JPH08188816A - Blowing method in converter - Google Patents

Blowing method in converter

Info

Publication number
JPH08188816A
JPH08188816A JP79495A JP79495A JPH08188816A JP H08188816 A JPH08188816 A JP H08188816A JP 79495 A JP79495 A JP 79495A JP 79495 A JP79495 A JP 79495A JP H08188816 A JPH08188816 A JP H08188816A
Authority
JP
Japan
Prior art keywords
oxygen
blowing
converter
flow rate
lance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP79495A
Other languages
Japanese (ja)
Inventor
Shinji Sasagawa
真司 笹川
Kimitoshi Yonezawa
公敏 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP79495A priority Critical patent/JPH08188816A/en
Priority to DE69627819T priority patent/DE69627819T2/en
Priority to AU43571/96A priority patent/AU693630B2/en
Priority to PCT/JP1996/000008 priority patent/WO1996021047A1/en
Priority to KR1019970704627A priority patent/KR100227066B1/en
Priority to CN96191366A priority patent/CN1059470C/en
Priority to US08/860,766 priority patent/US6017380A/en
Priority to EP96900181A priority patent/EP0802262B1/en
Priority to CA002209647A priority patent/CA2209647C/en
Publication of JPH08188816A publication Critical patent/JPH08188816A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE: To provide a converter blowing method, by which the metallurgical reaction and the operation in the converter can be improved, by using a converter lance nozzle, in which the flowing speed of the jet can widely be changed during blowing. CONSTITUTION: In the converter blowing method using the lance nozzle 1 for converter blowing, having two systems of oxygen line, an oxygen jetting hole 3 at the tip part of one system lance out of two systems is formed as a round shape and the other system 2 is formed into a rectangular shape having >=5 ratio of the long side to the short side or the similar shape and the other one system of the oxygen flowing quantity is in the range of 10-90% of the total oxygen flowing quantity, and the flowing speed is changed during blowing, and the oxygen flowing quantity in the system having the round oxygen jetting hole is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、上吹き転炉または上底
吹き転炉の吹錬方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blowing method for an upper blowing converter or an upper bottom blowing converter.

【0002】[0002]

【従来の技術】上吹き酸素の溶鋼湯面での噴流流速が大
きくなればスピッティングの発生による鉄歩留ロスが多
くなり、噴流流速を小さくすればスピッティングの発生
量が少なくなることは公知の事実である。そこで、例え
ば特開昭57−92123号公報、実開平1−1424
41号公報等に開示されているように、転炉でのスピッ
ティング低減を目的とした溶鋼湯面での酸素噴流流速低
下のために、吹錬用ランスノズルの酸素噴出孔の多孔
化、あるいは酸素吹付けランスノズル高さの上昇の方策
がとられている。
2. Description of the Related Art It is well known that when the jet velocity of top-blown oxygen on the surface of molten steel increases, the iron yield loss due to spitting increases, and when the jet velocity decreases, the amount of spitting decreases. Is a fact of. Then, for example, JP-A-57-92123, Japanese Utility Model Publication No. 1-1424.
As disclosed in Japanese Patent Publication No. 41, etc., in order to reduce the oxygen jet flow velocity on the molten steel surface for the purpose of reducing spitting in the converter, the oxygen jet holes of the blowing lance nozzle are made porous, or Measures have been taken to increase the height of the oxygen blowing lance nozzle.

【0003】しかし、吹錬用ランスノズルの酸素噴出孔
の多孔化は、ランスノズル先端部の限られた面積での孔
の配置となり、酸素噴流の合体が生じ、溶鋼湯面におい
ては酸素噴流速度の増加をもたらし、却ってスピッティ
ングが増大する。また、ランス先端部の冷却構造も複雑
となり、冷却不足が生じるという欠点を有している。ま
た、ランスノズル高さの上昇は、ノズルへの地金の付着
およびガス衝撃による転炉耐火物の溶損のため、狭い自
由度での選択を強いられる。また、上記の方法により、
仮に溶鋼湯面における酸素噴流速度の低下が実現して
も、吹錬末期においては脱炭酸素効率が低下し、鋼中酸
素、スラグ中酸素の上昇が生じ、歩留、品質等が悪化す
るという欠点を有している。
However, when the oxygen ejection holes of the blowing lance nozzle are made porous, the holes are arranged in a limited area at the tip of the lance nozzle, coalescing of the oxygen jets occurs, and the oxygen jet velocity at the molten steel surface. And increase spitting instead. In addition, the cooling structure of the tip of the lance becomes complicated, resulting in insufficient cooling. Further, the rise of the height of the lance nozzle is forced to be selected in a narrow degree of freedom because of adhesion of metal to the nozzle and melting damage of the converter refractory due to gas impact. Also, by the above method,
Even if the oxygen jet velocity on the molten steel surface decreases, the decarboxylation efficiency decreases at the end of blowing, and oxygen in steel and oxygen in slag increase, resulting in deterioration of yield, quality, etc. It has drawbacks.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前述した欠
点を解決し、多孔ランスノズルと比較して構造が単純
で、ランスノズル高さの比較的低い状態にて、低酸素流
速が得られ、さらに脱炭酸素効率向上のために高酸素流
速が必要な吹錬末期においては、2系統の酸素ラインの
一方の流量を増加させることにより、高酸素流速を保持
し得るランスノズルを用いる転炉吹錬方法を提供するこ
とを目的とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks and has a simple structure as compared with a porous lance nozzle, and a low oxygen flow rate can be obtained in a state where the height of the lance nozzle is relatively low. In the final stage of blowing, which requires a high oxygen flow rate to improve the efficiency of decarboxylation, a converter using a lance nozzle that can maintain a high oxygen flow rate by increasing the flow rate of one of the two oxygen lines. The purpose is to provide a blowing method.

【0005】すなわち、合計酸素流量、ノズル先端から
目標物までの距離は一定の状態で、ガス流速の変更がガ
ス噴出中に可能であり、また合計酸素流量、ノズル先端
から目標物までの距離の変更との組み合わせで、従来よ
りも大きなガス流速の変更が行えるランスノズルを用い
る転炉吹錬方法を提供するものである。
That is, while the total oxygen flow rate and the distance from the nozzle tip to the target object are constant, the gas flow velocity can be changed during gas ejection, and the total oxygen flow rate and the distance from the nozzle tip to the target object can be changed. It is intended to provide a converter blowing method using a lance nozzle, which can change a gas flow velocity larger than ever before in combination with a change.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの第1の発明の要旨とするところは、2系統の酸素ラ
インを有する転炉吹錬用ランスノズルを用いる転炉吹錬
方法において、2系統のうちの1系統の酸素流量を全送
酸量の10〜90%の範囲で、他の1系統の酸素流量を
全送酸量の90〜10%の範囲で吹錬中に変化させ、よ
り酸素噴出孔の少ない系統の送酸量を増加させることを
特徴とする転炉吹錬方法にある。
The gist of the first invention for achieving the above-mentioned object is to provide a converter blowing method using a converter blowing lance nozzle having two oxygen lines. The oxygen flow rate of one of the two systems changes within the range of 10 to 90% of the total oxygen supply amount, and the oxygen flow rate of the other one system changes within the range of 90 to 10% of the total acid supply amount during blowing. In this method, the amount of oxygen fed in the system having less oxygen ejection holes is increased, and the blowing method of the converter is characterized in that.

【0007】また、上記の目的を達成するための第2の
発明の要旨とするところは、2系統の酸素ラインを有す
る転炉吹錬用ランスノズルを用いる転炉吹錬方法におい
て、2系統のうち1系統のランス先端の酸素噴出孔を円
形とし、他の1系統を長辺と短辺との比が5以上の長方
形若しくはそれに準じる形とし、一方の系統の酸素流量
を全送酸量の10〜90%の範囲で、他方の系統の酸素
流量を全送酸量の90〜10%の範囲で吹錬中に変化さ
せ、円形の酸素噴出孔を有する系統の酸素流量を吹錬中
に増加させることを特徴とする転炉吹錬方法にある。
Further, the gist of the second invention for achieving the above object is that in a converter blowing method using a converter blowing lance nozzle having two lines of oxygen lines, Of these, one system has a circular oxygen ejection hole at the tip of the lance, and the other system has a rectangular shape with a ratio of the long side to the short side of 5 or more, or a similar form, and the oxygen flow rate of one system is set to the total oxygen transfer amount. In the range of 10 to 90%, the oxygen flow rate of the other system is changed during the blowing in the range of 90 to 10% of the total oxygen supply amount, and the oxygen flow rate of the system having a circular oxygen ejection hole is changed during the blowing. It is a converter blowing method characterized by increasing the number.

【0008】[0008]

【作用】図1は、本発明による転炉吹錬用酸素ランスノ
ズルの酸素噴出面の一例を示すものである。図1におい
て、1はランスノズル本体、2、3は酸素噴出孔であ
る。2、3の酸素は別系統により供されるものであり、
各々独立した流量制御が可能である。ここでは、2、3
の酸素系統をそれぞれ系統1、系統2と呼ぶこととす
る。
FIG. 1 shows an example of the oxygen ejection surface of the oxygen lance nozzle for converter blowing according to the present invention. In FIG. 1, 1 is a lance nozzle body, and 2 and 3 are oxygen ejection holes. A few oxygens are provided by another system,
Independent flow control is possible. Here, 2, 3
These oxygen systems will be referred to as system 1 and system 2, respectively.

【0009】また、図2は、同じく本発明による転炉吹
錬用酸素ランスノズルの酸素噴出面の他の一例を示すも
のである。図2においては、酸素噴出孔2(系統1)は
短冊型の噴出孔等噴出後の噴流減衰の大きな噴出孔とし
ており、酸素噴出孔3(系統2)は円形の噴出孔等噴出
後の噴出減衰の小さな噴出孔としている。吹錬初期〜中
期は、溶鉄中のC濃度が高いために、脱炭酸素効率は上
吹き酸素の攪拌力に依らず、ほぼ100%と高く、また
バブルバースト系のダストが多く発生する時期である。
この時期では、転炉吹錬はソフトブロー(溶鉄湯面での
低酸素噴流速度による吹錬)を指向すべきであり、系統
1の酸素流量を増加させ、系統2の酸素流量を減少させ
て系統1により主に吹錬を実行する。
FIG. 2 shows another example of the oxygen ejection surface of the oxygen lance nozzle for blowing the converter according to the present invention. In FIG. 2, the oxygen ejection holes 2 (system 1) are ejection holes after ejection, such as strip-shaped ejection holes, which have large damping, and the oxygen ejection holes 3 (system 2) are ejection after ejection such as circular ejection holes. It is an ejection hole with small damping. During the early and middle stages of blowing, the decarbonation efficiency is high at almost 100% regardless of the stirring force of the top-blown oxygen, and the amount of bubble burst type dust is large, because the C concentration in the molten iron is high. is there.
At this time, the converter blowing should be directed to soft blow (blown by low oxygen jet velocity on the molten iron surface) to increase the oxygen flow rate of system 1 and decrease the oxygen flow rate of system 2. The system 1 is mainly used for blowing.

【0010】逆に、吹錬末期は脱炭酸素効率が低下して
くる領域であるため、脱炭酸素効率確保のためにハード
ブロー(溶鉄湯面での高酸素噴流速度による吹錬)を指
向するべきであり、系統1の酸素流量を減少させ、系統
2の酸素流量を増加させて系統2により主に吹錬を実行
する。以上の2系統の各酸素流量を吹錬の各時期により
適切に制御することを、従来から行われているランスハ
イト(溶鉄からランス先端までの高さ)の制御と組み合
わせて行うことにより、溶鉄湯面での酸素噴流速度の制
御を、従来よりも広い範囲で行うことが可能である。
On the contrary, in the final stage of blowing, the decarbonization efficiency is in a region where it decreases, so that a hard blow (blowing by a high oxygen jet velocity on the molten iron surface) is aimed at to secure the decarbonization efficiency. The oxygen flow rate of the system 1 is decreased, the oxygen flow rate of the system 2 is increased, and the system 2 mainly performs blowing. By appropriately controlling the oxygen flow rate of each of the above two systems according to each timing of blowing, by combining it with the control of the lance height (the height from the molten iron to the tip of the lance) that has been conventionally performed, molten iron can be obtained. It is possible to control the oxygen jet velocity on the molten metal surface in a wider range than before.

【0011】また、各系統の酸素流量を全送酸量の10
〜90%に規定しているのは、全送酸量の10%以下の
送酸量では、ランスの酸素噴出孔の内部に溶鋼からの地
金が進入してくるおそれがあるためである。さらに、第
2の発明において、長方形と円形の酸素噴出孔の組み合
わせとしているのは、長方形の噴出孔からの噴流は円形
のそれと比較して、格段に減衰が大きく、噴流速度が小
さく(ソフトブロー)なるためである。
Further, the oxygen flow rate of each system is set to 10
The reason for defining 90% to 90% is that there is a possibility that the metal from the molten steel may enter into the oxygen ejection holes of the lance at an oxygen transfer amount of 10% or less of the total oxygen transfer amount. Further, in the second aspect of the invention, the combination of the rectangular and circular oxygen ejection holes is that the jet from the rectangular ejection hole has much greater damping and a smaller jet velocity (soft blow) than the circular jet. This is because

【0012】[0012]

【実施例】表1に実施例として、ノズル先端部の形状、
サイズとダスト発生量およびその他の諸条件を示す。実
施例1では、直径がそれぞれ50mm、33mmの円形
の酸素噴出孔を有するランスノズルにて吹錬した結果、
通常の吹錬と比較して、ダスト発生量が平均4kg/t
on減少した。また、実施例2では、直径33mmの円
形の酸素噴出孔と、20mm×196mmの長方形の酸
素噴出孔を有するランスノズルにて吹錬した結果、通常
の吹錬と比較して、ダスト発生量が平均7kg/ton
減少した。
[Examples] Table 1 shows an example of the shape of the nozzle tip,
The size, the amount of dust generated, and other conditions are shown. In Example 1, as a result of blowing with a lance nozzle having circular oxygen ejection holes having diameters of 50 mm and 33 mm, respectively,
Compared to normal blowing, the amount of dust generated is 4 kg / t on average
on decreased. Further, in Example 2, as a result of blowing with a lance nozzle having a circular oxygen ejection hole having a diameter of 33 mm and a rectangular oxygen ejection hole having a diameter of 20 mm × 196 mm, the amount of dust generated was larger than that in normal blowing. Average 7kg / ton
Diminished.

【0013】なお、実施例に示したランスノズルの酸素
噴出孔の面積合計は、ともに通常のランスノズルと等し
く設計してある。
The total area of the oxygen ejection holes of the lance nozzle shown in the embodiments is designed to be equal to that of a normal lance nozzle.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】吹錬中に大幅な噴流の流速変更が可能な
転炉ランスノズルを用いる本発明法により、溶鉄湯面で
の酸素噴流速度を吹錬中に変化できる範囲がさらに広が
り、転炉炉内の冶金反応および操業を著しく改善するこ
とができる。
According to the method of the present invention which uses a converter lance nozzle capable of drastically changing the jet flow velocity during blowing, the range in which the oxygen jet velocity on the molten iron surface can be changed during blowing is further expanded. The metallurgical reaction and operation in the furnace can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1で使用した吹錬中に大幅な噴
流の流速変更が可能な転炉ランスノズルの酸素噴出面の
一例を示す図である。
FIG. 1 is a diagram showing an example of an oxygen ejection surface of a converter lance nozzle capable of significantly changing the flow velocity of a jet flow during blowing used in Example 1 of the present invention.

【図2】本発明の実施例2で使用した吹錬中に大幅な噴
流の流速変更が可能な転炉ランスノズルの酸素噴出面の
一例を示す図である。
FIG. 2 is a diagram showing an example of an oxygen ejection surface of a converter lance nozzle capable of significantly changing the flow velocity of a jet flow during blowing used in Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 ランスノズル本体 2、3 酸素噴出孔 1 Lance nozzle body 2, 3 Oxygen ejection holes

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2系統の酸素ラインを有する転炉吹錬用
ランスノズルを用いる転炉吹錬方法において、2系統の
うちの1系統の酸素流量を全酸素量の10〜90%の範
囲で、他の1系統の酸素流量を全酸素量の90〜10%
の範囲で吹錬中に変化させ、より酸素噴出孔の少ない系
統の送酸量を増加させることを特徴とする転炉吹錬方
法。
1. A converter blowing method using a converter blowing lance nozzle having two oxygen lines, wherein the oxygen flow rate of one of the two systems is in the range of 10 to 90% of the total oxygen content. , The oxygen flow rate of the other system is 90-10% of the total oxygen amount
The method of blowing a converter is characterized in that the amount of oxygen is increased in a system having a smaller number of oxygen ejection holes to increase the amount of oxygen fed.
【請求項2】 2系統の酸素ラインを有する転炉吹錬用
ランスノズルを用いる転炉吹錬方法において、2系統の
うち1系統のランス先端の酸素噴出孔を円形とし、他の
1系統を長辺と短辺との比が5以上の長方形若しくはそ
れに準じる形とし、一方の系統の酸素流量を全送酸量の
10〜90%の範囲で、他方の系統の酸素流量を全送酸
量の90〜10%の範囲で吹錬中に変化させ、円形の酸
素噴出孔を有する系統の酸素流量を吹錬中に増加させる
ことを特徴とする転炉吹錬方法。
2. A converter blowing method using a converter blowing lance nozzle having two lines of oxygen lines, wherein one of two lines has a circular oxygen ejection hole at the tip of the lance and the other one line The ratio of the long side to the short side is a rectangle with a ratio of 5 or more or a similar shape, and the oxygen flow rate of one system is in the range of 10 to 90% of the total oxygen transfer rate, and the oxygen flow rate of the other system is the total oxygen transfer rate. Of 90% to 10% of the same during blowing, and increasing the oxygen flow rate of the system having a circular oxygen ejection hole during blowing.
JP79495A 1995-01-06 1995-01-06 Blowing method in converter Withdrawn JPH08188816A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP79495A JPH08188816A (en) 1995-01-06 1995-01-06 Blowing method in converter
DE69627819T DE69627819T2 (en) 1995-01-06 1996-01-05 METHOD FOR REFRESHING IN A CONVERTER FROM ABOVE WITH OUTSTANDING RESEARCH PROPERTIES AND BLOWERS FOR REFRESHING FROM ABOVE
AU43571/96A AU693630B2 (en) 1995-01-06 1996-01-05 Converter top-blow refining method having excellent decarburization characteristics and top-blow lance for converter
PCT/JP1996/000008 WO1996021047A1 (en) 1995-01-06 1996-01-05 Converter top-blow refining method having excellent decarburization characteristics and top-blow lance for converter
KR1019970704627A KR100227066B1 (en) 1995-01-06 1996-01-05 Converter top blow refining method having excellent decarburization characteristics and top blow lance for converter
CN96191366A CN1059470C (en) 1995-01-06 1996-01-05 Converter top-blow refining method having excellent decarburization characteristics and top-blow lance for converter
US08/860,766 US6017380A (en) 1995-01-06 1996-01-05 Top-blown refining method in converter featuring excellent decarburization and top-blown lance for converter
EP96900181A EP0802262B1 (en) 1995-01-06 1996-01-05 Converter top-blow refining method having excellent decarburization characteristics and top-blow lance for converter
CA002209647A CA2209647C (en) 1995-01-06 1996-01-05 A top-blown refining method in converter featuring excellent decarburization and top-blown lance for converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP79495A JPH08188816A (en) 1995-01-06 1995-01-06 Blowing method in converter

Publications (1)

Publication Number Publication Date
JPH08188816A true JPH08188816A (en) 1996-07-23

Family

ID=11483594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP79495A Withdrawn JPH08188816A (en) 1995-01-06 1995-01-06 Blowing method in converter

Country Status (1)

Country Link
JP (1) JPH08188816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102318509B1 (en) * 2020-05-14 2021-10-28 주식회사 포스코 Lance apparatus and refining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102318509B1 (en) * 2020-05-14 2021-10-28 주식회사 포스코 Lance apparatus and refining method

Similar Documents

Publication Publication Date Title
CA2397551C (en) Converter oxygen blowing method and upward blowing lance for converter oxygen blowing
JP4830825B2 (en) Refining method in converter type refining furnace
JPH10176212A (en) Method for preventing flow-out of slag at the time of discharging molten steel
JP5822073B2 (en) Converter refining method with excellent dust generation suppression effect
JP7003947B2 (en) Top-blown lance and molten iron refining method
JPH08188816A (en) Blowing method in converter
JPH0841524A (en) Decarburize-refining of molten chromium-containing steel
JP5884197B2 (en) Converter refining method
JPH1112633A (en) Lance for refining molten metal and refining method
JP3424534B2 (en) Top blowing lance for refining molten metal
JP3309301B2 (en) Converter refining method and refining lance
JP2561032Y2 (en) Lance for steel making
JPH1030110A (en) Method for blowing oxygen in top-bottom combination-blown converter
JP2001131629A (en) Top-blown lance for dephosphorizing molten iron and dephosphorizing method of molten iron
JP2002212623A (en) Converter oxygen blowing method and upward blowing lance for converter oxygen blowing
JPH08269530A (en) Top blowing lance
JPH11158529A (en) Lance for refining
JPH08246017A (en) Method for blowing oxygen by top-blowing in converter having good yield
JPH1192815A (en) Converter blowing for restraining generation of dust
JP4862860B2 (en) Converter blowing method
JPH0860220A (en) Efficient converter refining method for low carbon steel
JPH0813018A (en) Oxygen lance nozzle for converter blowing
JP2000256724A (en) Converter steelmaking method excellent in stability of operation
JP2000303114A (en) Method for refining molten metal
JP3619338B2 (en) Method of injecting gas into molten metal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402