JPH08188783A - Method for removing carbon monoxide in reformed gas - Google Patents

Method for removing carbon monoxide in reformed gas

Info

Publication number
JPH08188783A
JPH08188783A JP7003505A JP350595A JPH08188783A JP H08188783 A JPH08188783 A JP H08188783A JP 7003505 A JP7003505 A JP 7003505A JP 350595 A JP350595 A JP 350595A JP H08188783 A JPH08188783 A JP H08188783A
Authority
JP
Japan
Prior art keywords
reformed gas
catalyst
gas
concentration
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7003505A
Other languages
Japanese (ja)
Inventor
Junji Niikura
順二 新倉
Eiichi Yasumoto
栄一 安本
Kazuhito Hado
一仁 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7003505A priority Critical patent/JPH08188783A/en
Publication of JPH08188783A publication Critical patent/JPH08188783A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To widely and easily reduce the CO content in a reformed gas even in a small-sized apparatus by mixing the reformed gas with oxygen and subsequently passing the mixed gas through a layer of a specific CO-selective oxidation catalyst. CONSTITUTION: At first, a reformed gas obtained from a hydrocarbon raw fuel (e.g. methanol) is mixed with oxygen in a ratio of <=20vol.% based on the reformed gas. Subsequently, the mixed gas is passed through a layer of CO-selective oxidation catalyst consisting of copper oxide and manganese oxide to reduce the CO content in the reformed gas to <=0.1%. The CO-selective oxidation catalyst layer is preferably operated at 50-180 deg.C. Further, the catalyst is preferably used in a state in which the surface activity is lowered in advance. The reduction of catalyst activity is achieved e.g. by exposing the catalyst to the atmosphere for a long time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素系原燃料を改
質して得られる改質ガス中に含まれるCOを選択的にC
2に酸化することによって、改質ガス中のCO濃度を
大きく低下させる方法に関するものである。特に、低温
動作型燃料電池の燃料供給用等として用いられる炭化水
素改質システムにおいて、その最終段階で改質ガス中の
含有CO量を極力低下させる必要がある場合等がその主
な利用分野である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention selectively converts CO contained in a reformed gas obtained by reforming a hydrocarbon raw fuel into C
The present invention relates to a method of greatly reducing the CO concentration in a reformed gas by oxidizing it to O 2 . In particular, in a hydrocarbon reforming system used as a fuel supply for a low temperature operation type fuel cell, the case where it is necessary to reduce the CO content in the reformed gas as much as possible at the final stage is a main field of use thereof. is there.

【0002】[0002]

【従来の技術】炭化水素の改質技術は、化学プラント等
の用途において広く実用されている。一般的な改質方法
は以下のようなものである。まず、改質触媒を用い、水
蒸気改質反応または熱分解反応等によって、原料である
炭化水素からH2を主成分とする改質ガスを発生させ
る。通常の場合、目的とされるガスはH2であるため、
次に改質ガス中に相当量含有されるCOをH2Oと反応
させ、H2とCO2に転換するCO変成反応が利用され
る。このように2種類の反応により、CO含有量が低
く、H2の含有率の高い改質ガスを得るのが一般的であ
る。
2. Description of the Related Art Hydrocarbon reforming technology is widely used in applications such as chemical plants. A general reforming method is as follows. First, a reforming gas containing H 2 as a main component is generated from a hydrocarbon as a raw material by a steam reforming reaction or a thermal decomposition reaction using a reforming catalyst. Usually, the target gas is H 2 , so
Next, a CO conversion reaction in which a large amount of CO contained in the reformed gas is reacted with H 2 O to convert it into H 2 and CO 2 is used. As described above, it is general to obtain a reformed gas having a low CO content and a high H 2 content by the two kinds of reactions.

【0003】メタノールを原料として用いた場合の水蒸
気改質反応、熱分解反応およびCO変成反応の代表的な
反応式をそれぞれ式(1)、(2)および(3)に示
す。現実には、ここに示した以外の多様な反応が並行し
て起きているものと考えられる。いずれにせよ、こうし
た反応の結果得られる改質ガスは、H2を主成分(70
〜80%)としており、これにCO2およびH2O、CO
等が含まれる。
Typical reaction formulas of steam reforming reaction, thermal decomposition reaction and CO conversion reaction when methanol is used as a raw material are shown in formulas (1), (2) and (3), respectively. In reality, various reactions other than those shown here are thought to occur in parallel. In any case, the reformed gas obtained as a result of such a reaction contains H 2 as a main component (70
-80%), and CO 2 and H 2 O, CO
Etc. are included.

【0004】[0004]

【化1】 Embedded image

【0005】実際の化学プラント等において行われる改
質では、さらに高純度のH2を得る必要のある場合が多
く、この場合には圧力スイング吸着法(PSA法)等の
分離技術を用いてCO等の不純物ガスの除去が行われて
いる。こうした一般的に行われる炭化水素の改質は、大
型装置による改質であるため、PSA法のような大がか
りな方法を用いてCOを含まない改質ガス、あるいは純
度の高い水素等を得ることができる。
In the reforming carried out in an actual chemical plant or the like, it is often necessary to obtain H 2 of higher purity. In this case, CO 2 is produced by using a separation technique such as a pressure swing adsorption method (PSA method). Impurity gas such as is removed. Since such reforming of hydrocarbons that is generally performed is reforming with a large-scale apparatus, a reformed gas that does not contain CO or high-purity hydrogen can be obtained by using a large-scale method such as the PSA method. You can

【0006】一方、近年燃料電池の原燃料として炭化水
素を用い、それを改質して水素リッチなガスとして用い
ることが行われている。燃料電池のなかでも溶融炭酸塩
型燃料電池、固体電解質型等の高温型燃料電池では、C
Oも燃料として利用できるため、改質ガス中のCOを除
去する必要はない。しかし、動作温度が200℃前後の
リン酸型燃料電池では、改質ガス中に含まれるCOが電
極の白金触媒を被毒するため、CO濃度を少なくとも
0.5%以下にまで低減する必要が生じてくる。まだこ
の程度のレベルであれば、現在の進んだCO変成触媒に
よりCO濃度をCO変成反応だけで充分対応することが
できる。
On the other hand, in recent years, hydrocarbons have been used as a raw fuel for fuel cells and reformed to be used as a hydrogen-rich gas. Among the fuel cells, a molten carbonate fuel cell, a high temperature fuel cell such as a solid electrolyte fuel cell,
Since O can also be used as a fuel, it is not necessary to remove CO in the reformed gas. However, in a phosphoric acid fuel cell with an operating temperature of around 200 ° C., CO contained in the reformed gas poisons the platinum catalyst of the electrode, so it is necessary to reduce the CO concentration to at least 0.5% or less. Will occur. If the level is still at this level, the CO concentration can be sufficiently dealt with only by the CO shift reaction by the present advanced CO shift catalyst.

【0007】しかし、高分子固体電解質型燃料電池に代
表されるようなさらに低温(室温〜100℃前後)で動
作する燃料電池においては、CO濃度をppmオーダー
にまで低減させる必要がある。これは燃料電池の動作温
度が低くなると、燃料電池の電極に用いられている白金
触媒へのCOの吸着被毒が起こり易くなるなるためであ
る。近年では、こうした現象に対処すべく100ppm
レベルのCOに対しても優れた耐性を有する白金触媒が
開発されてきてはいる。しかし、一般的なCO変成反応
のみでこのレベル以下にまでCO濃度を低減することは
極めて困難である。
However, in a fuel cell typified by a polymer electrolyte fuel cell which operates at a lower temperature (room temperature to around 100 ° C.), it is necessary to reduce the CO concentration to the ppm order. This is because when the operating temperature of the fuel cell is lowered, the adsorption and poisoning of CO on the platinum catalyst used for the electrode of the fuel cell is likely to occur. In recent years, 100ppm to cope with such phenomenon
Platinum catalysts having excellent resistance to CO levels have been developed. However, it is extremely difficult to reduce the CO concentration below this level only by a general CO conversion reaction.

【0008】高分子固体電解質型燃料電池においても、
ある程度規模が大きく、例えば出力数10kW以上の燃
料電池に燃料を供給するシステムであれば、CO変成の
後段において、例えばパラジウム膜を用いた水素分離法
を採用することが可能である。ただし、この場合には、
改質ガスを加圧する必要があり、また分離されたCO等
の不純物ガスをパージ除去する必要があるため、バッチ
運転ないしは複数の水素分離系を切り換え運転する必要
がある。また、パラジウム膜を用いた場合、改質ガス中
に含まれる高濃度のCO、CO2等によってパラジウム
膜自体が劣化するという問題やコストの問題もある。
Also in the solid polymer electrolyte fuel cell,
If the system supplies a fuel to a fuel cell having a large scale to some extent, for example, an output of 10 kW or more, a hydrogen separation method using a palladium membrane, for example, can be adopted in the subsequent stage of CO conversion. However, in this case,
Since it is necessary to pressurize the reformed gas and to purge and remove the separated impurity gas such as CO, it is necessary to perform a batch operation or a switching operation of a plurality of hydrogen separation systems. Further, when the palladium film is used, there are problems that the palladium film itself is deteriorated by high concentration CO, CO 2 and the like contained in the reformed gas, and there is a problem of cost.

【0009】一方、高分子固体電解質型燃料電池等の低
温動作型燃料電池は、そのコンパクト性、高出力密度等
のメリットにより多方面での利用が期待されている。例
えば、小型の改質器とともに用いることにより、可搬型
の電源あるいは移動型ロボットの電源等としても利用可
能である。また、電気自動車の電源として利用すること
も検討されている。しかし、これら比較的小型のシステ
ムの応用展開を考えた場合、燃料源として水素ボンベ等
を利用できるような極めて限定された用途以外では、そ
の燃料である水素の供給源をどうするかが実用上の大き
な問題となっている。すなわち、炭化水素を改質して水
素リッチなガスを得ようとしても、CO変成反応のみで
はせいぜい0.1%程度までしかCO濃度を低減できな
い問題がある。一方で、前述のような分離技術を用いる
と、高価で大がかりな装置となることが避け難いという
問題があり、小型システムの実現は困難となる。こうし
た状況を打開できるような極めて小規模の改質器におい
てCO濃度を大きく低減させることができ、かつコンパ
クト性、簡便性、安全性とともに優れたCO除去法はこ
れまでなかった。
On the other hand, low-temperature operation type fuel cells such as solid polymer electrolyte fuel cells are expected to be used in various fields due to their advantages such as compactness and high output density. For example, when used with a small reformer, it can be used as a portable power source or a mobile robot power source. Also, utilization as a power source for electric vehicles is being considered. However, when considering the application and development of these relatively small-sized systems, what to do with the hydrogen source, which is the fuel, is practically used, except for the extremely limited use where a hydrogen cylinder or the like can be used as a fuel source. It's a big problem. That is, even if an attempt is made to reform a hydrocarbon to obtain a hydrogen-rich gas, there is a problem that the CO concentration can be reduced to about 0.1% at most by the CO shift reaction. On the other hand, when the separation technique as described above is used, there is a problem that an expensive and large-scale device is unavoidable, which makes it difficult to realize a small system. There has been no CO removal method capable of greatly reducing the CO concentration in an extremely small-scale reformer capable of overcoming such a situation and being excellent in compactness, convenience, and safety.

【0010】[0010]

【発明が解決しようとする課題】前述のように炭化水素
改質の低温型燃料電池等への応用を考えた場合、改質ガ
ス中のCO濃度は0.1%以下、さらには10ppmオ
ーダーにまで低減させることが望まれる。従って、本発
明は、小規模な装置においても改質ガス中のCO濃度を
前記のような低濃度にまで低減させる簡便な方法を提供
することを目的とする。
When the application of hydrocarbon reforming to low-temperature fuel cells is considered as described above, the CO concentration in the reformed gas is 0.1% or less, and even 10 ppm order. It is desired to reduce Therefore, an object of the present invention is to provide a simple method for reducing the CO concentration in the reformed gas to the low concentration as described above even in a small-scale apparatus.

【0011】[0011]

【課題を解決するための手段】本発明のCO除去法は、
炭化水素系原燃料を改質して得られる改質ガスに空気を
改質ガス基準で20vol%(改質ガス100volに
対して20vol)以下の割合で混合し、前記混合ガス
を酸化銅と酸化マンガンからなるCO選択酸化触媒層を
通過させることによって、改質ガス中のCO濃度を0.
1%以下に低減させるものである。ここで、CO選択酸
化触媒層を50〜180℃の温度範囲で動作させること
が好ましい。また、CO選択酸化触媒を、あらかじめ表
面活性を低下させた状態で使用することが好ましい。
The CO removal method of the present invention comprises:
Air is mixed with a reformed gas obtained by reforming a hydrocarbon-based raw fuel at a ratio of 20 vol% or less (20 vol with respect to 100 vol of reformed gas) based on the reformed gas, and the mixed gas is oxidized with copper oxide. By passing through the CO selective oxidation catalyst layer made of manganese, the CO concentration in the reformed gas was reduced to 0.
It is to be reduced to 1% or less. Here, it is preferable to operate the CO selective oxidation catalyst layer in a temperature range of 50 to 180 ° C. Further, it is preferable to use the CO selective oxidation catalyst in a state where the surface activity is reduced in advance.

【0012】また、本発明のCO除去法は、炭化水素系
原燃料を改質して得られる改質ガスに空気を改質ガス基
準で20vol%以下の割合で混合し、前記混合ガスを
金と酸化鉄からなり温度50〜230℃のCO選択酸化
触媒層を通過させることによって、改質ガス中のCO濃
度を0.1%以下に低減させるものである。
Further, in the CO removal method of the present invention, air is mixed with a reformed gas obtained by reforming a hydrocarbon-based raw fuel at a ratio of 20 vol% or less based on the reformed gas, and the mixed gas is mixed with gold. By passing through a CO selective oxidation catalyst layer having a temperature of 50 to 230 ° C. and containing iron oxide, the CO concentration in the reformed gas is reduced to 0.1% or less.

【0013】[0013]

【作用】CO選択酸化触媒として酸化銅/酸化マンガン
系触媒を用いた場合、この触媒は触媒単独でもCOを選
択的に酸化する能力が優れ、O2等が共存しなくても機
能する。しかし、現実には改質ガス中の主成分であるH
2をも多少酸化するため、これにCO酸化による消費も
重なり、酸化マンガン中の酸素原子が急速に失われる。
こうして前記触媒はその効力を極めて短時間の内に全く
失ってしまう。しかし、改質ガスに20vol%以下の
割合で空気を混合してから触媒層に通した場合、混合し
た空気中の酸素が前記の選択酸化触媒を介してCOの酸
化等に用いられるため、より長時間使用することができ
る。また、触媒層を50〜180℃の限定された温度範
囲で動作させ、また触媒の活性を、あらかじめ低下させ
た状態で使用することで、CO選択性を高いレベルに保
ちつつ、かつ酸化反応による異常過熱と暴走を予防する
ことができる。
When a copper oxide / manganese oxide-based catalyst is used as the CO selective oxidation catalyst, this catalyst alone has an excellent ability to selectively oxidize CO, and functions even if O 2 and the like do not coexist. However, in reality, the main component of the reformed gas, H
Since 2 is also oxidized to some extent, this is also consumed by CO oxidation, and oxygen atoms in manganese oxide are rapidly lost.
The catalyst thus completely loses its effectiveness in a very short time. However, when the reformed gas is mixed with air at a ratio of 20 vol% or less and then passed through the catalyst layer, the oxygen in the mixed air is used for the oxidation of CO and the like via the selective oxidation catalyst. Can be used for a long time. In addition, by operating the catalyst layer in a limited temperature range of 50 to 180 ° C. and using the catalyst with its activity lowered in advance, CO selectivity can be maintained at a high level and oxidation by the oxidation reaction can be performed. It can prevent abnormal overheating and runaway.

【0014】また、金/酸化鉄系のCO選択酸化触媒を
用いた場合、この触媒はそれ自身がCOを酸化する能力
はなく、O2等が共存する場合にこれを用いてCOを選
択的に酸化することができる。一般に改質ガス中にはほ
とんどO2が存在しないため、改質ガスをこの触媒に通
してもCO酸化は起こらないが、本発明の方法では20
vol%以下の割合で空気を混合してから触媒層に通す
ため、COの酸化が起こる。このようにしてCOをCO
2に酸化した改質ガスは、条件を整えた場合にはCO濃
度を10ppm前後にまで低下させることができる。一
方、H2の一部も酸化されるがその量は容認し得る程度
であり、COの酸化で生成するCO2は元来改質ガス中
に20%前後含有されるものであり、また高分子固体電
解質型燃料電池等への悪影響も無視できるもので、この
まま燃料として使用することが可能となる。
When a gold / iron oxide-based CO selective oxidation catalyst is used, the catalyst itself has no ability to oxidize CO, and when O 2 and the like coexist, it is used to selectively CO. Can be oxidized to Generally, since almost no O 2 is present in the reformed gas, CO oxidation does not occur even though the reformed gas is passed through this catalyst.
Since the air is mixed at a ratio of not more than vol% and is then passed through the catalyst layer, CO oxidation occurs. In this way CO
The reformed gas oxidized to 2 can reduce the CO concentration to around 10 ppm when the conditions are adjusted. On the other hand, a part of H 2 is also oxidized, but its amount is acceptable, and the CO 2 produced by the oxidation of CO is originally contained in the reformed gas at about 20%, and is high. The adverse effect on the molecular solid oxide fuel cell and the like can be ignored, and the fuel can be used as it is as a fuel.

【0015】[0015]

【実施例】以下に本発明によるCO除去法の実施例を述
べる。 [実施例1]本実施例に用いたCO除去装置の概略構成
を図1に示す。直径15mmのガラス管1に、メタノー
ルを原燃料とする改質部2、これに続くCO変成部3、
およびCO除去部4が設置されている。CO変成部3と
CO除去部4の間の流路には空気の混合ノズル4があ
り、改質ガスの流量に応じて所定の空気が混合される。
本実施例では簡便な方法としてベンチュリー方式によ
り、改質ガスの流量に応じて一定量の空気が混入される
構造になっている。CO除去部4は円筒状であり、内部
には顆粒状のCO選択酸化触媒70gが充填されてい
る。本実施例ではCO選択酸化触媒に、酸化銅/酸化マ
ンガン系触媒として25重量%のCuOと75重量%の
MnO2の混合物を用いている。この系の触媒は、通称
ホプカリットとして知られ、CO防毒マスク等に古くか
ら実用されている。
EXAMPLES Examples of the CO removal method according to the present invention will be described below. [Embodiment 1] FIG. 1 shows a schematic configuration of a CO removing apparatus used in this embodiment. In a glass tube 1 having a diameter of 15 mm, a reforming section 2 using methanol as a raw fuel, a CO conversion section 3 following the reforming section 2,
And a CO removal unit 4 is installed. An air mixing nozzle 4 is provided in the flow path between the CO shift conversion unit 3 and the CO removal unit 4, and predetermined air is mixed according to the flow rate of the reformed gas.
In this embodiment, as a simple method, a Venturi method is used to have a structure in which a fixed amount of air is mixed according to the flow rate of the reformed gas. The CO removing unit 4 has a cylindrical shape and is filled with 70 g of granular CO selective oxidation catalyst. In this example, a mixture of 25 wt% CuO and 75 wt% MnO 2 was used as the copper oxide / manganese oxide catalyst for the CO selective oxidation catalyst. This type of catalyst is commonly known as hopcalit and has been used for a long time in CO gas masks and the like.

【0016】改質部2の温度を350℃、CO変成部3
の温度を220℃とし、メタノールと水をモル比1:2
の割合で混合した混合溶液を気化して改質部に供給し
た。CO除去部4は室温とし、空気混合量は改質ガス流
量(水蒸気を除く)に対して0〜20vol%(改質ガ
ス100volに対する値、以下同じ)の間で変化さ
せ、出口におけるCO濃度およびH2濃度を測定した。
また、この触媒は触媒自身が徐々に消耗し活性がなくな
り、その場合には触媒を交換する必要があるため、各場
合についてCO除去作用が著しく低下するまでの持続時
間を測定した。結果を表1に示す。なお、CO変成部か
らの出口ガス組成は、H2が75%前後、COは0.3
5〜0.4%、すなわち3500〜4000ppmであ
り、CO2は24%前後であり、乾燥ガス流量は約2L
/分であった。
The temperature of the reforming section 2 is 350 ° C., and the CO shift conversion section 3
The temperature of 220 ° C and the molar ratio of methanol and water is 1: 2.
The mixed solution mixed in the ratio of was vaporized and supplied to the reforming section. The CO removal unit 4 is at room temperature, and the air mixing amount is changed between 0 and 20 vol% (value for reformed gas 100 vol, the same below) with respect to the reformed gas flow rate (excluding steam), and the CO concentration at the outlet and The H 2 concentration was measured.
Further, since the catalyst itself was gradually consumed and lost its activity, and in that case it was necessary to replace the catalyst, the duration until the CO removal action was remarkably lowered was measured in each case. The results are shown in Table 1. The composition of the exit gas from the CO shift section is about 75% H 2 and 0.3 CO.
5 to 0.4%, that is, 3500 to 4000 ppm, CO 2 is around 24%, and the dry gas flow rate is about 2 L.
/ Min.

【0017】[0017]

【表1】 [Table 1]

【0018】この結果からわかるとおり、空気の混合比
率によって値は異なるが酸化銅/酸化マンガン系からな
るCO選択酸化触媒で処理することにより、CO濃度が
大きく低下していることがわかる。ただし、触媒のCO
選択性は完璧でないため、酸素の多くは水素の酸化に消
費されている。また、空気の混合割合によって触媒の持
続時間に大きな差が現れている。これは空気が混合され
ない場合には、COやH2の酸化に使用できる酸素原子
として触媒自身が保有する酸素原子のみしかないのと比
較して、空気が混合された場合にはO2を酸化に利用で
きるため、触媒自身の消耗が遅らされるためである。以
上の結果を総合的に判断すると、空気混合量を10vo
l%付近とした場合には、CO濃度は10ppm前後と
充分低い値にまで下がり、一方のH2濃度は70%近く
を保持することができるため、最適な混合比率であると
いえる。
As can be seen from the results, although the value varies depending on the mixing ratio of air, the CO concentration is greatly reduced by the treatment with the CO selective oxidation catalyst of copper oxide / manganese oxide system. However, the catalyst CO
Much of the oxygen is consumed in the oxidation of hydrogen because the selectivity is not perfect. Further, there is a large difference in the duration of the catalyst depending on the mixing ratio of air. Compared with the fact that when air is not mixed, there are only oxygen atoms that the catalyst itself has as oxygen atoms that can be used for CO and H 2 oxidation, but when air is mixed, O 2 is oxidized. It is possible to delay the consumption of the catalyst itself because it can be used for. Judging the above results comprehensively, the air mixing amount is 10 vo
When it is set to around 1%, the CO concentration drops to a sufficiently low value of around 10 ppm, while the H 2 concentration on one side can be maintained at around 70%, so it can be said that this is the optimum mixing ratio.

【0019】この実施例の場合には、基本的な要求を満
たすことはできるが問題点もある。すなわち、過度な触
媒活性あるいは局所的な流れやガス組成の偏り等に起因
するとみられる上流部での局部的な異常発熱がまれに発
生し、相当量のH2酸化と急速な触媒の劣化が認められ
る点である。さらに、外気温と改質ガスの流量等の条件
によっては、改質ガス中に含有される水蒸気、さらには
CO選択酸化触媒によって不可避的に起こるH2酸化に
よって発生した水蒸気等が触媒層で凝縮する場合がある
点である。なお、H2を主成分とする改質ガス中に空気
を混合することに関しては、爆発の危険性を考慮する必
要があるが、ガス混合後直ちに触媒層に導入される構造
をとり、配管系内の自由空間を小さくすることで爆発の
危険性はほとんどなくなる。また、異常発熱が起きた際
にも爆発が起きた例はなく、この点でも安全性は実証さ
れていると考えられる。また、空気混合量を極力低減す
ることで、万一の場合にも爆発の威力を配管系が充分耐
えることができる範囲に抑えることができる
In the case of this embodiment, the basic requirements can be satisfied, but there is a problem. That is, local abnormal heat generation in the upstream, which is considered to be caused by excessive catalytic activity or local flow or bias in gas composition, rarely occurs, and a considerable amount of H 2 oxidation and rapid catalyst deterioration occur. This is a point that is recognized. Further, depending on the conditions such as the outside air temperature and the flow rate of the reformed gas, the steam contained in the reformed gas and the steam generated by the H 2 oxidation inevitably caused by the CO selective oxidation catalyst are condensed in the catalyst layer. There is a point to do. Regarding the mixing of air into the reformed gas containing H 2 as a main component, it is necessary to consider the danger of explosion, but the structure is such that it is introduced into the catalyst layer immediately after gas mixing, and the piping system By reducing the free space inside, there is almost no danger of explosion. Moreover, there is no case where an explosion occurred even when abnormal heat was generated, and it is considered that safety is also verified in this respect. In addition, by reducing the air mixing amount as much as possible, the power of the explosion can be suppressed to a range that the piping system can withstand in case of emergency.

【0020】[実施例2]本実施例は、実施例1で見ら
れた不都合の一部を改善したものであ。改質部およびC
O変成部に関しては実施例1と同様であるが、CO除去
部分にはヒーターと断熱材を設置し、温度を150℃に
保持させた。同様に空気混合量は改質ガス流量に対して
0〜20vol%の間で変化させ、出口におけるCO濃
度、H2濃度を測定した。結果を表2に示す。触媒層温
度を150℃に保持することで、反応速度が上がり、C
Oの酸化除去効果はより高まっている。また、実施例1
で見られた水蒸気が凝縮する等の不都合は全く起こら
ず、この点でも改善がなされた。しかし、一方でH2
酸化消費量も増加し、これに伴った形で持続時間が減少
している等のデメリットも現れる。
[Embodiment 2] In this embodiment, some of the disadvantages found in Embodiment 1 are improved. Reforming section and C
The O conversion section was the same as in Example 1, but a heater and a heat insulating material were installed in the CO removal section and the temperature was kept at 150 ° C. Similarly, the air mixing amount was changed from 0 to 20 vol% with respect to the reformed gas flow rate, and the CO concentration and H 2 concentration at the outlet were measured. Table 2 shows the results. By keeping the catalyst layer temperature at 150 ° C., the reaction rate is increased and C
Oxidation removal effect of O is further enhanced. In addition, Example 1
The inconvenience such as the condensation of water vapor seen in 1) did not occur at all, and this point was also improved. However, on the other hand, the consumption amount of H 2 is also increased, and there is a demerit that the duration is decreased in a form accompanying this.

【0021】[0021]

【表2】 [Table 2]

【0022】[実施例3]本実施例は、実施例1および
2で見られた不都合を改善したものである。各要素部分
の構成等は実施例2と同様であるが、CO除去部に充填
する酸化銅/酸化マンガン系触媒は、故意に大気中に2
週間曝し、活性をある程度低下させたものを使用してい
る点で大きく異なる。
[Embodiment 3] This embodiment improves the disadvantages found in Embodiments 1 and 2. Although the configuration of each element portion is the same as that of the second embodiment, the copper oxide / manganese oxide-based catalyst to be filled in the CO removing portion is intentionally 2
It differs greatly in that it is used after being exposed for a week and its activity is reduced to some extent.

【0023】以下に、活性をある程度低下させた触媒を
使用する理由および利点を述べる。一般に、CO選択酸
化触媒として用いられる酸化銅/酸化マンガン系触媒
は、水蒸気によって被毒し、活性が低下することが知ら
れている。このためCO防毒マスク等の用途において
は、保管する場合には密閉しておくなど注意が必要とさ
れ、こうした注意によって触媒を高活性な状態で使用す
ることができる。しかし、これは酸化性気体である空気
中に極めて微量に含有されるCOを酸化除去する場合に
おけるものであり、本発明が対象としている改質ガス中
のCO除去の場合とは状況が異なる。つまり改質ガスの
主成分であるH2は、何らかの触媒活性を有する物質と
酸素源および若干の温度上昇があれば、容易に酸化が起
きる特性がある。このため、酸化銅/酸化マンガン系触
媒は、本来高いCO選択酸化性を有してはいるが、触媒
自体が酸素源であり、しかも目的反応物であるCO濃度
が1%以下、H2濃度75%、O2数%、温度150℃と
いった条件下では、副反応としてのH2酸化反応は現実
には抑止し難いのである。
The reasons and advantages of using a catalyst whose activity is reduced to some extent will be described below. It is generally known that the copper oxide / manganese oxide based catalyst used as the CO selective oxidation catalyst is poisoned by water vapor and its activity is lowered. For this reason, in applications such as CO gas masks, care must be taken such as sealing when storing, and such caution allows the catalyst to be used in a highly active state. However, this is in the case of oxidizing and removing CO contained in a very small amount in the oxidizing gas, which is different from the case of removing CO in the reformed gas, which is the object of the present invention. In other words, H 2 which is the main component of the reformed gas has a characteristic that it is easily oxidized if there is a substance having some catalytic activity, an oxygen source and a slight temperature rise. For this reason, the copper oxide / manganese oxide-based catalyst originally has a high CO selective oxidative property, but the catalyst itself is an oxygen source, and the target reactant has a CO concentration of 1% or less and a H 2 concentration. Under the conditions of 75%, a few% of O 2 and a temperature of 150 ° C., it is actually difficult to suppress the H 2 oxidation reaction as a side reaction.

【0024】しかし、いくつかの試験の結果、こうした
状況下で活性の異なる酸化銅/酸化マンガン系触媒を用
いた場合、実施例1で述べたような局部的な発熱および
この局部発熱に誘起された触媒層全体の異常昇温と触媒
の早期劣化をきたす確率に大きな差異があることが判明
した。すなわち、高活性の触媒を使用した場合には、異
常発熱、早期劣化の発生確率が2〜3割と高い。これに
対して、例えば2週間大気中に放置して、ある程度活性
を低下させた場合には、こうした異常発熱の確率は著し
く小さくなる。これは触媒が大気中の水蒸気等によって
部分的に被毒したために、酸化反応が触媒の上流部分等
で集中的に起こらなくなったためと推察される。しか
し、CO除去部出口におけるCO濃度は、活性が高い触
媒を用いた場合と同等であり、全体でのCO酸化能力の
低下は認められなかった。すなわち、触媒層全域で穏和
にCO酸化が起こっているものと推定される。触媒粒子
各々について見れば、初期は表面の活性が残された部分
が反応し、以降はガスが内部の高活性部分に拡散してい
くことで反応が全体的にかつ穏和に起きていると推定さ
れる。なお、水蒸気による被毒は、基本的に触媒中の酸
素含有量を変化させるものではないため、触媒の持続時
間そのものに対する影響はほとんど無い。
However, as a result of some tests, when the copper oxide / manganese oxide based catalysts having different activities under such circumstances were used, the local heat generation and the local heat generation as described in Example 1 were induced. It was also found that there is a large difference in the probability of abnormal temperature rise of the entire catalyst layer and early deterioration of the catalyst. That is, when a highly active catalyst is used, the probability of abnormal heat generation and early deterioration is as high as 20 to 30%. On the other hand, if the activity is lowered to some extent by leaving it in the atmosphere for two weeks, the probability of such abnormal heat generation becomes significantly small. It is presumed that this is because the catalyst was partially poisoned by water vapor in the atmosphere, so that the oxidation reaction did not occur intensively in the upstream portion of the catalyst. However, the CO concentration at the outlet of the CO removal section was equivalent to that when a catalyst with high activity was used, and no reduction in CO oxidation capacity was observed as a whole. That is, it is presumed that CO oxidation is mildly occurring in the entire catalyst layer. Looking at each catalyst particle, it is assumed that the part where the surface activity is left reacts in the initial stage, and thereafter the reaction diffuses into the highly active part inside, causing the reaction as a whole and mildly. To be done. Since poisoning by water vapor basically does not change the oxygen content in the catalyst, it has almost no effect on the duration of the catalyst itself.

【0025】以上述べたように、CO除去部に充填する
酸化銅/酸化マンガン系触媒の活性をある程度低下させ
てから使用することで、異常発熱、早期劣化等の問題点
を大きく改善することができる。なお、本実施例では触
媒の活性をある程度低下させるために、触媒を大気中に
2週間曝しているが、基本的には触媒自身の組成、酸素
含有量を変化させずに触媒表面の活性を低下させれば良
い。従って、水蒸気分圧や温度を上げた状態で短期間処
理を行っても良い。また、触媒調製段階で表面活性をコ
ントロールできる場合には、その段階で活性制御を行っ
ても良い。
As described above, by reducing the activity of the copper oxide / manganese oxide based catalyst to be filled in the CO removing portion to some extent, the problems such as abnormal heat generation and early deterioration can be greatly improved. it can. In this example, the catalyst was exposed to the atmosphere for 2 weeks in order to reduce the activity of the catalyst to some extent. However, basically, the activity of the catalyst surface was changed without changing the composition and oxygen content of the catalyst itself. Just lower it. Therefore, the treatment may be carried out for a short period of time while the steam partial pressure or temperature is raised. If the surface activity can be controlled at the catalyst preparation stage, the activity may be controlled at that stage.

【0026】[実施例4]本実施例では、CO選択酸化
触媒として金/酸化鉄系触媒を用いている。本実施例で
は、Au超微粒子担持α−Fe23触媒を用いた。この
触媒は、大阪工業技術研究所の技術をもとに東洋シーシ
ーアイ株式会社により商品化された触媒で、低温で高い
CO選択酸化活性を発揮する触媒である。改質部および
CO変成部に関しては実施例1と同様とし、CO変成部
の温度は120℃とし、空気混合量を改質ガス流量に対
して0〜20vol%の間で変化させ、出口におけるC
O濃度およびH2濃度を測定した。結果を表3に示す。
[Embodiment 4] In this embodiment, a gold / iron oxide catalyst is used as a CO selective oxidation catalyst. In this example, the Au ultrafine particle-supported α-Fe 2 O 3 catalyst was used. This catalyst is a catalyst commercialized by Toyo CCI Co., Ltd. based on the technology of Osaka Industrial Technology Research Institute, and is a catalyst that exhibits high CO selective oxidation activity at low temperatures. The reforming section and the CO shift section were the same as in Example 1, the temperature of the CO shift section was 120 ° C., the air mixing amount was changed between 0 and 20 vol% with respect to the reformed gas flow rate, and C at the outlet was used.
O concentration and H 2 concentration were measured. The results are shown in Table 3.

【0027】[0027]

【表3】 [Table 3]

【0028】この結果からわかるとおり、CO濃度の低
減効果は、酸化銅/酸化マンガン系触媒と比較すると大
きいとは言えない。しかし、酸化銅/酸化マンガン系を
用いた場合は触媒自身も消耗するのに対し、この触媒は
本来の触媒として機能するため、触媒として機能する時
間は非常に長いものとなる。本実施例の構成で約500
時間の連続動作試験を行ったが、触媒性能に低下は認め
られなかった。また、局所的な異常昇温などの現象も認
められず、安定した動作が行えた。すなわち本実施例に
よるCO除去法では、CO濃度のレベルはやや高いもの
の、長期間にわたり安定した運転を行える利点があるこ
とがわかる。従って、CO濃度に対する要求レベルがさ
ほど高くない場合には、改質ガス中のCOを除去する方
法として充分実用できるものである。
As can be seen from these results, the effect of reducing the CO concentration is not so great as compared with the copper oxide / manganese oxide based catalyst. However, when the copper oxide / manganese oxide system is used, the catalyst itself is also consumed, but since this catalyst functions as the original catalyst, the time it functions as a catalyst becomes very long. With the configuration of this embodiment, about 500
A continuous operation test of time was conducted, but no deterioration in catalyst performance was observed. In addition, a phenomenon such as a local abnormal temperature rise was not observed, and stable operation was performed. That is, it is understood that the CO removal method according to the present embodiment has an advantage that stable operation can be performed for a long period of time, although the CO concentration level is slightly high. Therefore, when the required level for the CO concentration is not so high, it is sufficiently practical as a method for removing CO in the reformed gas.

【0029】以上述べた実施例では、メタノール改質の
場合を例にして述べたが、これは他の炭化水素の改質で
あっても良く、例えば都市ガス等の改質装置に適用して
も良い。また、空気の混合に関しては、流量制御器を介
して供給してもよく、さらに系の状態に応じて混合比率
を変更しても良い。また、流量制御方法または触媒を交
換する必要がある場合には、CO除去部をカートリッジ
化するなどの使用形態をとり、利便性を向上させても良
い。さらに、CO除去部の温度も実施例にある温度に限
定されるものではない。
In the above-mentioned embodiments, the case of methanol reforming has been described as an example, but this may be reforming of other hydrocarbons, and it may be applied to a reformer for city gas or the like. Is also good. Regarding air mixing, the air may be supplied via a flow rate controller, and the mixing ratio may be changed according to the state of the system. Further, when it is necessary to replace the flow rate control method or the catalyst, the CO removing unit may be used as a cartridge to improve the convenience. Furthermore, the temperature of the CO removing unit is not limited to the temperature in the embodiment.

【0030】[0030]

【発明の効果】以上述べたように、本発明の改質ガス中
のCO除去法は、コンパクト、簡便な構成で、小規模な
炭化水素改質システムにおいて改質ガス中のCO濃度を
大きく低減する目的に使用することができる。CO濃度
は条件の選択により10ppm程度にまで下げることが
可能であり、例えば高分子固体電解質型燃料電池用の燃
料改質系に用いることによって、改質ガスから水素を分
離精製することなく直接燃料電池に供給することが可能
となる。また、量制御による処理量制御も可能である。
また、メタノールと純水、ガス精製カラムをカートリッ
ジ化することで安定動作とガス中のCO濃度低減が可能
となり、信頼性と安全性が高められる。さらに、このメ
タノール改質器で発生したCO濃度の充分低い水素リッ
チなガスを低温動作燃料電池に供給することで、コンパ
クトで移動可能な電源システムを構築することが可能と
なる。
As described above, the method for removing CO in the reformed gas according to the present invention has a compact and simple structure and greatly reduces the CO concentration in the reformed gas in a small-scale hydrocarbon reforming system. It can be used for the purpose. The CO concentration can be lowered to about 10 ppm by selecting the conditions. For example, by using it in a fuel reforming system for a polymer electrolyte fuel cell, hydrogen can be directly separated from the reformed gas without purification. It becomes possible to supply to the battery. Further, it is possible to control the processing amount by the amount control.
Further, by making methanol, pure water, and a gas purification column into a cartridge, stable operation and reduction of CO concentration in the gas are possible, and reliability and safety are improved. Further, by supplying the hydrogen-rich gas having a sufficiently low CO concentration generated in the methanol reformer to the low temperature operation fuel cell, it becomes possible to construct a compact and movable power supply system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に用いたCO除去装置の概略
構成を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a CO removing device used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス管 2 改質部 3 CO変成部 4 CO除去部 5 空気混合ノズル 6、7 ヒータ 1 Glass Tube 2 Reforming Section 3 CO Shifting Section 4 CO Removing Section 5 Air Mixing Nozzle 6, 7 Heater

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素系原燃料を改質して得られる改
質ガスに空気を改質ガス基準で20vol%以下の割合
で混合し、前記混合ガスを酸化銅と酸化マンガンからな
るCO選択酸化触媒層を通過させることによって、改質
ガス中のCO濃度を0.1%以下に低減させることを特
徴とする改質ガス中のCO除去法。
1. A reformed gas obtained by reforming a hydrocarbon-based raw fuel is mixed with air at a ratio of 20 vol% or less based on the reformed gas, and the mixed gas is CO-selective consisting of copper oxide and manganese oxide. A method for removing CO in a reformed gas, wherein the CO concentration in the reformed gas is reduced to 0.1% or less by passing through the oxidation catalyst layer.
【請求項2】 CO選択酸化触媒層を50〜180℃の
温度範囲で動作させる請求項1記載の改質ガス中のCO
除去法。
2. The CO in the reformed gas according to claim 1, wherein the CO selective oxidation catalyst layer is operated in a temperature range of 50 to 180 ° C.
Removal method.
【請求項3】 CO選択酸化触媒が、あらかじめ表面活
性を低下させた状態で使用される請求項2記載の改質ガ
ス中のCO除去法。
3. The method for removing CO in a reformed gas according to claim 2, wherein the CO selective oxidation catalyst is used in a state where the surface activity is reduced in advance.
【請求項4】 炭化水素系原燃料を改質して得られる改
質ガスに空気を改質ガス基準で20vol%以下の割合
で混合し、前記混合ガスを金と酸化鉄からなり温度50
〜230℃のCO選択酸化触媒層を通過させることによ
って、改質ガス中のCO濃度を0.1%以下に低減させ
ることを特徴とする改質ガス中のCO除去法。
4. A reformed gas obtained by reforming a hydrocarbon raw fuel is mixed with air at a ratio of 20 vol% or less based on the reformed gas, and the mixed gas is composed of gold and iron oxide at a temperature of 50.
A method for removing CO in a reformed gas, which comprises reducing the CO concentration in the reformed gas to 0.1% or less by passing the CO selective oxidation catalyst layer at 230 ° C.
JP7003505A 1995-01-12 1995-01-12 Method for removing carbon monoxide in reformed gas Pending JPH08188783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7003505A JPH08188783A (en) 1995-01-12 1995-01-12 Method for removing carbon monoxide in reformed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7003505A JPH08188783A (en) 1995-01-12 1995-01-12 Method for removing carbon monoxide in reformed gas

Publications (1)

Publication Number Publication Date
JPH08188783A true JPH08188783A (en) 1996-07-23

Family

ID=11559221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7003505A Pending JPH08188783A (en) 1995-01-12 1995-01-12 Method for removing carbon monoxide in reformed gas

Country Status (1)

Country Link
JP (1) JPH08188783A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041799A1 (en) * 1999-01-14 2000-07-20 Ge Energy And Environmental Research Corporation Thermally limited selective oxidation methods and apparatus
WO2001037988A1 (en) * 1999-11-25 2001-05-31 Kawasaki Jukogyo Kabushiki Kaisha Catalyst for exothermic or endothermic reaction, catalyst for water-gas-shift reaction and catalyst for selective oxidation of carbon monoxide, and plate-fin heat exchange type reformer
US6818341B2 (en) * 1998-12-18 2004-11-16 The Regents Of The University Of California Fuel cell anode configuration for CO tolerance
JP2008253978A (en) * 2007-03-30 2008-10-23 Tatung Co Production method and application by catalyst which contains nano gold and is loaded on manganese oxide / iron oxide
JP2009101257A (en) * 2007-10-19 2009-05-14 Inst Nuclear Energy Research Rocaec Carbon monoxide selective oxidation catalyst using vermiculite (expanded vermiculite) as support

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818341B2 (en) * 1998-12-18 2004-11-16 The Regents Of The University Of California Fuel cell anode configuration for CO tolerance
WO2000041799A1 (en) * 1999-01-14 2000-07-20 Ge Energy And Environmental Research Corporation Thermally limited selective oxidation methods and apparatus
US6475454B1 (en) * 1999-01-14 2002-11-05 Ge Energy & Environmental Research Corporation Thermally limited selective oxidation methods and apparatus
WO2001037988A1 (en) * 1999-11-25 2001-05-31 Kawasaki Jukogyo Kabushiki Kaisha Catalyst for exothermic or endothermic reaction, catalyst for water-gas-shift reaction and catalyst for selective oxidation of carbon monoxide, and plate-fin heat exchange type reformer
JP2008253978A (en) * 2007-03-30 2008-10-23 Tatung Co Production method and application by catalyst which contains nano gold and is loaded on manganese oxide / iron oxide
JP2009101257A (en) * 2007-10-19 2009-05-14 Inst Nuclear Energy Research Rocaec Carbon monoxide selective oxidation catalyst using vermiculite (expanded vermiculite) as support

Similar Documents

Publication Publication Date Title
JP5065605B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
US6168705B1 (en) Electrochemical gas purifier
EP1290747B1 (en) Fuel cells and fuel cell systems containing non-aqueous electrolytes
KR101320387B1 (en) Catalytic system for the removal of carbon monoxide and fuel processor using the same
WO1999016706A1 (en) Apparatus and method for reducing carbon monoxide concentration and catalyst for selectively oxidizing carbon monoxide
US6309768B1 (en) Process for regenerating a carbon monoxide oxidation reactor
US7198862B2 (en) Process for preparing a low-sulfur reformate gas for use in a fuel cell system
JP2004284875A (en) Hydrogen production system, and fuel cell system
US6387555B1 (en) Selective oxidizer in cell stack manifold
JP2008501607A (en) Hybrid water gas shift reactor
US7223488B2 (en) Integrated fuel cell system
JPH09266005A (en) Solid high polymer fuel cell system
JPH08188783A (en) Method for removing carbon monoxide in reformed gas
JP2008277308A (en) Solid polymer electrolyte fuel cell power generating system and solid polymer electrolyte fuel cell power generating method
JPH1186892A (en) System and method for carbon monoxide removing
US6852302B1 (en) Carbon monoxide removing apparatus and process for operating the same
JP2005044621A (en) Fuel cell power generation device and its operation method
US20040050713A1 (en) Electrochemical process for oxidation of alkanes to alkenes
JP4613482B2 (en) Fuel cell power generator and its operation method
JP2005179081A (en) Hydrogen producing apparatus, fuel cell system and method for driving the same
JP4455040B2 (en) Fuel cell system and operation method thereof
JP2005179083A (en) Hydrogen producing apparatus, fuel cell system, and its operatin method
WO2005005313A1 (en) Fuel treatment device and fuel treatment method
US7678346B2 (en) Dual function CO clean-up/sorber unit
JP4886416B2 (en) Carbon monoxide reduction device, carbon monoxide reduction method, hydrogen production device, and fuel cell power generation system