JPH08188632A - Powdery photocurable composition and curing of the same - Google Patents

Powdery photocurable composition and curing of the same

Info

Publication number
JPH08188632A
JPH08188632A JP218295A JP218295A JPH08188632A JP H08188632 A JPH08188632 A JP H08188632A JP 218295 A JP218295 A JP 218295A JP 218295 A JP218295 A JP 218295A JP H08188632 A JPH08188632 A JP H08188632A
Authority
JP
Japan
Prior art keywords
group
substituted
cation
general formula
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP218295A
Other languages
Japanese (ja)
Inventor
Shuichi Sugita
修一 杉田
Hirotoshi Kamata
博稔 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP218295A priority Critical patent/JPH08188632A/en
Publication of JPH08188632A publication Critical patent/JPH08188632A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a powdery photocurable composition which cures with visible light and/or near-infrared light by mixing a specified cationic colorant with a boron catalyst and a powdery thermoplastic resin having a polymerizable unsaturation. CONSTITUTION: This composition essentially consists of a cationic colorant of the formula: D<+> .A<-> (wherein D<+> is a cation having an absorption at an arbitrary wavelenght in a region ranging from visible light to near-infrared light; and A<-> is an anoion of various kinds), a boron catalyst of the formula (wherein R<1> to R<4> are each an alkyl, aryl, allyl, aralkyl, alkenyl, alkinyl, silyl, or a heterocyclic group, a halogen atom or the like; and Z<+> is a cation) and a powdery thermo-plastic resin having a polymerizable unsaturation. The thermoplastic resin is desirably the one having a glass transition temperature of 20-180 deg.C, more desirably, the one having at least one polymerizable unsaturation per 2000 of the molecular weight.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光硬化が可能な粉体組成
物及び硬化方法に関する。更に詳しくは顔料及び隠ぺい
率が高い添加物、充填物、染料などが含まれていても、
また厚みが大きかったり光透過性が良好でなくとも硬化
が可能な、可視光ないし近赤外光により硬化する粉体組
成物及び光反応による粉体組成物の硬化方法に関する。
FIELD OF THE INVENTION The present invention relates to a photocurable powder composition and a curing method. More specifically, even if pigments and additives with high hiding rate, fillers, dyes, etc. are included,
The present invention also relates to a powder composition that can be cured by visible light or near-infrared light and that can be cured even if it has a large thickness or poor light transmittance, and a method for curing the powder composition by photoreaction.

【0002】[0002]

【従来の技術】従来、塗料として用いられている材料は
圧倒的に樹脂を溶剤に溶解させたタイプのものが多い。
すなわち溶剤を含む塗料を塗装面に塗布し、溶剤を蒸発
させた後に樹脂被膜を形成させる方法である。しかしこ
の方法で用いる溶剤は一般に大気中に揮散し回収再使用
が困難であり、コスト面、作業環境及び地球環境の面か
らも改善が強く求められている。上記溶剤型塗料の問題
点を解決する方法として、粉体塗料が注目されている。
粉体塗料は溶剤を全く使用しないので溶剤に起因する上
記問題点が解決される上、貯蔵安定性、取扱い方法の簡
便性等においても優れた技術である。しかしながら粉体
塗料は一般に固体状の粉末塗料を塗装後加熱溶融して連
続被膜を形成させた後に、更に高温に加熱して硬化反応
を生起させるものであり、溶融と硬化反応を完全に分離
することが困難で、溶融過程において一部硬化反応が起
こり、十分な塗膜の仕上がりを得るのが難しく、また樹
脂の溶融温度以上で硬化反応を起こさせるため、硬化に
要する温度が高い等の欠点があった。
2. Description of the Related Art Conventionally, most of the materials used as paints are of a type in which a resin is predominantly dissolved in a solvent.
That is, it is a method in which a paint containing a solvent is applied to a coated surface, the solvent is evaporated, and then a resin film is formed. However, the solvent used in this method is generally volatilized in the atmosphere and is difficult to collect and reuse, and improvement is strongly required from the aspects of cost, working environment and global environment. As a method for solving the problems of the above solvent-based paint, powder paint is drawing attention.
Since the powder coating material does not use a solvent at all, the above problems caused by the solvent are solved, and it is an excellent technique in terms of storage stability, handling method, and the like. However, powder coating is generally one in which solid powder coating is applied, heated and melted to form a continuous film, and then heated to a higher temperature to cause a curing reaction, and the melting and curing reactions are completely separated. It is difficult to obtain a sufficient finish of the coating film because the curing reaction partially occurs in the melting process, and since the curing reaction occurs at the melting temperature of the resin or higher, the temperature required for curing is high. was there.

【0003】一方、光重合は塗膜の硬化、乾燥や印刷、
樹脂凸刷、プリント基盤作成用、レジストまたはフォト
マスク、白黒またはカラーの転写発色用シートもしくは
発色シート作成などの多方面の用途にわたり使用され、
特に上記溶剤型塗料の欠点への対応、省エネルギー、労
務コストの上昇に対応する省力化等の観点から開発が行
われている。例えば紫外光による硬化は、200〜40
0nmの紫外光を照射することによつてカチオン重合あ
るいはラジカル重合により重合性モノマーが急速硬化す
るものであり、木工用塗料などの分野での応用が進んで
いる。
On the other hand, photopolymerization involves curing, drying and printing of coating films.
It is used for various applications such as resin convex printing, print substrate making, resist or photomask, black and white or color transfer coloring sheet or making coloring sheet,
In particular, development has been carried out from the viewpoints of dealing with the drawbacks of the above solvent-based paints, energy saving, and labor saving to cope with an increase in labor costs. For example, curing by ultraviolet light is 200 to 40
The polymerizable monomer is rapidly cured by cation polymerization or radical polymerization by irradiating 0 nm ultraviolet light, and its application in the field of paints for woodworking and the like is progressing.

【0004】これらの技術を組み合わせた紫外線で硬化
する粉体塗料が提案されており(例えば特開昭50ー3
4036号)、それぞれの技術の特徴を生かして、無溶
剤、低温硬化、塗膜の仕上がりの良好性等を達成したと
されている。また木質材料、プラスチック等、高温に加
熱することが困難な材料に対する粉体塗料技術の適用が
可能になるという特徴もある(例えばポリマー・ペイン
ト・カラー・ジャーナル 1994年2月9日号 34
ページ)。しかしながら上記技術は厚膜の塗装、隠ぺい
率が高い顔料を含有した着色塗膜等では紫外光の透過性
が低いので使用が難しく、また顔料、着色染料などを含
まない透明系においても硬化系の厚みが増したり透過性
の悪い材料を含む系では紫外線が内部まで十分に到達せ
ず、硬化系内部の硬化が不十分であるという問題点を有
していた。また紫外光の光源は高圧水銀ランプをはじめ
として必ずしも安価でない上、オゾン発生、皮膚ガンの
可能性など安全面においても充分満足すべき方法とはい
えなかった。
A powder coating which is cured by ultraviolet rays combining these techniques has been proposed (for example, JP-A-50-3.
No. 4036), it is said that solvent-free, low-temperature curing, and good finish of the coating film were achieved by making use of the characteristics of each technology. Another feature is that powder coating technology can be applied to materials that are difficult to heat to high temperatures, such as wood materials and plastics (for example, Polymer Paint Color Journal, February 9, 1994 34.
page). However, the above technique is difficult to use in a thick film coating, a colored coating film containing a pigment having a high hiding rate, etc., since it has a low ultraviolet light transmittance, and a transparent curing system that does not include a pigment, a coloring dye, etc. In a system containing a material having an increased thickness or poor transparency, ultraviolet rays did not reach the inside sufficiently, and there was a problem that curing inside the curing system was insufficient. Further, the ultraviolet light source is not necessarily inexpensive, such as a high-pressure mercury lamp, and it cannot be said to be a sufficiently satisfactory method in terms of safety such as ozone generation and the possibility of skin cancer.

【0005】[0005]

【発明が解決しようとする課題】本発明は従来の熱硬化
性粉体材料よりも低温硬化が可能でかつ、紫外光硬化で
は困難であった顔料添加系あるいは厚膜系などの光透過
性の低い硬化系においても安全性の高い光源を用いて光
硬化可能な粉体組成物を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is capable of low temperature curing as compared with conventional thermosetting powder materials, and has a light transmissive property such as a pigment addition system or a thick film system which has been difficult in ultraviolet light curing. An object of the present invention is to provide a photocurable powder composition using a light source having high safety even in a low curing system.

【0006】[0006]

【課題を解決するための手段】本発明者等は上記問題点
を解決すべく検討を重ねた結果、これまで全く試みられ
たことのなかった、粉体塗料の技術と可視光あるいは近
赤外光を用いた重合技術を組み合わせることによって上
記問題点が解決されることを見い出し、本発明を完成す
るに至った。すなわち本発明によると、一般式(1)で
表される陽イオン色素 一般式(1);D+ ・A- (式中、D+ は可視光から近赤外光までの任意の波長領
域に吸収をもつ陽イオンであり、A- は、各種陰イオン
を示す) 及び一般式(2)で表わされるホウ素系触媒 一般式(2);
Means for Solving the Problems As a result of repeated studies to solve the above problems, the present inventors have found that powder coating technology and visible light or near-infrared light have never been tried. The inventors have found that the above problems can be solved by combining polymerization techniques using light, and have completed the present invention. That is, according to the present invention, a cationic dye represented by the general formula (1): the general formula (1); D + · A (wherein D + is in an arbitrary wavelength region from visible light to near infrared light). Is a cation having absorption, and A represents various anions) and a boron-based catalyst represented by the general formula (2). General formula (2);

【0007】[0007]

【化2】 Embedded image

【0008】(式中、R1 、R2 、R3 及びR4 はそれ
ぞれ独立してアルキル基、アリール基、アリル基,アラ
ルキル基、アルケニル基、アルキニル基、シリル基、複
素環基、ハロゲン原子、置換アルキル基、置換アリール
基、置換アリル基、置換アラルキル基、置換アルケニル
基、置換アルキニル基または置換シリル基を示し、Z+
は陽イオンを示す) 及び重合性不飽和結合を有する粉末状熱可塑性樹脂を組
み合わせて光重合性組成物となし、溶融後光照射によっ
て硬化可能な光硬化性粉体組成物が得られる。
(In the formula, R 1 , R 2 , R 3 and R 4 are each independently an alkyl group, an aryl group, an allyl group, an aralkyl group, an alkenyl group, an alkynyl group, a silyl group, a heterocyclic group and a halogen atom. , A substituted alkyl group, a substituted aryl group, a substituted allyl group, a substituted aralkyl group, a substituted alkenyl group, a substituted alkynyl group or a substituted silyl group, Z +
Represents a cation) and a powdery thermoplastic resin having a polymerizable unsaturated bond to form a photopolymerizable composition, and a photocurable powder composition that can be cured by irradiation with light after melting is obtained.

【0009】先にも述べたように、光反応によって粉体
材料を硬化させる試みはこれまでほとんど知られておら
ず、わずかに紫外線、電子線(例えば特開昭50ー72
929号)を用いた粉体塗料の光硬化が知られているの
みであった。本発明者らは波長の長い近赤外光を用いた
重合開始剤の検討を行ったきたが(例えば特開平6ー7
5374号)、粉体材料の硬化反応にこれまで用いられ
たことのない近赤外光あるいは可視光による重合技術を
応用することを鋭意検討した結果、本発明を完成するに
至った。本発明における粉体組成物は、自動車車体、バ
ンパーなどの外装用及び内装、各種部品用、木工用、家
具、電子材料、建材用、金属、プラスチック、無機材料
用などの一般の塗料用途に好適であるが、塗料用途のみ
ならず各種光硬化性材料、例えば印刷インキ、接着剤、
固体感光性材料、はんだ止めマスク、メッキレジスト用
等、様々な用途に用いることが可能である。
As described above, almost no attempt has been known so far to cure the powder material by photoreaction, and slight ultraviolet rays and electron beams (for example, Japanese Patent Laid-Open No. 50-72) are used.
No. 929) has been known only for photocuring of powder coatings. The present inventors have studied a polymerization initiator using near-infrared light having a long wavelength (for example, JP-A-6-7).
5374), and as a result of earnestly studying the application of a polymerization technique using near infrared light or visible light, which has never been used for the curing reaction of powder materials, the present invention has been completed. The powder composition in the present invention is suitable for general coating applications such as exterior and interior of automobile bodies and bumpers, various parts, woodworking, furniture, electronic materials, building materials, metals, plastics, inorganic materials, etc. However, not only for paint applications but also for various photocurable materials such as printing inks, adhesives,
It can be used for various applications such as solid photosensitive materials, soldering masks, and plating resists.

【0010】本発明を構成する一般式(1)の陽イオン
色素と一般式(2)のホウ素系触媒を併用することで可
視光あるいは近赤外光によって陽イオン色素の分解が起
こり、陽イオン色素の色が消色するとともにラジカルが
発生し、その際重合性不飽和化合物が共存すると重合が
開始される。陽イオン染料の消色反応は不可逆反応であ
り、陽イオン色素の色が重合物の色相を損なうことはな
い。反応の際には粉体組成物の各成分、陽イオン色素及
びホウ素系触媒は溶融状態であることが望ましく、一般
に本発明の組成物は主成分である重合性不飽和結合を有
する樹脂の溶融温度以上に加熱溶融した後に所望の波長
に分光分布を有する光の照射によって硬化反応を行わせ
ることが出来る。組成物中の成分が固体状態のまま存在
していると電子移動あるいは化学反応の効率が低下し反
応時間の遅延あるいは反応が不完全に終わる可能性があ
る。したがって本発明の陽イオン色素及びホウ素系触媒
は主成分である粉体組成物用樹脂が溶融時に溶解あるい
は溶融していることが望ましい。
The combined use of the cation dye of the general formula (1) and the boron-based catalyst of the general formula (2) constituting the present invention causes decomposition of the cation dye by visible light or near-infrared light. When the color of the dye is decolored and radicals are generated, polymerization is initiated when a polymerizable unsaturated compound coexists. The decolorization reaction of the cationic dye is an irreversible reaction, and the color of the cationic dye does not impair the hue of the polymer. During the reaction, it is desirable that each component of the powder composition, the cationic dye and the boron-based catalyst be in a molten state, and in general, the composition of the present invention melts the resin having a polymerizable unsaturated bond as the main component. After heating and melting above the temperature, the curing reaction can be performed by irradiation with light having a spectral distribution at a desired wavelength. If the components in the composition remain in the solid state, the efficiency of electron transfer or chemical reaction may decrease, and the reaction time may be delayed or the reaction may be incomplete. Therefore, it is desirable that the resin for powder composition, which is the main component of the cationic dye and the boron-based catalyst of the present invention, is melted or melted at the time of melting.

【0011】本発明の一般式(1)の陽イオン色素は可
視光から近赤外光までの任意の波長領域に吸収を持つ色
素であればよく、具体的には400nmから2000n
mの範囲の任意の波長領域に吸収があればよい。その中
でも特に光の透過性、設備の安全性、開始剤の光安定
性、操作性等を勘案すると近赤外光領域に吸収を持つ陽
イオン色素が特に好ましい。ここでいう近赤外光領域に
吸収を持つ陽イオンとは、740nm以上の波長領域に
吸収を持つ陽イオンであり、好ましくは780nm以上
の波長領域に吸収を持つ化合物である。近赤外光は従来
一般に用いられている紫外光に比べ波長が長く光の透過
性に優れているため、従来の紫外光では困難だった光隠
ぺい性の高い各種顔料等添加系の材料、厚みのある材料
等に対しても良好な光重合を行うことが出来る。
The cation dye of the general formula (1) of the present invention may be a dye having absorption in an arbitrary wavelength region from visible light to near infrared light, and specifically, 400 nm to 2000 n.
It suffices if absorption is present in any wavelength region within the range of m. Among them, a cation dye having absorption in the near infrared light region is particularly preferable in consideration of light transmittance, facility safety, light stability of the initiator, operability and the like. The cation having absorption in the near infrared light region herein is a cation having absorption in the wavelength region of 740 nm or more, and preferably a compound having absorption in the wavelength region of 780 nm or more. Since near-infrared light has a longer wavelength and is superior in light transmittance to ultraviolet light that is generally used in the past, it has been difficult to use conventional ultraviolet light to add various pigments and other materials with high light concealment properties, and thickness. Good photopolymerization can be carried out even on a material having a problem.

【0012】本発明の陽イオン(D+ )は400nm以
上の波長領域に吸収を有するものであれば特に制限はな
いが、好ましいものとしては例えばメチン、ポリメチ
ン、インドリン、シアニン、キサンテン、オキサジン、
チアジン、ジアリールメタン、トリアリールメタン、ピ
リリウム系陽イオン色素の陽イオンなどがあげられる。
かかる陽イオン色素のうち近赤外光領域に吸収を持つも
のの代表例としては、例えば表1に示すような陽イオン
があげられる。また可視光領域に吸収を持つ陽イオン色
素の代表例としては、例えば表2に示すような陽イオン
が挙げられる。更に詳細には特開平5ー59110号に
記載されている陽イオン色素が挙げられる。
The cation (D + ) of the present invention is not particularly limited as long as it has absorption in the wavelength region of 400 nm or more, but preferred examples are methine, polymethine, indoline, cyanine, xanthene, oxazine,
Examples thereof include thiazine, diarylmethane, triarylmethane, and cations of pyrylium-based cation dyes.
Typical examples of such cation dyes having absorption in the near infrared region include cations as shown in Table 1. Representative examples of cation dyes having absorption in the visible light region include cations shown in Table 2. More specifically, the cationic dyes described in JP-A-5-59110 can be mentioned.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】カウンターアニオンであるA- は任意の陰
イオンであるが、下記一般式(3)に示す4配位ホウ素
アニオンが特に好ましい。 一般式(3);
The counter anion A is an arbitrary anion, but a tetracoordinated boron anion represented by the following general formula (3) is particularly preferable. General formula (3);

【0017】[0017]

【化3】 Embedded image

【0018】(式中、R5 、R6 、R7 及びR8 はそれ
ぞれ独立してアルキル基、アリール基、アリル基,アラ
ルキル基、アルケニル基、アルキニル基、シリル基、複
素環基、ハロゲン原子、置換アルキル基、置換アリール
基、置換アリル基、置換アラルキル基、置換アルケニル
基、置換アルキニル基または置換シリル基を示す) 具体例としては、n−ブチルトリフェニルホウ素イオ
ン、n−オクチルトリフェニルホウ素イオン、トリフェ
ニルシリルトリフェニルホウ素イオン、n−ブチルトリ
アニシルホウ素イオン、ジn−ドデシルジフェニルホウ
素イオン、テトラフェニルホウ素イオン、トリフェニル
ナフチルホウ素イオン、テトラブチルホウ素イオン、ト
リn−ブチル(ジメチルフェニルシリル)ホウ素イオン
などがあげられ、更に詳細には本発明者らが先に出願し
た(特開平6−75374号)特許明細書に記載された
陰イオン等が挙げられる。
(Wherein R 5 , R 6 , R 7 and R 8 are each independently an alkyl group, an aryl group, an allyl group, an aralkyl group, an alkenyl group, an alkynyl group, a silyl group, a heterocyclic group or a halogen atom. , A substituted alkyl group, a substituted aryl group, a substituted allyl group, a substituted aralkyl group, a substituted alkenyl group, a substituted alkynyl group or a substituted silyl group.) Specific examples include n-butyltriphenylboron ion and n-octyltriphenylboron Ion, triphenylsilyltriphenylboron ion, n-butyltrianisylboron ion, di-n-dodecyldiphenylboron ion, tetraphenylboron ion, triphenylnaphthylboron ion, tetrabutylboron ion, tri-n-butyl (dimethylphenylsilyl ) Boron ions, etc. Anions like described in the present inventors have previously filed (Japanese Patent Application Laid-Open No. 6-75374) Patent specification to.

【0019】また、本発明におけるホウ素系触媒は一般
式(2)で表わされるが、陰イオンである4配位ホウ素
イオンの具体的な例としては、n−ブチルトリフェニル
ホウ素イオン、n−オクチルトリフェニルホウ素イオ
ン、トリフェニルシリルトリフェニルホウ素イオン、n
−ブチルトリアニシルホウ素イオン、ジn−ドデシルジ
フェニルホウ素イオン、テトラフェニルホウ素イオン、
トリフェニルナフチルホウ素イオン、テトラブチルホウ
素イオン、トリn−ブチル(ジメチルフェニルシリル)
ホウ素イオンなどがあげられる。また式中に記載の陽イ
オン(Z+ )は一般式(4) 一般式(4);
The boron-based catalyst according to the present invention is represented by the general formula (2), and specific examples of the anionic four-coordinated boron ion include n-butyltriphenylboron ion and n-octyl. Triphenylboron ion, triphenylsilyltriphenylboron ion, n
-Butyltrianisylboron ion, di-n-dodecyldiphenylboron ion, tetraphenylboron ion,
Triphenylnaphthylboron ion, tetrabutylboron ion, tri-n-butyl (dimethylphenylsilyl)
Examples include boron ions. Further, the cation (Z + ) described in the formula is represented by the general formula (4), the general formula (4);

【0020】[0020]

【化4】 [Chemical 4]

【0021】(式中、R9 、R10、R11及びR12はそれ
ぞれ独立して水素原子、アルキル基、アリール基、アリ
ル基、アラルキル基、アルケニル基、アルキニル基、複
素環基、置換アルキル基、置換アリール基、置換アリル
基、置換アラルキル基、置換アルケニル基または置換ア
ルキニル基を示す)で表わされる4級アンモニウム陽イ
オンまたは4級ピリジニウム陽イオン、4級キノリニウ
ム陽イオン、ジアゾニウム陽イオン、テトラゾリウム陽
イオン、ホスホニウム陽イオン、(オキソ)スルホニウ
ム陽イオン、ナトリウム、カリウム、リチウム、マグネ
シウム、カルシウム等の金属陽イオン、フラビリウム、
ピラニウム塩などの有機酸素陽イオン、トロピリウム、
シクロプロピリウム等の炭素陽イオン、ヨードニウム等
のハロゲニウム陽イオン、砒素、コバルト、パラジウ
ム、クロム、チタン、スズ、アンチモンなどの金属化合
物の陽イオン等があげられ、特開平6ー75374号特
許明細書中に詳細な記載がある。これら陽イオン色素お
よびホウ素系触媒は単独または2種以上を混合して用い
ることもできる。
(In the formula, R 9 , R 10 , R 11 and R 12 are each independently a hydrogen atom, an alkyl group, an aryl group, an allyl group, an aralkyl group, an alkenyl group, an alkynyl group, a heterocyclic group or a substituted alkyl group. Group, a substituted aryl group, a substituted allyl group, a substituted aralkyl group, a substituted alkenyl group or a substituted alkynyl group), a quaternary ammonium cation or a quaternary pyridinium cation, a quaternary quinolinium cation, a diazonium cation, tetrazolium Cations, phosphonium cations, (oxo) sulfonium cations, metal cations such as sodium, potassium, lithium, magnesium and calcium, flavylium,
Organic oxygen cations such as pyranium salts, tropylium,
Examples thereof include carbon cations such as cyclopropylium, halogenium cations such as iodonium, cations of metal compounds such as arsenic, cobalt, palladium, chromium, titanium, tin and antimony, and JP-A-6-75374. There is a detailed description inside. These cationic dyes and boron-based catalysts may be used alone or in admixture of two or more.

【0022】本発明の粉体組成物とは常温で固体状態で
ある組成物であり、一般には固体の粒子径が1mm以
下、好ましくは300ミクロン以下の固体状組成物であ
る。重合性不飽和結合を有する熱可塑性樹脂とは、ラジ
カル重合性のエチレン性二重結合を持った樹脂であり、
塗装時には固体状態でありかつ塗装後硬化反応を行う際
には加熱溶融する重合性オリゴマーあるいは重合性ポリ
マーであればよく、ウレタン(メタ)アクリレート化合
物、ポリエステル(メタ)アクリレート化合物、不飽和
ポリエステル樹脂、エポキシ(メタ)アクリレート化合
物、シリコン(メタ)アクリレート化合物、メラミン
(メタ)アクリレート化合物、(メタ)アクリル官能性
ポリオルガノシルセスキオキサン等が挙げられる。
The powder composition of the present invention is a composition which is in a solid state at room temperature, and is generally a solid composition having a solid particle size of 1 mm or less, preferably 300 microns or less. The thermoplastic resin having a polymerizable unsaturated bond is a resin having a radical polymerizable ethylenic double bond,
Any polymerizable oligomer or polymerizable polymer that is in a solid state at the time of coating and can be heated and melted when performing a curing reaction after coating may be used, such as a urethane (meth) acrylate compound, a polyester (meth) acrylate compound, an unsaturated polyester resin, Epoxy (meth) acrylate compounds, silicon (meth) acrylate compounds, melamine (meth) acrylate compounds, (meth) acryl-functional polyorganosilsesquioxanes, and the like can be mentioned.

【0023】上記の熱可塑性樹脂とは加熱することによ
り軟化し可塑性となり、冷却すると再び硬化する樹脂を
いい、化学辞典(森北出版 1986年発行)に定義さ
れている樹脂である。これらの重合性樹脂は各種製造方
法が提案されている(例えば特開昭50ー72929
号、特開平3ー59019号)。上記重合性樹脂は硬化
物の物性を決定する主成分であり、各種用途に応じて要
求される硬度、強度、耐久性、付着性等の物性に応じて
選択され、配合される。
The above-mentioned thermoplastic resin refers to a resin that softens and becomes plastic when heated and hardens again when cooled, and is a resin defined in the Chemical Dictionary (Morikita Shuppan 1986). Various production methods have been proposed for these polymerizable resins (for example, JP-A-50-72929).
No. JP-A-3-59019). The above-mentioned polymerizable resin is the main component that determines the physical properties of the cured product, and is selected and blended according to the physical properties such as hardness, strength, durability and adhesion required for various applications.

【0024】粉体材料の特徴から、室温では固体状態で
ある必要があるのでガラス転移温度は20℃以上である
ことが好ましく、温度の高い状態での保存などを考慮す
ると更に好ましくは60℃以上である。また硬化時に溶
融させる必要からガラス転移温度が高すぎることは不都
合であり、180℃以下が好ましい。加熱に要するエネ
ルギー節約の観点を考慮すると更に好ましくは120℃
以下である。
From the characteristics of the powder material, the glass transition temperature is preferably 20 ° C. or higher because it is required to be in a solid state at room temperature, and more preferably 60 ° C. or higher in consideration of storage in a high temperature state. Is. Further, it is inconvenient for the glass transition temperature to be too high because it needs to be melted at the time of curing, and 180 ° C. or lower is preferable. Considering the energy saving required for heating, more preferably 120 ° C.
It is the following.

【0025】また重合性不飽和結合は重合性樹脂の分子
量2000当たり1個以上あることが好ましい。更に好
ましくは1〜10個の範囲である。重合性不飽和結合が
少なすぎると硬化反応が不十分に終わり未反応の成分が
残って硬化物の耐久性等を低下させたり、硬度などの要
求物性が発現しない可能性があり、多すぎると不飽和結
合の架橋反応が必要以上に生起し、硬化時の収縮による
内部応力の発生、硬化物の付着性、可撓性等の低下等の
おそれがある。分子量当たりの不飽和結合の数は一般に
上記不飽和化合物の製造メーカーのカタログに記載され
ている。あるいはGPC等一般的な方法で分子量を測定
し、更に滴定法等通常行われている方法で重合性不飽和
結合の定量を行い、分子量当たりの不飽和結合数を求め
ることも可能である。
The number of polymerizable unsaturated bonds is preferably 1 or more per 2000 of the molecular weight of the polymerizable resin. More preferably, it is in the range of 1 to 10. If the amount of polymerizable unsaturated bonds is too small, the curing reaction may end insufficiently and unreacted components may remain, which may reduce the durability of the cured product, or the required physical properties such as hardness may not be expressed. The crosslinking reaction of unsaturated bonds may occur more than necessary, causing internal stress due to shrinkage during curing, and decreasing the adhesiveness, flexibility, etc. of the cured product. The number of unsaturated bonds per molecular weight is generally stated in the manufacturer's catalog of the above unsaturated compounds. Alternatively, it is possible to determine the number of unsaturated bonds per molecular weight by measuring the molecular weight by a general method such as GPC and then quantifying the polymerizable unsaturated bond by a commonly used method such as a titration method.

【0026】また本発明の組成物には必要に応じて重合
性不飽和モノマー類を適宜配合することができる。重合
性不飽和モノマーの例としては各種(メタ)アクリル系
モノマー、スチレン性二重結合を有するモノマー、ビニ
ルエステル、ビニルエーテル等のビニル結合、アリルエ
ステル、アリルエーテル等のアリル結合を有するモノマ
ー等が挙げられる。重合性不飽和モノマーは組成物の粘
度等の操作性の制御、硬度、可撓性等の硬化物の物性制
御等を目的として配合される。重合性不飽和モノマーは
本発明の組成物の粉体形状を維持するために室温で固体
状態である化合物が好ましい。更に好ましくは融点40
℃以上の化合物である。
If desired, the composition of the present invention may contain polymerizable unsaturated monomers. Examples of the polymerizable unsaturated monomer include various (meth) acrylic monomers, monomers having a styrenic double bond, vinyl bonds such as vinyl ester and vinyl ether, and monomers having allyl bond such as allyl ester and allyl ether. To be The polymerizable unsaturated monomer is blended for the purpose of controlling operability such as viscosity of the composition and controlling physical properties of the cured product such as hardness and flexibility. The polymerizable unsaturated monomer is preferably a compound which is in a solid state at room temperature in order to maintain the powder form of the composition of the present invention. More preferably melting point 40
It is a compound above ℃.

【0027】本発明の光硬化性粉体組成物の硬化反応
は、一般に組成物を溶融温度以上に加熱溶融して粉体粒
子同士がもはや本来の粒子形状を保持せずに連続的に接
続した状態にした後、光吸収色素の吸収波長に応じた4
00nm以上の波長領域に分光を有する光の照射によっ
て達成される。例えばハロゲンランプ、キセノンラン
プ、太陽光等が使用される。前に述べたようにこれらの
光源は一般に、従来用いられてきた紫外光重合における
水銀ランプ、メタルハライドランプ等と較べて安価でか
つオゾン発生、皮膚ガンの危険性などがなく、安全対策
が容易であるという特徴をも有している。光硬化反応の
際には酸素による重合阻害を低減するために低酸素濃度
下で光照射することが好ましい。例えば窒素、アルゴ
ン、二酸化炭素等の不活性ガス雰囲気、あるいは空気中
上記不活性ガスを硬化物表面にブローすることにより酸
素濃度を低減し、重合を促進させることも可能である。
In the curing reaction of the photocurable powder composition of the present invention, generally, the composition is heated and melted at a melting temperature or higher so that the powder particles are continuously connected without maintaining the original particle shape. After changing to the state, 4 depending on the absorption wavelength of the light absorbing dye.
This is achieved by irradiation with light having a spectrum in the wavelength region of 00 nm or more. For example, a halogen lamp, a xenon lamp, sunlight, etc. are used. As mentioned above, these light sources are generally cheaper than mercury lamps, metal halide lamps, etc. used in the conventional UV photopolymerization, and are free from ozone generation, skin cancer, etc., and easy to take safety measures. It also has the feature of being. In the photo-curing reaction, it is preferable to irradiate light under a low oxygen concentration in order to reduce polymerization inhibition by oxygen. For example, it is possible to accelerate the polymerization by reducing the oxygen concentration by blowing the above inert gas onto the surface of the cured product in an atmosphere of an inert gas such as nitrogen, argon, carbon dioxide or the like.

【0028】本発明における一般式(1)で表される陽
イオン色素、一般式(2)で表されるホウ素系触媒は任
意の比率で使用可能であり、一般に10:1〜1:50
(モル比)の割合で使用されるが、硬化反応及び色素の
消色反応を完全に行わせるためには、ホウ素系触媒を陽
イオン色素よりも大量に用いる方が好ましい。すなわ
ち、1:1〜1:50(モル比)の範囲が特に好まし
い。
The cationic dye represented by the general formula (1) and the boron-based catalyst represented by the general formula (2) in the present invention can be used in an arbitrary ratio, and generally 10: 1 to 1:50.
It is used in a (molar ratio) ratio, but in order to completely carry out the curing reaction and the decoloring reaction of the dye, it is preferable to use the boron-based catalyst in a larger amount than the cationic dye. That is, the range of 1: 1 to 1:50 (molar ratio) is particularly preferable.

【0029】本発明の陽イオン色素、ホウ素系触媒から
なる重合開始剤は一般に組成物全体の0.01重量%以
上用いることにより本発明の目的を達成することが出来
る。それ以下だと重合が充分に行われないおそれがあ
る。好ましくは0.05〜10重量%の範囲である。大
量に用いすぎることは、経済的観点上好ましくない。2
種あるいはそれ以上の陽イオン色素、ホウ素系触媒を併
用することも可能である。特に光源の分光の効率的な利
用、コスト、保存安定性のバランス等を勘案すると可視
光吸収性陽イオン染料と近赤外光吸収性陽イオン色素を
併用することが好ましい。2種類以上の色素の配合比率
は任意であるが、光に対する保存安定性、光の透過性の
観点から、近赤外光吸収性陽イオン色素を配合する色素
全体の20モル%以上添加することが好ましい。
The object of the present invention can be achieved by generally using the polymerization initiator comprising the cationic dye and the boron-based catalyst of the present invention in an amount of 0.01% by weight or more based on the entire composition. If it is less than that, the polymerization may not be performed sufficiently. It is preferably in the range of 0.05 to 10% by weight. It is not preferable from the economical point of view to use too much. Two
It is also possible to use one or more cationic dyes and a boron-based catalyst in combination. In particular, it is preferable to use a visible light-absorbing cation dye and a near-infrared light-absorbing cation dye together in consideration of efficient use of light source spectrum, cost, storage stability balance, and the like. The mixing ratio of two or more kinds of dyes is arbitrary, but from the viewpoint of storage stability to light and light transmittance, it is necessary to add 20 mol% or more of the total dyes containing near-infrared light absorbing cationic dyes. Is preferred.

【0030】本発明の組成物には硬化反応を効率よく進
行させる目的で各種添加剤を配合することが出来る。例
えば酸素による重合阻害を低減するための酸素除去剤、
各種重合促進剤等が挙げられる。酸素除去剤としては各
種アミン化合物、各種ホスフィン化合物、ホスファイト
化合物、各種還元剤、一重項酸素スカベンジャー等が挙
げられ、具体的にはN,N,2,4,6−ペンタメチル
アニリン、トリフェニルホスフィン、Nーフェニルグリ
シン、各種遷移金属化合物類、光安定剤(HALS)と
して知られているヒンダードアミン化合物類あるいは特
開平2−103544号に記載の酸素除去剤等が挙げら
れる。また重合促進剤としては連鎖移動剤、電子受容性
物質等が挙げられ、具体的にはメルカプトベンゾチアゾ
ール等のチオール化合物,チオケトン類、各種過酸化
物、ビスイミダゾール化合物、トリアジン化合物、ヨー
ドニウム塩、スルホニウム塩等の芳香族オニウム塩等が
挙げられる。
Various additives may be added to the composition of the present invention for the purpose of efficiently promoting the curing reaction. For example, an oxygen scavenger for reducing polymerization inhibition by oxygen,
Examples include various polymerization accelerators. Examples of the oxygen scavenger include various amine compounds, various phosphine compounds, phosphite compounds, various reducing agents, singlet oxygen scavengers, and the like. Specifically, N, N, 2,4,6-pentamethylaniline, triphenyl Examples thereof include phosphine, N-phenylglycine, various transition metal compounds, hindered amine compounds known as light stabilizers (HALS), and oxygen scavengers described in JP-A-2-103544. Examples of the polymerization accelerator include chain transfer agents and electron-accepting substances. Specific examples include thiol compounds such as mercaptobenzothiazole, thioketones, various peroxides, bisimidazole compounds, triazine compounds, iodonium salts, and sulfonium. Examples include aromatic onium salts such as salts.

【0031】更に、本発明の開始剤を含む重合性組成物
には任意の顔料、添加物、充填剤等を添加することが出
来る。ここでいう添加剤としては、例えば一般に粉体塗
料用添加剤として用いられているレベリング剤、分散剤
等が挙げられ、また充填剤としては、粉末、球状、繊維
状、ウイスカー状、鱗片状等の各種形状の有機物、無機
物、或いはそれらの複合物、混合物が挙げられる。また
先にも述べたように、本発明の重合開始剤は長波長領域
に吸収を有する陽イオン色素を用いるので、光透過性の
低いカーボンブラックなどの黒色顔料、アルミニウム、
チタン等のメタリック顔料等を含有していても光重合を
生起させることが可能であり、それらの各種顔料なども
添加することが出来る。本発明の組成物は先にも述べた
ように、塗料、インク、接着剤、レジスト等の光硬化性
材料として好適であり、地球環境改善に寄与することが
期待される。従来の反応硬化性材料は硬化前のポリマー
成分を溶解させるために大量の溶剤を必要としていた
が、本発明の光硬化型粉体組成物は溶剤あるいは低沸点
化合物を含まないので自然保護あるいは資源保護の観点
からも非常に有用である。
Furthermore, any pigments, additives, fillers and the like can be added to the polymerizable composition containing the initiator of the present invention. Examples of the additive here include a leveling agent and a dispersant which are generally used as an additive for powder coatings, and examples of the filler include powder, spherical, fibrous, whisker-like, and scale-like. Various types of organic substances, inorganic substances, or their composites and mixtures. Further, as described above, since the polymerization initiator of the present invention uses a cationic dye having absorption in a long wavelength region, a black pigment such as carbon black having low light transmittance, aluminum,
Even if it contains a metallic pigment such as titanium, photopolymerization can be caused, and various pigments thereof can be added. As described above, the composition of the present invention is suitable as a photocurable material such as a paint, an ink, an adhesive and a resist, and is expected to contribute to the improvement of the global environment. Conventional reaction curable materials required a large amount of solvent in order to dissolve the polymer component before curing, but the photocurable powder composition of the present invention does not contain a solvent or a low boiling point compound, so it is not necessary to protect nature or resources. It is also very useful from the viewpoint of protection.

【0032】[0032]

【実施例】以下に実施例を挙げて本発明を説明する。(実施例1) エポキシアクリレート樹脂(昭和高分子製
商品名VR60 ガラス転移温度約70℃ 理論分子
量1950 重合性不飽和基数2個)70g、重合性モ
ノマーであるジアセトンアクリルアミド(融点56℃)
30g、近赤外光吸収性陽イオン色素(表1 番号3、
陰イオンはn−ブチルトリフェニルホウ素アニオン)
0.1g ホウ素系触媒(テトラブチルアンモニウムn
−ブチルトリフェニルホウ素)0.5gを約100℃で
溶融混練し、冷却後粉砕、分級し140メッシュ以下の
粉体組成物を得、サンプル1とした。
EXAMPLES The present invention will be described below with reference to examples. (Example 1) Epoxy acrylate resin (manufactured by Showa Polymer Co., Ltd., product name VR60, glass transition temperature: about 70 ° C, theoretical molecular weight: 1950, number of polymerizable unsaturated groups: 2), 70 g, diacetone acrylamide, a polymerizable monomer (melting point: 56 ° C)
30 g, near-infrared light absorbing cationic dye (Table 1, No. 3,
(Anion is n-butyltriphenylboron anion)
0.1g Boron-based catalyst (tetrabutyl ammonium n
-Butyltriphenylboron) (0.5 g) was melt-kneaded at about 100 ° C., cooled, pulverized and classified to obtain a powder composition having a particle size of 140 mesh or less.

【0033】(実施例2)陽イオン色素を表1 番号1
の化合物に変える以外は実施例1と同様にサンプル2を
作製した。
Example 2 A cationic dye is shown in Table 1 No. 1
Sample 2 was prepared in the same manner as in Example 1 except that the compound of Example 2 was used.

【0034】(実施例3)樹脂を不飽和ポリエステル
(商品名 HETRON92G ガラス転移温度105
℃ 分子量、不飽和結合数不明)に変える以外は実施例
1と同様にサンプル3を作製した。
(Example 3) Unsaturated polyester (trade name HETRON92G glass transition temperature 105
C. Sample 3 was prepared in the same manner as in Example 1 except that the molecular weight and the number of unsaturated bonds were changed.

【0035】(実施例4)陽イオン色素を表1 番号1
の化合物に変える以外は実施例3と同様にサンプル4を
作製した。
Example 4 Cationic dyes are listed in Table 1 No. 1
Sample 4 was prepared in the same manner as in Example 3 except that the compound of Example 4 was used.

【0036】(実施例5)陽イオン色素を可視光吸収色
素である表2 番号8の化合物(一般名:クリスタルバ
イオレット 陰イオンは塩素アニオン)に変える以外は
実施例1と同様にサンプル5を作製した。
Example 5 Sample 5 was prepared in the same manner as in Example 1 except that the cation dye was changed to the compound of No. 8 in Table 2 (general name: crystal violet, anion being chlorine anion) which is a visible light absorbing dye. did.

【0037】(実施例6)陽イオン色素を可視光吸収色
素である表2 番号4の化合物(陰イオンはテトラフェ
ニルホウ素アニオン)に変える以外は実施例1と同様に
サンプル6を作製した。
Example 6 Sample 6 was prepared in the same manner as in Example 1 except that the cation dye was changed to the compound of No. 4 in Table 2 (the anion was tetraphenylboron anion) which was a visible light absorbing dye.

【0038】(実施例7)アルミペースト(昭和アルミ
パウダー製 商品名SAP561PS)5gを添加する
以外は実施例1と同様にサンプル7を作製した。
Example 7 Sample 7 was prepared in the same manner as in Example 1 except that 5 g of aluminum paste (Showa Aluminum Powder, trade name SAP561PS) was added.

【0039】(比較例)陽イオン色素及びホウ素系触媒
に変えて紫外光重合開始剤である2,2−ジエトキシア
セトフェノン5gを添加する以外は実施例7と同様に比
較サンプルを作製した。
Comparative Example A comparative sample was prepared in the same manner as in Example 7 except that 5 g of 2,2-diethoxyacetophenone as an ultraviolet photopolymerization initiator was added instead of the cationic dye and the boron-based catalyst.

【0040】[サンプルの重合試験及び硬化性評価]作
製した各サンプルを120℃に加熱溶融後、アプリケー
ターにてアルミ基板上に100μmの厚さに塗布し、窒
素雰囲気下、400〜1200nmの波長領域に分光分
布を有する出力1500Wのハロゲンランプを実施例1
〜4、7は800nm以下の波長カットフィルターを通
して、実施例5、6は800nm以上の波長カットフィ
ルターを通して5分間照射した。光反応によって陽イオ
ン色素の色が完全に消色するとともに硬化反応が生起
し、硬化塗膜が得られた。表面硬度及び塗膜を基板から
剥して塗膜裏面の硬度を測定した。硬度の指標は鉛筆硬
度を用いた。その結果塗膜表面、裏面いずれも実用上十
分に硬化していることが確認された(表3)。
[Polymerization test and evaluation of curability of sample] Each of the prepared samples was heated and melted at 120 ° C., and then coated on an aluminum substrate with an applicator so as to have a thickness of 100 μm. A halogen lamp with an output of 1500 W having a spectral distribution in the first embodiment is used.
Irradiation was carried out for 5 minutes through a wavelength cut filter of 800 nm or less in Examples 4 and 7, and for 5 minutes through a wavelength cut filter of 800 nm or more in Examples 5 and 6. The photoreaction caused the color of the cationic dye to be completely decolored and a curing reaction to occur, whereby a cured coating film was obtained. The surface hardness and the coating film were peeled from the substrate and the hardness of the back surface of the coating film was measured. Pencil hardness was used as the index of hardness. As a result, it was confirmed that both the front surface and the back surface of the coating film were practically sufficiently cured (Table 3).

【0041】[0041]

【表3】 [Table 3]

【0042】[比較サンプルの重合試験]作製した上記
比較サンプルを上記重合試験と同様にアルミ基板に塗布
した後、波長200〜400nmの範囲に分光分布を有
する高圧水銀ランプを5分間照射した。塗膜表面は僅か
に硬化したものの、指で押すと塗膜内部の組成物が未硬
化のまま浸出してくる状態であり、硬度測定は不可能で
あった。
[Polymerization test of comparative sample] The prepared comparative sample was applied to an aluminum substrate in the same manner as in the above-mentioned polymerization test, and then irradiated with a high-pressure mercury lamp having a spectral distribution in the wavelength range of 200 to 400 nm for 5 minutes. Although the surface of the coating film was slightly cured, when pressed with a finger, the composition inside the coating film leached out in an uncured state, and hardness measurement was impossible.

【0043】[0043]

【発明の効果】本発明により、従来よりも低温で硬化可
能でかつ溶融時に硬化反応の生起しない、しかも厚膜、
顔料添加系など従来の紫外線では困難であった光透過性
の低い硬化系でも硬化可能な光硬化性粉体組成物及び硬
化方法が提供された。
EFFECTS OF THE INVENTION According to the present invention, it is possible to cure at a lower temperature than before, and a curing reaction does not occur during melting, and a thick film,
Provided are a photocurable powder composition and a curing method capable of curing even a curing system having a low light transmittance, which has been difficult with conventional ultraviolet rays such as a pigment addition system.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C09D 5/03 PNB ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area C09D 5/03 PNB

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式(1)で表わされる陽イオン色
素、一般式(2)で表わされるホウ素系触媒、重合性不
飽和結合を有する粉末状の熱可塑性樹脂を必須成分とす
る光硬化性粉体組成物 一般式(1);D+ ・A- (式中、D+ は可視光から近赤外光までの任意の波長領
域に吸収をもつ陽イオンであり、A- は、各種陰イオン
を示す) 一般式(2); 【化1】 (式中、R1 、R2 、R3 及びR4 はそれぞれ独立して
アルキル基、アリール基、アリル基,アラルキル基、ア
ルケニル基、アルキニル基、シリル基、複素環基、ハロ
ゲン原子、置換アルキル基、置換アリール基、置換アリ
ル基、置換アラルキル基、置換アルケニル基、置換アル
キニル基または置換シリル基を示し、Z+ は陽イオンを
示す)
1. A photocurable resin containing as an essential component a cationic dye represented by the general formula (1), a boron-based catalyst represented by the general formula (2), and a powdery thermoplastic resin having a polymerizable unsaturated bond. Powder composition General formula (1); D + · A (In the formula, D + is a cation having an absorption in an arbitrary wavelength region from visible light to near infrared light, and A is various anions. General formula (2); (In the formula, R 1 , R 2 , R 3 and R 4 are each independently an alkyl group, an aryl group, an allyl group, an aralkyl group, an alkenyl group, an alkynyl group, a silyl group, a heterocyclic group, a halogen atom or a substituted alkyl group. Group, a substituted aryl group, a substituted allyl group, a substituted aralkyl group, a substituted alkenyl group, a substituted alkynyl group or a substituted silyl group, and Z + represents a cation)
【請求項2】 重合性不飽和結合を有する熱可塑性樹脂
のガラス転移温度が20℃〜180℃の範囲である請求
項1の粉体組成物。
2. The powder composition according to claim 1, wherein the glass transition temperature of the thermoplastic resin having a polymerizable unsaturated bond is in the range of 20 ° C. to 180 ° C.
【請求項3】 熱可塑性樹脂中の重合性不飽和基が、分
子量2000当たり1個以上存在する、請求項1又は2
の粉体組成物。
3. The polymerizable unsaturated group in the thermoplastic resin is present in an amount of 1 or more per 2,000 of molecular weight.
Powder composition.
【請求項4】 組成物を加熱溶融、連続被膜を形成した
後、陽イオン色素の吸収波長領域に分光分布を有する可
視光および/または近赤外光を照射することにより重
合、硬化させることを特徴とする請求項1、2又は3の
粉体組成物の硬化方法。
4. The composition is heated and melted to form a continuous film, which is then polymerized and cured by irradiating visible light and / or near infrared light having a spectral distribution in the absorption wavelength region of the cation dye. The method for curing the powder composition according to claim 1, 2 or 3.
JP218295A 1995-01-10 1995-01-10 Powdery photocurable composition and curing of the same Pending JPH08188632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP218295A JPH08188632A (en) 1995-01-10 1995-01-10 Powdery photocurable composition and curing of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP218295A JPH08188632A (en) 1995-01-10 1995-01-10 Powdery photocurable composition and curing of the same

Publications (1)

Publication Number Publication Date
JPH08188632A true JPH08188632A (en) 1996-07-23

Family

ID=11522228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP218295A Pending JPH08188632A (en) 1995-01-10 1995-01-10 Powdery photocurable composition and curing of the same

Country Status (1)

Country Link
JP (1) JPH08188632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041323A2 (en) * 1998-02-17 1999-08-19 E.I. Du Pont De Nemours And Company, Inc. Method for producing powder coatings

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041323A2 (en) * 1998-02-17 1999-08-19 E.I. Du Pont De Nemours And Company, Inc. Method for producing powder coatings
WO1999041323A3 (en) * 1998-02-17 1999-09-30 Herberts Gmbh & Co Kg Method for producing powder coatings
AU753296B2 (en) * 1998-02-17 2002-10-17 E.I. Du Pont De Nemours And Company Method for producing powder coatings
CN100383200C (en) * 1998-02-17 2008-04-23 纳幕尔杜邦公司 Method for forming powder coatings

Similar Documents

Publication Publication Date Title
Decker Kinetic study and new applications of UV radiation curing
JPH07292014A (en) Near-infrared-polymerizable composition
JPH1081838A (en) Photocurable material and method for curing the same
JPH08511569A (en) Stabilized curable adhesive
JP5168860B2 (en) Photopolymerizable composition
JP2003093967A (en) Repair painting method
US6211260B1 (en) Photocurable paint composition for road markings
JPS6039707B2 (en) Solvent-free photopolymerizable coating composition
US3827957A (en) Photopolymerizable pigmented vehicles containing chlorosulfonated or alpha-haloalkylated polynuclear ketone initiators
CA1200685A (en) Curable temperature indicating composition
JP3524600B2 (en) Curable resin composition and method for producing cured resin
JPH08188632A (en) Powdery photocurable composition and curing of the same
JPH0675374A (en) Photosetting material and setting method
JP2000302840A (en) Active energy radiation curing coating composition and process for formation of coated film using the composition
JPH08231617A (en) Method of curing photocurable composition
US5854298A (en) Photocurable low observable aircraft materials
JPH08100011A (en) Photopolymerization initiator
JP5503104B2 (en) Light curable colored paints and painted resin products
EP0825201B2 (en) Photocurable composition and curing process therefor
JP3785687B2 (en) Photocurable composition and method for curing the same
US3827956A (en) Photopolymerizable pigmented vehicles containing chlorosulfonated or alpha-haloalkylated benzanthrone initiators
JPH0952068A (en) Method for curing paint film
JPH10316708A (en) Photocurable composition and method for preventing color reversion
JPH08100012A (en) Near-infrared polymerization initiator
JP3247267B2 (en) Matte coating formation method