter referred to as splash efficiency) and (e) the arrangement of a current plate for efficiently absorbing zinc vapor in the exhaust gas of the reducing furnace by the splashed lead particles can be mentioned.

【0005】これらの要因のうち、(d)のスプラッシ
ュ効率について、次に述べる。図5において、鉛スプラ
ッシュローター8は、通常排ガス上流側から2台並列に
4列の計8台が配置されており、そのスプラッシュ効率
を上げるために、鉛スプラッシュローター8の攪拌羽根
の形状、回転数や鉛スプラッシュローター8の攪拌羽根
を循環鉛中に保つ深さ等の条件を各製錬所独自に調整
し、その最適化を図っている。例えば、このスプラッシ
ュ効率の評価を直接コンデンサー効率に指標を置いて行
うと、前記のようなコンデンサー効率に及ぼす化学的要
因による影響を大きく受けスプラッシュ効率の評価を誤
らせるため、これらの化学的要因の影響を極力受けない
ように還元炉排ガスの冷却効率即ちコンデンサー本体の
入口と出口における還元炉排ガス温度の温度差に指標を
置いていた。というのは、還元排ガス中の亜鉛蒸気が循
環鉛中へ移行する物質移動と還元炉排ガスの熱が循環鉛
中へ移行する熱移動はいづれもスプラッシュされた熔体
鉛粒と排ガスの界面で進行するため、これら物質移動と
熱移動の効率は挙動を同じくし、したがって還元炉排ガ
スの冷却効率が高いほどコンデンサー効率は高くなるか
らである。しかし、この評価方法は、前記した化学的要
因による影響をある程度除外できるとはいうものの、こ
れら化学的要因によって起こる亜鉛蒸気の再酸化反応に
伴う発熱等の熱的影響を決して無視することができず、
したがってこの評価方法においてもその精度は決して高
いものではない。
Among these factors, the splash efficiency of (d) will be described below. In FIG. 5, the lead splash rotors 8 are usually arranged in parallel in two rows from the upstream side of the exhaust gas, and four rows in total are arranged. In order to increase the splash efficiency, the shape and rotation of the stirring blades of the lead splash rotor 8 are set. The number and the depth of keeping the stirring blades of the lead splash rotor 8 in the circulating lead are adjusted individually for each smelter to optimize it. For example, if the evaluation of the splash efficiency is performed by directly setting the index to the condenser efficiency, the influence of these chemical factors is greatly affected by the influence of the chemical factors that affect the condenser efficiency as described above and the evaluation of the splash efficiency is erroneous. In order to prevent the reduction furnace exhaust gas as much as possible, an index has been placed on the cooling efficiency of the reduction furnace exhaust gas, that is, the temperature difference between the inlet and outlet of the condenser body. This is because the mass transfer of zinc vapor in the reducing exhaust gas to the circulating lead and the heat transfer of the heat of the reducing furnace exhaust gas to the circulating lead both proceed at the interface between the splashed molten lead particles and the exhaust gas. Therefore, the mass transfer efficiency and the heat transfer efficiency have the same behavior, and therefore, the higher the cooling efficiency of the reducing furnace exhaust gas, the higher the condenser efficiency. However, although this evaluation method can exclude the effects of the above-mentioned chemical factors to some extent, the thermal effects such as heat generation due to the re-oxidation reaction of zinc vapor caused by these chemical factors can never be ignored. No
Therefore, even in this evaluation method, the accuracy is never high.

【0006】さらに、(e)の整流板の配置について述
べる。図5において、整流板は循環鉛と還元炉排ガスを
良好に整流するため、形状が異なる整流板12aと12
bとを互い違いに設置し、コンデンサー天井から炉底ま
で1枚の板で仕切る構造となっており、その整流板を還
元炉排ガスの流れに垂直になるようにコンデンサー内に
設置している。整流板12aの開口部は、整流板12a
とコンデンサー本体3の側壁との間に、また整流板12
bの開口部は、整流板12bの中央部に形成される。こ
のように整流板によりコンデンサー内をいくつかの反応
槽に仕切る目的は、各反応ゾーン中の還元炉排ガスの亜
鉛蒸気濃度および循環鉛の亜鉛濃度をコンデンサー入口
から出口にかけ段階的に減少させることによって、つま
り還元炉排ガスと循環鉛との一種の向流の多段連続槽型
反応を行わせることによって、効率的に還元炉排ガスの
亜鉛蒸気を循環鉛中へ吸収させようとすることにある。
以上説明したように、コンデンサー効率を挙げるため
に、様々な工夫が為されているが、未だ十分とはいえ
ず、コンデンサー効率をより上げるための方法が待ち望
まれていた。
Further, the arrangement of the current plate (e) will be described. In FIG. 5, the straightening vanes rectify the circulating lead and the exhaust gas from the reducing furnace satisfactorily.
b) are installed alternately, and the structure is such that the condenser ceiling and the furnace bottom are partitioned by one plate, and the rectifying plate is installed in the condenser so as to be perpendicular to the flow of the reducing furnace exhaust gas. The opening of the current plate 12a is
And the side wall of the condenser body 3 and the rectifying plate 12
The opening b is formed in the center of the current plate 12b. In this way, the purpose of dividing the condenser into several reaction tanks by the straightening plate is to reduce the zinc vapor concentration of the reducing furnace exhaust gas and the zinc concentration of circulating lead in each reaction zone in stages from the condenser inlet to the outlet. That is, it is intended to efficiently absorb the zinc vapor of the reducing furnace exhaust gas into the circulating lead by carrying out a countercurrent multi-stage continuous tank type reaction of the reducing furnace exhaust gas and the circulating lead.
As described above, various efforts have been made to increase the condenser efficiency, but it has not been sufficient, and a method for further increasing the condenser efficiency has been desired.

【0007】[0007]

【発明が解決しようとする課題】本発明は、以上述べた
ような状況に鑑み、コンデンサ効率を上げることのでき
る鉛スプラッシュコンデンサー設備を提供するために、
上記(d)の鉛スプラッシュローターによるスプラッシ
ュ効率を上げることを目的とする。
SUMMARY OF THE INVENTION In view of the situation as described above, the present invention provides a lead splash capacitor facility capable of increasing the capacitor efficiency,
The purpose is to increase the splash efficiency by the lead splash rotor of (d) above.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記課題を
達成すべく種々の検討を行った結果、鉛スプラッシュロ
ーターで飛散した鉛粒を微細化しその表面積を増加させ
ることで上記課題が達成できるとの知見を得、本発明に
至った。すなわち、本発明の鉛スプラッシュコンデンサ
設備は、亜鉛蒸気を含有した還元炉排ガスを、飛散する
熔体鉛粒と接触させ、該亜鉛蒸気を熔融鉛中に溶解させ
る鉛スプラッシュコンデンサー設備において、該鉛粒が
飛散するガス空間に鉛衝突板を設けたことを特徴とす
る。鉛衝突板を設ける場所は、鉛スプラッシュローター
の間、コンデンサーの上流側と下流側の両端および鉛ス
プラッシュローターの攪拌羽根の上方が好ましい。ま
た、鉛衝突板の形状は、板状、パンチプレート状、垂ら
した鎖状などを採ることができる。さらに、鉛衝突板
は、1つに限らず複数設けてもよい。
Means for Solving the Problems As a result of various studies to achieve the above object, the present inventor has achieved the above object by miniaturizing lead particles scattered by a lead splash rotor and increasing the surface area thereof. The present inventors have obtained the finding that they can, and have reached the present invention. That is, the lead splash condenser equipment of the present invention is a lead splash condenser equipment in which a reducing furnace exhaust gas containing zinc vapor is brought into contact with scattered lead particles of a molten metal to dissolve the zinc vapor in molten lead. It is characterized in that a lead collision plate is provided in the gas space in which is scattered. The location of the lead collision plate is preferably between the lead splash rotors, both upstream and downstream sides of the condenser, and above the stirring blades of the lead splash rotor. The lead collision plate may have a plate shape, a punch plate shape, a hanging chain shape, or the like. Furthermore, the lead collision plate is not limited to one, and a plurality of lead collision plates may be provided.

【0009】[0009]

【作用】本発明において、鉛スプラッシュローターによ
って熔体鉛粒が飛散するガス空間に鉛衝突板を設ける理
由は、上記鉛粒を積極的に鉛衝突板に当てて二次飛散さ
せることにより、鉛粒をより微細化しその表面積の増加
を図る、つまりスプラッシュ効率の上昇を図ることがで
きるからである。還元炉排ガス中の亜鉛蒸気の循環鉛中
への吸収反応は、前述したように主に鉛スプラッシュロ
ーターで飛散された鉛粒と還元炉排ガスとの界面で進行
するため、この両者の接触面積が大きいほど、即ち鉛粒
の表面積が大きいほど前記吸収反応の効率、つまりコン
デンサー効率は良くなると共に、還元炉排ガスの冷却効
率も良くなる。即ち、本発明の鉛衝突板を用いれば、コ
ンデンサーのガス空間の鉛粒を微細化し、この表面積を
増大させることでコンデンサー効率を上げることができ
る。このように、本発明の鉛衝突板は飛散した鉛粒を衝
突によって微細化することを目的としているため、鉛衝
突板の形状については、飛散する鉛粒が衝突し微細化し
て再び飛散すればどんな形状でも良く、たとえば板状の
ものやパンチプレート状のものあるいは鎖を垂らすこと
によっても本発明の効果は得られる。
In the present invention, the reason why the lead collision plate is provided in the gas space in which the molten lead particles are scattered by the lead splash rotor is that the lead particles are positively applied to the lead collision plate to cause secondary scattering, This is because the particles can be made finer to increase the surface area thereof, that is, the splash efficiency can be increased. Since the absorption reaction of zinc vapor in the reducing furnace exhaust gas into the circulating lead proceeds mainly at the interface between the lead particles scattered by the lead splash rotor and the reducing furnace exhaust gas as described above, the contact area between the two is The larger the surface area of the lead particles, the better the efficiency of the absorption reaction, that is, the condenser efficiency, and the better the cooling efficiency of the reducing furnace exhaust gas. That is, when the lead collision plate of the present invention is used, the lead particles in the gas space of the condenser are miniaturized and the surface area thereof is increased, whereby the condenser efficiency can be increased. As described above, the lead collision plate of the present invention is intended to miniaturize the scattered lead particles by collision.Therefore, regarding the shape of the lead collision plate, if the scattered lead particles collide and are miniaturized and scattered again. Any shape may be used, for example, a plate-shaped one, a punch plate-shaped one, or hanging a chain can obtain the effect of the present invention.

【0010】また鉛衝突板の設置場所については、基本
的に鉛スプラッシュローターによって生じる鉛粒が飛散
するガス空間であればどこでも良く特に限定されるもの
ではないが、衝突によって、鉛粒の分布が疎となるガス
空間を作るような場所へ設置するのは望ましくない。と
いうのは、例えばコンデンサー側壁と近接する鉛スプラ
ッシュローターとの間に、コンデンサー側壁と平行に鉛
衝突板を設置する場合、この鉛衝突板が鉛粒飛散の障害
物となり、これとコンデンサー側壁とのガス空間は鉛粒
の分布が疎となるために還元炉排ガスと鉛粒の効率的な
接触が妨げられ本発明の効果が期待できなくなるからで
ある。したがって、(a)コンデンサーに配置されてい
る通常8台の鉛スプラッシュローターの間、(b)コン
デンサーの上流側と下流側の両端および(c)実施例で
示すように鉛スプラッシュローターの攪拌羽根の上方な
どに取り付けることが最も効果的である。
The location of the lead collision plate is not particularly limited as long as it is basically a gas space in which lead particles generated by the lead splash rotor are scattered, but the distribution of lead particles due to collision is not limited. It is not desirable to install it in a place that creates a sparse gas space. This is because, for example, when a lead collision plate is installed in parallel with the capacitor side wall between the capacitor side wall and the adjacent lead splash rotor, this lead collision plate becomes an obstacle for lead particle scattering, and this and the capacitor side wall This is because the distribution of lead particles in the gas space becomes sparse, so that efficient contact between the reducing furnace exhaust gas and lead particles is hindered, and the effect of the present invention cannot be expected. Therefore, (a) normally between eight lead splash rotors arranged in the condenser, (b) both upstream and downstream ends of the condenser, and (c) the stirring blades of the lead splash rotor as shown in the embodiment. It is most effective to install it on the top.

【0011】鉛スプラッシュコンデンサー設備に備えら
れる整流板はコンデンサーの側壁や天井と同様に、結果
として鉛衝突板の役割をも果たすと考えることができる
が、前述(従来の技術)したように、本発明の鉛衝突板
とは目的も構造も異なる。整流板はコンデンサーをいく
つかの反応槽に分割することを目的としているため、こ
れを還元炉排ガスの流れと垂直に設置しかつコンデンサ
ー天井から炉底までを仕切った一体構造であることが要
求されるが、本発明の鉛衝突板は上記で説明したよう
に、鉛粒の微細化を目的としているため循環鉛中まで浸
漬させるものではなく、さらに還元炉排ガスの流れと垂
直に設置する必要はない。
It can be considered that the rectifying plate provided in the lead splash condenser facility also plays a role of the lead collision plate as well as the side wall and ceiling of the condenser, but as described above (prior art), The lead collision plate of the invention has a different purpose and structure. Since the current plate is intended to divide the condenser into several reaction tanks, it is required to install it vertically to the flow of the reduction furnace exhaust gas and to have an integrated structure that partitions the condenser ceiling to the furnace bottom. However, as explained above, the lead collision plate of the present invention is not intended to be immersed in the circulating lead because it is intended to refine the lead particles, and it is further necessary to install it vertically to the flow of the reducing furnace exhaust gas. Absent.

【0012】[0012]

【実施例】以下に述べる実施例および従来例では、粉コ
ークスのみを燃焼させて亜鉛蒸気を含まない還元炉排ガ
スを作り、これを鉛スプラッシュコンデンサーに導入し
鉛衝突板の設置の有無により還元炉排ガスの循環鉛によ
る冷却効率の違いを比較する方法をとった。ここで本発
明の効果を亜鉛蒸気を含まない還元炉排ガスの冷却効率
で評価するのは、前述(従来の技術)したように、亜鉛
蒸気の再酸化にともなう誤差を除き、スプラッシュ効率
の評価精度を上げる為である。また、コンデンサー効率
に及ぼすスプラッシュ効率は、還元炉排ガスの冷却効率
を捉えることで評価できるからである。即ち、鉛衝突板
の設置により還元炉排ガスの冷却効率が上がれば、コン
デンサー効率も上がると判断できる。還元炉排ガスの冷
却効率の評価は、次の方法によった。即ち、鉛スプラッ
シュコンデンサーは、還元炉排ガスと循環鉛との向流の
熱交換器とみなすことができるため、一般に還元炉排ガ
スの冷却熱量Qは数1で示すことができ、冷却効率は、
数1における熱貫流率kと熱交換面積fとの積kfで表
すことができる。つまり冷却効率の評価において、kf
が大きいほど該冷却効率は高いといえる。
[Examples] In the examples and conventional examples described below, only the coke powder was burned to produce a reducing furnace exhaust gas containing no zinc vapor, which was introduced into a lead splash condenser, and the reducing furnace was installed with or without a lead collision plate. The method of comparing the difference in cooling efficiency due to circulating lead of exhaust gas was adopted. Here, the effect of the present invention is evaluated by the cooling efficiency of the reducing furnace exhaust gas that does not contain zinc vapor, as described above (prior art), except for the error accompanying the reoxidation of zinc vapor, the evaluation accuracy of the splash efficiency. This is to raise. Also, the splash efficiency that affects the condenser efficiency can be evaluated by capturing the cooling efficiency of the reduction furnace exhaust gas. That is, if the cooling efficiency of the reduction furnace exhaust gas is increased by installing the lead collision plate, it can be determined that the condenser efficiency is also increased. The cooling efficiency of the reduction furnace exhaust gas was evaluated by the following method. That is, since the lead splash condenser can be regarded as a countercurrent heat exchanger of the reducing furnace exhaust gas and the circulating lead, the cooling heat quantity Q of the reducing furnace exhaust gas can be generally expressed by Equation 1, and the cooling efficiency is
It can be expressed by the product kf of the heat transmission coefficient k and the heat exchange area f in the equation 1. That is, in the evaluation of cooling efficiency, kf
It can be said that the larger is, the higher the cooling efficiency is.

【0013】[0013]

【数1】 [Equation 1]

【0014】但し、 Q:排ガスの冷却熱量 (kcal/h) k:熱貫流率 (kcal/m2・h・℃) f:熱交換面積 (m2) △T1 : (コンデンサー入口排ガス温度)−(循環鉛のコンデン
サー出口温度)(℃) △T2 : (コンデンサー出口排ガス温度)−(循環鉛のコンデン
サー入口温度)(℃)
However, Q: amount of heat of cooling exhaust gas (kcal / h) k: heat transmission coefficient (kcal / m 2 · h · ° C) f: heat exchange area (m 2 ) ΔT 1 : (condenser inlet exhaust gas temperature) -(Condenser outlet temperature of circulating lead) (° C) ΔT 2 : (Condenser outlet exhaust gas temperature)-(Condenser inlet temperature of circulating lead) (° C)

【0015】そこで、図5に示すような長さ10m、幅
2m、高さ0.58mの内寸法を持ち循環鉛保有量2
5.2tのコンデンサーを用い、また正面図として図6
に、および平面図として図7に概略の形状を示すよう
に、羽根の取り付け角度が水平面に対して55゜と60
゜で交互になっている攪拌羽根を持つ鉛スプラッシュロ
ーター8(外径240mm)を8台(各反応槽内2台の
ローターの中心間距離1600mm)用い、亜鉛蒸気を
含まない還元炉からの熱風(粉コークスを燃焼させた排
ガス 520Nm3/h、CO 7%、CO2 45%)
をコンデンサーに通し、表1に示す条件において、コン
デンサー入口の排ガス温度、コンデンサー出口の排ガス
温度、コンデンサーに入る熔体鉛の温度、コンデンサー
より出る熔体鉛の温度を測定し、以下に示す例の冷却効
率を数1により算出した。鉛スプラッシュローターの回
転数は、250〜400rpm、浸漬率は、67%とし
た。
Therefore, as shown in FIG. 5, the circulating lead holding amount 2 having the inner dimensions of length 10 m, width 2 m and height 0.58 m is 2
A 5.2t condenser is used, and a front view is shown in FIG.
And as shown in FIG. 7 as a plan view, the blade mounting angles are 55 ° and 60 ° with respect to the horizontal plane.
Eight lead splash rotors 8 (outer diameter 240 mm) with stirrer blades alternating with each other (outer diameter 1600 mm between the two rotors in each reaction tank) were used, and hot air from a reduction furnace containing no zinc vapor was used. (Exhaust gas from burning coke powder 520 Nm 3 / h, CO 7%, CO 2 45%)
Through the condenser, and under the conditions shown in Table 1, the exhaust gas temperature at the condenser inlet, the exhaust gas temperature at the condenser outlet, the temperature of molten lead entering the condenser, and the temperature of molten lead discharged from the condenser were measured. The cooling efficiency was calculated by Equation 1. The rotational speed of the lead splash rotor was 250 to 400 rpm, and the dipping rate was 67%.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【実施例1】図1の鉛スプラッシュコンデンサー本体の
概略平面図に示すように、各反応槽内2台の鉛スプラッ
シュローターの間のコンデンサーガス空間4ヶ所に鉛衝
突板を設置した。鉛衝突板は、幅300mm、長さ40
0m、厚み10mmの鉄板で、この幅方向をコンデンサ
ーの長さ方向に平行に、この長さ方向を垂直に垂らし
た。
Example 1 As shown in the schematic plan view of the lead splash condenser body of FIG. 1, lead collision plates were installed at four condenser gas spaces between two lead splash rotors in each reaction tank. The lead collision plate has a width of 300 mm and a length of 40.
An iron plate having a thickness of 0 m and a thickness of 10 mm was hung so that the width direction was parallel to the length direction of the capacitor and the length direction was perpendicular.

【0018】[0018]

【実施例2】図1の鉛衝突板を取り外し、図1の鉛スプ
ラッシュローターの攪拌羽根上方に鉛衝突板を取り付け
た。図2に鉛衝突板を取り付けた鉛スプラッシュロータ
ーの概略正面図を、図3に、図2の断面a−aで切断し
た断面図を示す。図2および図3において、鉛衝突板
は、幅50mm、長さ150mm、厚み10mmの鉄板
を4枚、相隣る板と90゜の角度をなし、水平より傾斜
させて取り付けた。
Example 2 The lead collision plate of FIG. 1 was removed, and the lead collision plate was attached above the stirring blade of the lead splash rotor of FIG. FIG. 2 shows a schematic front view of the lead splash rotor having the lead collision plate attached thereto, and FIG. 3 shows a sectional view taken along the line aa in FIG. In FIG. 2 and FIG. 3, the lead collision plate was attached with four iron plates having a width of 50 mm, a length of 150 mm and a thickness of 10 mm, forming an angle of 90 ° with the adjacent plates and inclined from the horizontal.

【0019】[0019]

【従来例】鉛衝突板を取り付けなかった以外は、実施例
2と同様に行った。以上の結果を表2に示す。表2よ
り、冷却効率と回転数の関係を図示したグラフを図4に
示す。
Conventional Example The same procedure as in Example 2 was carried out except that the lead collision plate was not attached. Table 2 shows the above results. From Table 2, a graph showing the relationship between the cooling efficiency and the rotation speed is shown in FIG.

【0020】[0020]

【表2】 [Table 2]

【0021】鉛衝突板をコンデンサーのガス空間に設置
した場合および鉛スプラッシュローターに設置した場合
はいづれも、鉛衝突板を設置しなかった場合に比べて還
元炉排ガスの冷却効率が高い結果が得られた。
Both when the lead collision plate was installed in the gas space of the condenser and when it was installed in the lead splash rotor, the cooling efficiency of the reduction furnace exhaust gas was higher than that when the lead collision plate was not installed. Was given.

【0022】[0022]

【発明の効果】本発明の方法によれば、亜鉛蒸気を含有
した還元炉排ガスから亜鉛蒸気を熔融亜鉛として回収す
る鉛スプラッシュコンデンサー設備において、鉛スプラ
ッシュが飛散する該コンデンサー内のガス空間に鉛衝突
板を一つ以上設置することにより還元炉排ガスの循環鉛
による冷却効率が上昇し、つまりコンデンサー効率を良
くすることができる。
According to the method of the present invention, in a lead splash condenser facility for recovering zinc vapor as molten zinc from a reducing furnace exhaust gas containing zinc vapor, lead collision occurs in the gas space in the condenser where lead splash is scattered. By installing one or more plates, the cooling efficiency of the reducing furnace exhaust gas by circulating lead can be increased, that is, the condenser efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の鉛スプラッシュコンデンサ
ーの概略平面図である。
FIG. 1 is a schematic plan view of a lead splash capacitor according to an embodiment of the present invention.

【図2】本発明の他の実施例の鉛衝突板を取り付けた鉛
スプラッシュローターの概略正面図である。
FIG. 2 is a schematic front view of a lead splash rotor having a lead collision plate according to another embodiment of the present invention.

【図3】図2の断面a−aで切断した断面図を示す。3 shows a cross-sectional view taken along the line aa in FIG.

【図4】実施例1、実施例2および従来例で得られた冷
却効率と回転数の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the cooling efficiency and the rotational speed obtained in Example 1, Example 2 and the conventional example.

【図5】従来の鉛スプラッシュコンデンサーの操業を説
明する図である。
FIG. 5 is a diagram illustrating the operation of a conventional lead splash capacitor.

【図6】実施例1、実施例2および従来例で用いる鉛ス
プラッシュローターのインペラを示す正面図である。
FIG. 6 is a front view showing an impeller of a lead splash rotor used in Examples 1, 2 and a conventional example.

【図7】図6と同様の平面図である。FIG. 7 is a plan view similar to FIG.

【符号の説明】[Explanation of symbols]

1 還元炉 2 排煙道 3 コンデンサ本体 4 冷却樋 5 フラックス炉 6 分離炉 7 リターン炉 8 鉛スプラッシュローター 9 サンプ 10 鉛ポンプ 11 加熱炉 1 Reduction furnace 2 Flue gas duct 3 Condenser body 4 Cooling gutter 5 Flux furnace 6 Separation furnace 7 Return furnace 8 Lead splash rotor 9 Sump 10 Lead pump 11 Heating furnace

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 亜鉛蒸気を含有した還元炉排ガスを、飛
散する熔体鉛粒と接触させ、該亜鉛蒸気を熔融鉛中に溶
解させる鉛スプラッシュコンデンサー設備において、該
鉛粒が飛散するガス空間に少なくとも1つの鉛衝突板を
設けたことを特徴とする鉛スプラッシュコンデンサー設
備。
1. In a lead splash condenser facility for bringing a reducing furnace exhaust gas containing zinc vapor into contact with the dispersed molten lead particles to dissolve the zinc vapor in the molten lead, the lead particles are dispersed in a gas space. Lead splash condenser equipment characterized by providing at least one lead collision plate.
【請求項2】 鉛衝突板は、形状が板状、パンチプレー
ト状、または垂らした鎖状である請求項1に記載の鉛ス
プラッシュコンデンサー設備。
2. The lead splash condenser facility according to claim 1, wherein the lead collision plate has a plate shape, a punch plate shape, or a hanging chain shape.
【請求項3】 鉛衝突板は、鉛スプラッシュローターの
間、コンデンサーの上流側と下流側の両端または鉛スプ
ラッシュローターの撹拌羽根上方に設けた請求項1また
は2に記載の鉛スプラッシュコンデンサー設備。
3. The lead splash condenser equipment according to claim 1, wherein the lead collision plate is provided between the lead splash rotors, both upstream and downstream sides of the condenser, or above the stirring blades of the lead splash rotor.
JP1751295A 1995-01-09 1995-01-09 Lead splash condenser equipment Pending JPH08188837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1751295A JPH08188837A (en) 1995-01-09 1995-01-09 Lead splash condenser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1751295A JPH08188837A (en) 1995-01-09 1995-01-09 Lead splash condenser equipment

Publications (1)

Publication Number Publication Date
JPH08188837A true JPH08188837A (en) 1996-07-23

Family

ID=11946028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1751295A Pending JPH08188837A (en) 1995-01-09 1995-01-09 Lead splash condenser equipment

Country Status (1)

Country Link
JP (1) JPH08188837A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103184349A (en) * 2011-12-29 2013-07-03 广东先导稀材股份有限公司 High purity zinc preparation device and method
CN104858402A (en) * 2015-04-28 2015-08-26 天能电池(芜湖)有限公司 Discharging device for lead heating furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103184349A (en) * 2011-12-29 2013-07-03 广东先导稀材股份有限公司 High purity zinc preparation device and method
CN103184349B (en) * 2011-12-29 2014-07-23 广东先导稀材股份有限公司 High purity zinc preparation device and method
CN104858402A (en) * 2015-04-28 2015-08-26 天能电池(芜湖)有限公司 Discharging device for lead heating furnace

Similar Documents

Publication Publication Date Title
US4607825A (en) Ladle for the chlorination of aluminium alloys, for removing magnesium
JPH0432132B2 (en)
JP2856972B2 (en) Improvement of gas dispersion equipment for refining molten aluminum
EP0042196B1 (en) Apparatus for refining molten metal
JPH06341777A (en) Cooling method of high-temperature process gas
JPH08188837A (en) Lead splash condenser equipment
JP2010096403A (en) Non-ferrous metal smelting furnace
AU6169190A (en) Absorption of zinc vapour in molten lead
US5772955A (en) Apparatus for suspension smelting
US4530311A (en) Waste heat boiler construction
US4042379A (en) Condensation of zinc vapor
KR850000852B1 (en) Apparatus for refining molten aluminum
JPS5976815A (en) Molten salt tank
JP2009527722A (en) Structure and method for cooling a solution
JPH08503292A (en) Method and apparatus for cooling high temperature gas
US3351461A (en) Procedures for decomposing gaseous aluminum subhalide
EP0404070B1 (en) Mist recovery apparatus
JP3431314B2 (en) Electric smelting furnace for nonferrous metal smelting and method of charging raw slag
PL79743B1 (en)
US4484730A (en) Device for leaching copper from slags
KR100224146B1 (en) Method and apparatus for increasing the efficiency of a waste heat boiler
CN1087414C (en) Method and apparatus for improving heat and dust recovery in a waste heat boiler
US3169512A (en) Black liquor chemical recovery unit having an open gas pass
JP2009293090A (en) Lead splash condenser facility
JP4436122B2 (en) Prevention device for ash in snout of hot dipping line