JPH08188413A - Production of fine particle of boron-containing ceramic - Google Patents

Production of fine particle of boron-containing ceramic

Info

Publication number
JPH08188413A
JPH08188413A JP1747295A JP1747295A JPH08188413A JP H08188413 A JPH08188413 A JP H08188413A JP 1747295 A JP1747295 A JP 1747295A JP 1747295 A JP1747295 A JP 1747295A JP H08188413 A JPH08188413 A JP H08188413A
Authority
JP
Japan
Prior art keywords
fine particles
concentration
solution
reducing agent
metal ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1747295A
Other languages
Japanese (ja)
Inventor
Junji Saida
淳治 才田
Yasushi Tanaka
康司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP1747295A priority Critical patent/JPH08188413A/en
Publication of JPH08188413A publication Critical patent/JPH08188413A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE: To provide a process which can simply produce fine particles of boride ceramic by chemical reactions. CONSTITUTION: A metallic ion solution containing Ti and/or Tr ions or a combination thereof with other transition metal ions is admixed to a reducing agent solution containing boron hydride or an amine borane derivative to cause precipitation. When the metallic ion solution contains other transition metal ions, their concentrations are set to the same one as or lower than that of Ti and/or Zr ion. If they are higher, the precipitated fine particles are further heat-treated at 100-1,400 deg.C in an oxidative atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Ti、Zrさらには遷
移金属を主成分とする金属イオンを還元性のホウ素化合
物と湿式法で反応させることにより(Ti、Zr)−B
−O系および(Ti、Zr)−遷移金属−B−O系のセ
ラミックス微粒子を製造する方法に関する。
The present invention relates to (Ti, Zr) -B by reacting a metal ion containing Ti, Zr or a transition metal as a main component with a reducing boron compound by a wet method.
The present invention relates to a method for producing -O-based and (Ti, Zr) -transition metal-BO-based ceramic fine particles.

【0002】[0002]

【従来技術】ホウ化物セラミックスは、大きな強度、金
属のような高い導電性を有し、特にTi、Zr、Wのよ
うな遷移金属とのホウ化物は配合する遷移金属の種類を
変えると、種々の特性のセラミックスにすることができ
る。このため、種々の組成のホウ化物セラミックスの要
求が高まっているが、ホウ化物セラミックスの欠点は成
形用もしくは焼結用の微粒子を製造できないことであ
る。酸化物、窒化物、炭化物などのセラミックス微粒子
は高温状態やプラズマ中で反応させる気相反応法で容易
に製造できるが、ホウ化物セラミックスの場合は容易に
分解、反応する原料ガスがなく、また、ホウ化物の生成
が起きにくいため、量産製造できない。また、酸化物系
セラミックスなどの微粒子は有機金属化合物の加水分解
や共沈により析出させる化学的反応法でも製造できる
が、ホウ化物セラミックスの場合は分解、反応が起きる
適当な薬剤がなく、この方法でも量産製造できない。
2. Description of the Related Art Boride ceramics have high strength and high conductivity like metal. Especially, boride with a transition metal such as Ti, Zr, and W can be mixed with various kinds of transition metals. Ceramics with the characteristics of Therefore, there is an increasing demand for boride ceramics having various compositions, but a drawback of boride ceramics is that fine particles for molding or sintering cannot be produced. Ceramic fine particles such as oxides, nitrides, and carbides can be easily produced by a gas phase reaction method of reacting in a high temperature state or plasma, but in the case of boride ceramics, there is no raw material gas that easily decomposes and reacts. Since boride is unlikely to occur, mass production is not possible. Further, fine particles such as oxide-based ceramics can also be produced by a chemical reaction method in which they are precipitated by hydrolysis or coprecipitation of an organometallic compound, but in the case of boride ceramics, there is no suitable chemical agent that causes decomposition and reaction. But mass production is not possible.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来困難で
あった化学的反応法でホウ化物セラミックスの微粒子を
簡単に製造できる方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a method for easily producing fine particles of boride ceramics by a chemical reaction method which has been difficult in the past.

【0004】[0004]

【課題を解決するための手段】本発明の第1発明は、水
素化ホウ素化合物またはアミンボラン誘導体を含有する
還元剤溶液中にTiイオンおよび/またはZrイオンを
含有する金属イオン溶液を混合して、還元剤と金属イオ
ンとを反応させることによりホウ素含有セラミックス微
粒子を製造する方法であり、第2発明はこの第1発明の
金属イオン溶液にTi、Zr以外の他の遷移金属イオン
の1種または2種以上をさらに含有させて、その濃度を
モル濃度比で(Tiイオンおよび/またはZrイオン濃
度)/(他の遷移金属イオン濃度)≧1にすることであ
り、第3発明は第1発明の金属イオン溶液がTi、Zr
以外の他の遷移金属の1種または2種以上のイオンをさ
らに含有させて、その濃度をモル濃度比で(Tiイオン
および/またはZrイオン濃度)/(他の遷移金属イオ
ン濃度)<1にするとともに、得られた微粒子に酸化雰
囲気中で100〜1400℃の熱処理を施すことであ
る。
The first aspect of the present invention is to mix a metal ion solution containing Ti ions and / or Zr ions in a reducing agent solution containing a borohydride compound or an amine borane derivative, A second invention is a method for producing fine particles of boron-containing ceramics by reacting a reducing agent with a metal ion, and the second invention is the metal ion solution of the first invention, wherein one or two kinds of transition metal ions other than Ti and Zr are added. It is to further contain at least one species and to make the concentration thereof (molar concentration ratio: (Ti ion and / or Zr ion concentration) / (concentration of other transition metal ion) ≧ 1). Metal ion solution is Ti, Zr
Other than the above, one or more ions of other transition metals are further contained, and the concentration thereof is set to a molar concentration ratio of (Ti ion and / or Zr ion concentration) / (other transition metal ion concentration) <1. In addition, the obtained fine particles are heat-treated at 100 to 1400 ° C. in an oxidizing atmosphere.

【0005】[0005]

【作用】本発明者らは、先に合金微粒子の製造方法とし
て、Fe、Co、Ni、Cu基合金について、水素化ホ
ウ素化合物またはアミンボラン誘導体の還元剤溶液中に
ベ−ス金属のイオン溶液を混合して、ホウ素とベ−ス金
属とを反応させる方法(特開昭64−65206号公
報、特開平2−232308号公報、特開平3−630
9号公報)を提案したが、この方法でベ−ス金属のイオ
ン溶液にTi、Zrのイオン水溶液を用いると、酸化物
系のホウ化物セラミックス微粒子が得られることを見い
だした。
As a method for producing fine alloy particles, the inventors of the present invention first prepared an Fe-, Co-, Ni-, Cu-based alloy by adding a base metal ion solution to a reducing agent solution of a borohydride compound or an amine borane derivative. A method of mixing and reacting boron with a base metal (JP-A-64-65206, JP-A-2-232308, JP-A-3-630)
No. 9) was proposed, but it was found that oxide-based boride ceramics fine particles can be obtained by using an aqueous solution of Ti and Zr ions as the base metal ion solution by this method.

【0006】本発明で使用する還元剤溶液の水素化ホウ
素化合物は、合金微粒子の製造の場合と同様に、一般式
M(BH4n(但し、Mは金属、nは整数)で示される
もので、MとしてはLi、Na、K、Be、Mg、Z
n、Cd、Cu、Ag、Ga、Hf、Th、U、Puな
どが挙げられる。また、アミンボラン誘導体はBH3
NHxy(但し、Rはアルキル基、xとyは整数)で示
されるもので、アルキル基がメチル基、エチル基、、
(イソ)プロピル基、(イソ、タ−シャル)ブチル基の
ような低級アルキル基のものを用いると安価である。溶
媒は水系溶媒、有機溶媒のいずれでもよいが、生産性、
製造コスト、微粒子が酸化物系であることを考慮する
と、水が好ましい。
The borohydride compound of the reducing agent solution used in the present invention is represented by the general formula M (BH 4 ) n (where M is a metal and n is an integer), as in the case of the production of alloy fine particles. Where M is Li, Na, K, Be, Mg, Z
Examples thereof include n, Cd, Cu, Ag, Ga, Hf, Th, U and Pu. The amine borane derivative is BH 3 −.
NH x R y (where R is an alkyl group, x and y are integers), and the alkyl group is a methyl group, an ethyl group,
It is inexpensive to use a lower alkyl group such as (iso) propyl group or (iso, tertial) butyl group. The solvent may be either an aqueous solvent or an organic solvent, but productivity,
Water is preferable in view of the production cost and the fact that the fine particles are oxide-based.

【0007】Tiイオンおよび/またはZrイオンを含
有する金属イオン溶液は、Ti、Zrの塩、好ましくは
水溶性塩、例えば、硫酸塩、硝酸塩、炭酸塩、塩化物な
どの塩を水系溶媒、有機溶媒に溶解したもので、Ti、
Zrの両イオンを含有する溶液でセラミックスの一方の
ベ−ス金属濃度を高くしたい場合には、一方のイオン濃
度を高くすればよい。
The metal ion solution containing Ti ions and / or Zr ions is prepared by adding a salt of Ti or Zr, preferably a water-soluble salt such as sulfate, nitrate, carbonate or chloride to an aqueous solvent or organic solvent. Dissolved in a solvent, such as Ti,
When it is desired to increase the concentration of one base metal of the ceramic in a solution containing both Zr ions, the concentration of one ion may be increased.

【0008】(Ti、Zr)−B−O系セラミックス微
粒子に他の遷移金属を添加して、セラミックスを(T
i、Zr)−遷移金属−B−O系にすることにより耐熱
性、導電性、熱伝導性、光吸放出性、耐食性などの特性
をさらに改善したい場合には、金属イオン溶液にTi、
Zr以外の遷移金属イオンの1種または2種以上をさら
に含有させればよい。遷移金属イオンはTi塩やZr塩
の場合と同様に硫酸塩、硝酸塩、炭酸塩、塩化物などの
ような水溶性塩を添加すればよいが、その添加の場合、
Tiイオンおよび/またはZrイオンの濃度と他の遷移
金属イオンの濃度比によりセラミックス微粒子の析出状
態が変化するので、注意を要する。
Another transition metal is added to the (Ti, Zr) -BO ceramic fine particles to form a ceramic (T
i, Zr) -transition metal-BO system, when it is desired to further improve the properties such as heat resistance, electrical conductivity, thermal conductivity, light absorption / emission property, and corrosion resistance, a metal ion solution containing Ti,
One or more transition metal ions other than Zr may be further contained. As the transition metal ion, a water-soluble salt such as a sulfate, a nitrate, a carbonate or a chloride may be added as in the case of the Ti salt or the Zr salt.
Care must be taken because the deposition state of the ceramic fine particles changes depending on the concentration ratio of Ti ions and / or Zr ions and the concentration of other transition metal ions.

【0009】すなわち、モル濃度比で(Tiイオンおよ
び/またはZrイオン濃度)/(他の遷移金属イオン濃
度)≧1である場合には、組成が均一なセラミックス微
粒子が高収率で析出するが、モル濃度比で(Tiイオン
および/またはZrイオン)/(他の遷移金属イオン濃
度)<1であると、析出微粒子の一部に金属粒子が含ま
れてしまう。このような場合には得られた微粒子に10
0〜1400℃の熱処理を施せばよい。この熱処理は3
00〜1100℃で行うと、酸化効率が向上し、また、
粒子相互の融着により粒子粗大化を防止できる。また、
雰囲気は酸化性雰囲気、例えば、酸素中もしくは大気中
で行うのが好ましい。
That is, when the molar concentration ratio is (Ti ion and / or Zr ion concentration) / (concentration of other transition metal ion) ≧ 1, ceramic fine particles having a uniform composition are deposited in a high yield. When the molar concentration ratio is (Ti ion and / or Zr ion) / (concentration of other transition metal ion) <1, metal particles are included in a part of the deposited fine particles. In such a case, the obtained fine particles have 10
The heat treatment may be performed at 0 to 1400 ° C. This heat treatment is 3
When performed at 00 to 1100 ° C, the oxidation efficiency is improved, and
Particle fusion can be prevented by fusion of particles. Also,
The atmosphere is preferably an oxidizing atmosphere, for example, oxygen or air.

【0010】還元剤溶液への金属イオン溶液の混合は、
例えば、前者の溶液を撹拌しながら後者の溶液を徐々に
滴下して、還元剤と金属イオンとを反応させればよい
が、セラミックス微粒子はこの混合の際の反応条件によ
り組成、収率、粒径などが変化する。例えば、還元剤溶
液の水素化ホウ素化合物またはアミンボラン誘導体濃度
と金属イオン溶液の金属イオン濃度とは、金属イオン溶
液がTi、Zrイオンだけの場合でも、また、これらの
元素以外の遷移金属イオンを含んでいる場合でも、モル
濃度比で前者/後者≧1にすると、組成が均一なセラミ
ックス微粒子を析出させることができる。
The mixing of the metal ion solution with the reducing agent solution is
For example, the latter solution may be gradually added dropwise while stirring the former solution to react the reducing agent with the metal ions, but the ceramic fine particles may have different compositions, yields, and particles depending on the reaction conditions during the mixing. The diameter changes. For example, the concentration of the borohydride compound or the amine borane derivative in the reducing agent solution and the concentration of the metal ion in the metal ion solution include the transition metal ions other than these elements even when the metal ion solution is only Ti or Zr ions. Even in the case of the above, by setting the former / latter ≧ 1 in terms of molar concentration ratio, ceramic fine particles having a uniform composition can be deposited.

【0011】還元剤溶液に金属イオン溶液を滴下した場
合、金属イオン溶液は拡散して、直ちに還元剤溶液のア
ルカリ度(酸性度)や温度になるので、還元剤溶液のア
ルカリ度や温度が反応条件となる。本還元剤は酸性域で
分解し、効率が低下するので、還元剤溶液はアルカリ性
にする必要がある。還元剤溶液がpHで8〜13.5で
あれば、この範囲でpHが変化してもセラミックス微粒
子の組成に大きな変化はなく、安定した析出量が得られ
る。しかし、pHを10〜13にすると、収率が向上す
る。なお、Ti、Zr、その他の遷移金属の酸性塩を溶
解しただけの水溶液pHは弱酸性であるが、本条件では
還元剤の量が非常に多いので、特別にpHを調整する必
要はない。
When the metal ion solution is dropped onto the reducing agent solution, the metal ion solution diffuses and immediately reaches the alkalinity (acidity) or temperature of the reducing agent solution, so that the alkalinity or temperature of the reducing agent solution reacts. It becomes a condition. Since this reducing agent decomposes in the acidic region and the efficiency decreases, it is necessary to make the reducing agent solution alkaline. When the reducing agent solution has a pH of 8 to 13.5, the composition of the ceramic fine particles does not change significantly even if the pH changes within this range, and a stable precipitation amount can be obtained. However, if the pH is 10 to 13, the yield is improved. Although the pH of the aqueous solution obtained by dissolving the acid salts of transition metals such as Ti, Zr, etc. is weakly acidic, the pH of the reducing agent does not need to be specially adjusted under this condition because the amount of the reducing agent is very large.

【0012】還元剤溶液の温度が高い程セラミックス微
粒子の析出時間の短縮化、粒径の微細化を図ることがで
きるが、あまり高くすると、還元剤が分解する。このた
め、0〜80℃にするのが好ましい。特に、10〜60
℃にすると、還元剤の分解が抑制され、反応速度、収率
が向上する。
The higher the temperature of the reducing agent solution, the shorter the precipitation time of the fine ceramic particles and the finer the particle size, but if the temperature is too high, the reducing agent decomposes. Therefore, the temperature is preferably 0 to 80 ° C. In particular, 10-60
When the temperature is set to ° C, decomposition of the reducing agent is suppressed, and the reaction rate and yield are improved.

【0013】析出したセラミックス微粒子は、濾過した
後、水や有機溶媒で洗浄すればよい。本発明で得られる
セラミックス微粒子の粒径は0.02〜0.10μmと極
めて小さく、また、粒度分布の幅も小さい。なお、本明
細書では、これら製造条件によるセラミックス微粒子の
品質の変化を評価するため、各材料の酸素濃度を分析
し、その濃度が一定とみなされる製造範囲を適合条件と
している(実施例5〜7参照)。
The deposited ceramic fine particles may be filtered and then washed with water or an organic solvent. The ceramic fine particles obtained in the present invention have a very small particle size of 0.02 to 0.10 μm and a narrow particle size distribution. In this specification, in order to evaluate the change in the quality of the ceramic fine particles due to these manufacturing conditions, the oxygen concentration of each material is analyzed, and the manufacturing range in which the concentration is regarded as constant is defined as the conforming condition (Examples 5 to 5). 7).

【0014】[0014]

【実施例】【Example】

実施例1 (1)溶液の調整 (A)還元剤溶液 濃度がともに1mol/lである水素化ホウ素カリウム(K
BH4)、水素化ホウ素ナトリウム(NaBH4)、ジメ
チルアミンボラン(DMAB)の水溶液を調整した。こ
れらの水溶液のpHは10〜11であった。 (B)金属イオン溶液 硫酸チタン、硫酸ジルコニウムを水に溶解して、Tiイ
オンまたはZrイオン濃度がともに0.1mol/lである
Ti塩溶液、Zr塩溶液を調整した。また、両溶液を種
々の割合で混合して、TiイオンとZrイオンのモル濃
度比の異なる混合溶液を調整した。 (2)セラミックス微粒子の製造 還元剤溶液を40℃にして、撹拌しながらその中に金属
イオン溶液を滴下し、セラミックス微粒子を析出させた
後、析出した微粒子を濾過して、水で洗浄した。表1に
得られたセラミックス微粒子の組成、結晶構造、粒径を
示す。なお、組成および結晶構造の決定はそれぞれ化学
分析およびX線回折により行い、粒径は透過電子顕微鏡
で測定した。
Example 1 (1) Preparation of Solution (A) Reducing Agent Solution Potassium borohydride (K) having a concentration of 1 mol / l
An aqueous solution of BH 4 ), sodium borohydride (NaBH 4 ), and dimethylamine borane (DMAB) was prepared. The pH of these aqueous solutions was 10-11. (B) Metal Ion Solution Titanium sulfate and zirconium sulfate were dissolved in water to prepare a Ti salt solution and a Zr salt solution each having a Ti ion or Zr ion concentration of 0.1 mol / l. Further, both solutions were mixed at various ratios to prepare mixed solutions having different molar concentration ratios of Ti ions and Zr ions. (2) Production of Ceramic Fine Particles The reducing agent solution was brought to 40 ° C., a metal ion solution was dropped into the solution while stirring to deposit ceramic fine particles, and the deposited fine particles were filtered and washed with water. Table 1 shows the composition, crystal structure, and particle size of the obtained ceramic fine particles. The composition and crystal structure were determined by chemical analysis and X-ray diffraction, respectively, and the particle size was measured by a transmission electron microscope.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例2 硫酸チタン、硫酸ジルコニウム、硫酸鉄、塩化ニッケ
ル、塩化コバルト、モリブデン酸ナトリウム、タングス
テン酸ナトリウム、硫酸銅を水に溶解して、濃度がいず
れも0.1mol/lである金属イオン溶液を調整した。ま
た、これとともにTiイオン溶液またはZrイオン溶液
あるいは両溶液に他の遷移金属イオン溶液を種々の割合
で混合して、イオンモル濃度比が(Tiイオンおよび/
またはZrイオン濃度)/(他の遷移金属イオン濃度)
=7/3である混合イオン溶液を調整した。そして、調
整後これらの溶液を実施例1の金属イオン溶液の代わり
に還元剤溶液に添加した。表2、表3に得られたセラミ
ックス微粒子の組成、結晶構造、粒径を示す。
Example 2 Titanium sulfate, zirconium sulfate, iron sulfate, nickel chloride, cobalt chloride, sodium molybdate, sodium tungstate, and copper sulfate were dissolved in water and each had a concentration of 0.1 mol / l. An ionic solution was prepared. Along with this, other transition metal ion solutions are mixed with the Ti ion solution or the Zr ion solution or both solutions at various ratios, and the ion molar concentration ratio is (Ti ions and / or
Or Zr ion concentration) / (concentration of other transition metal ions)
= 7/3 mixed ionic solution was prepared. Then, after adjustment, these solutions were added to the reducing agent solution instead of the metal ion solution of Example 1. Tables 2 and 3 show the composition, crystal structure, and particle size of the obtained ceramic fine particles.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】実施例3 実施例2において、混合イオン溶液として、イオンモル
濃度比が(Tiイオンおよび/またはZrイオン濃度)
/(他の遷移金属イオン濃度)=3/7である混合イオ
ン溶液を用いた。表4、表5に得られたセラミックス微
粒子の組成、結晶構造、粒径を示す。
Example 3 In Example 2, the mixed ion solution had an ion molar concentration ratio (Ti ion and / or Zr ion concentration).
A mixed ion solution in which / (concentration of other transition metal ions) = 3/7 was used. Tables 4 and 5 show the composition, crystal structure, and particle size of the obtained ceramic fine particles.

【0020】[0020]

【表4】 [Table 4]

【0021】[0021]

【表5】 [Table 5]

【0022】実施例4 (1)溶液の調整 (A)還元剤溶液 濃度が種々の水素化ホウ素カリウム(KBH4)の水溶
液を調整した。pHは9〜11.5の範囲であった。 (B)金属イオン溶液 硫酸チタン、硫酸銅を水に溶解して、イオン量比がモル
濃度比でTi2+:Cu2+=7:3で、合計イオン濃度が
0.1mol/lの金属イオン溶液を調整した。 (2)セラミックス微粒子の製造 各濃度の還元剤溶液を10℃にして、撹拌しながらその
中に金属イオン溶液を滴下して、セラミックス微粒子を
析出させ、その後、析出した微粒子を濾過して、水で洗
浄した。図1にKBH4/金属イオンのモル濃度比と得
られたセラミックス微粒子の組成(原子%)との関係
を、また、図2に還元剤と金属イオンのモル濃度比によ
るセラミックス微粒子の収率を示す。なお、図2の縦軸
の収率は還元剤濃度がモル濃度比で金属イオンの10倍
である場合の析出量を基準析出量とし、この析出量に対
して本実施例での析出量が何%であるかを規格化したも
のである。
Example 4 (1) Preparation of Solution (A) Reducing Agent Solution Aqueous solutions of potassium borohydride (KBH 4 ) having various concentrations were prepared. The pH was in the range of 9-11.5. (B) Metal ion solution Titanium sulphate and copper sulphate are dissolved in water to give a metal having a molar ion concentration ratio of Ti 2+ : Cu 2+ = 7: 3 and a total ion concentration of 0.1 mol / l. An ionic solution was prepared. (2) Production of Ceramic Fine Particles A reducing agent solution of each concentration is brought to 10 ° C., a metal ion solution is dropped therein while stirring to precipitate ceramic fine particles, and then the fine particles thus precipitated are filtered to obtain water. Washed with. Fig. 1 shows the relationship between the molar concentration ratio of KBH 4 / metal ion and the composition (atomic%) of the obtained ceramic fine particles, and Fig. 2 shows the yield of ceramic fine particles by the molar concentration ratio of reducing agent and metal ions. Show. The yield on the vertical axis in FIG. 2 is the standard deposition amount when the reducing agent concentration is 10 times the molar concentration of metal ions, and the deposition amount in this example is It is a standardized value of what percentage.

【0023】図1、図2に示すように、還元剤と金属イ
オンのモル濃度比が1未満であると、酸素濃度が増大す
るため、均質なセラミックス微粒子が得られず、収率も
低かった。一方、前記モル濃度比が1以上であると、安
定した組成のセラミックス微粒子が得られ、収率も高か
った。
As shown in FIGS. 1 and 2, when the molar concentration ratio of the reducing agent and the metal ion is less than 1, the oxygen concentration increases, so that homogeneous ceramic fine particles cannot be obtained and the yield is low. . On the other hand, when the molar concentration ratio was 1 or more, ceramic fine particles having a stable composition were obtained and the yield was high.

【0024】実施例5 (1)溶液の調整 (A)還元剤溶液 濃度が1mol/lの水素化ホウ素ナトリウム(NaB
4)の水溶液を調整した。pHは10であった。 (B)金属イオン溶液 硫酸チタン、硫酸ジルコニウム、硫酸鉄を水に溶解し
て、イオン量比がモル濃度比でTi2+:Zr4+:Fe2+
=7:2:1で、合計イオン濃度が0.5mol/lの金属
イオン溶液を調整した。 (2)セラミックス微粒子の製造 還元剤溶液の温度を0〜95℃に変化させて、撹拌しな
がらその中に金属イオン溶液を滴下し、セラミックス微
粒子を析出させた。析出微粒子中には金属粒子が認めら
れたが、濾過、水洗後、大気中にて400℃で1時間加
熱したところ、組成がTi15.2Zr4.0Fe2.119.1
59.6のセラミックス微粒子になった。図3は還元剤溶液
の温度とセラミックス微粒子の収率の関係並びに還元剤
溶液の温度と酸素濃度(原子%)との関係を示したもの
であるが、還元剤溶液温度が95℃を越えると、収率は
低かった。
Example 5 (1) Preparation of Solution (A) Reducing Agent Solution Sodium borohydride (NaB) having a concentration of 1 mol / l
It was prepared an aqueous solution of H 4). The pH was 10. (B) Metal Ion Solution Titanium sulfate, zirconium sulfate, and iron sulfate are dissolved in water, and the ion amount ratio is molar ratio Ti 2+ : Zr 4+ : Fe 2+.
= 7: 2: 1 and a total ion concentration of 0.5 mol / l was prepared as a metal ion solution. (2) Production of Ceramic Fine Particles The temperature of the reducing agent solution was changed to 0 to 95 ° C., and the metal ion solution was added dropwise thereto while stirring to precipitate fine ceramic particles. Although metal particles were observed in the deposited fine particles, the composition was Ti 15.2 Zr 4.0 Fe 2.1 B 19.1 O when heated at 400 ° C. for 1 hour in the air after filtration and washing with water.
59. Became 6 ceramic fine particles of. FIG. 3 shows the relationship between the temperature of the reducing agent solution and the yield of the ceramic fine particles and the relationship between the temperature of the reducing agent solution and the oxygen concentration (atomic%). When the temperature of the reducing agent solution exceeds 95 ° C. , The yield was low.

【0025】実施例6 (1)溶液の調整 (A)還元剤溶液 濃度が1mol/lで、pHは種々の水素化ホウ素カリウム
(KBH4)の水溶液を調整した。 (B)金属イオン溶液 硫酸チタンを水に溶解して、Tiイオン濃度0.6mol/
lの金属イオン溶液を調整した。 (2)セラミックス微粒子の製造 各pHの還元剤溶液を30℃に調整して、撹拌しなが
ら、その中に金属イオン溶液を滴下して、セラミックス
微粒子を析出させ、濾過、水洗した。この微粒子の組成
はTi19.617.163.3であった。図4に還元剤溶液の
pHとセラミックス微粒子の収率の関係並びに還元剤溶
液のpHと酸素濃度(原子%)との関係を示す。なお、
図4での収率は還元剤溶液のpHが10である場合の析
出量を基準析出量とし、この析出量に対して本実施例で
の析出量が何%であるかを規格化したものである。
Example 6 (1) Preparation of solution (A) Reducing agent solution An aqueous solution of potassium borohydride (KBH 4 ) having a concentration of 1 mol / l and having various pH was prepared. (B) Metal ion solution Titanium sulfate is dissolved in water to obtain a Ti ion concentration of 0.6 mol /
1 of metal ion solution was prepared. (2) Production of Ceramic Fine Particles A reducing agent solution of each pH was adjusted to 30 ° C., and a metal ion solution was dropped into the solution while stirring to precipitate ceramic fine particles, which was filtered and washed with water. The composition of the fine particles was Ti 19.6 B 17.1 O 63.3 . FIG. 4 shows the relationship between the pH of the reducing agent solution and the yield of fine ceramic particles, and the relationship between the pH of the reducing agent solution and the oxygen concentration (atomic%). In addition,
The yield in FIG. 4 is a value obtained by normalizing the percentage of the amount of deposition in this example with respect to the amount of deposition when the amount of deposition when the pH of the reducing agent solution is 10 is the standard amount of deposition. Is.

【0026】実施例7 (1)溶液の調整 (A)還元剤溶液 濃度が1mol/lで、pHが9.5の水素化ホウ素カリウ
ム(KBH4)の水溶液を調整した。 (B)金属イオン溶液 硫酸ジルコニウム、塩化ニッケルを水に溶解して、イオ
ン量比がモル濃度比でZr2+:Ni2+=2:8で、合計
イオン濃度が0.1mol/lの金属イオン溶液を調整し
た。 (2)セラミックス微粒子の製造 還元剤溶液の温度を20℃に調整して、撹拌しながらそ
の中に金属イオン溶液を滴下し、セラミックス微粒子を
析出させ、濾過、水洗した。析出微粒子中には金属粒子
が認められたが、濾過、水洗後、大気中にて80〜15
00℃で1時間の熱処理を施したところ、組成がZr
3.3Ni12.413.371.0のセラミックス微粒子になっ
た。図5に熱処理温度とセラミックス微粒子の粒径の関
係並びに熱処理温度とセラミックス微粒子中の酸素濃度
(原子%)との関係を示す。
Example 7 (1) Preparation of Solution (A) Reducing Agent Solution An aqueous solution of potassium borohydride (KBH 4 ) having a concentration of 1 mol / l and a pH of 9.5 was prepared. (B) Metal ion solution Zirconium sulfate and nickel chloride are dissolved in water, and the ion amount ratio is Zr 2+ : Ni 2+ = 2: 8 and the total ion concentration is 0.1 mol / l. An ionic solution was prepared. (2) Production of Ceramics Fine Particles The temperature of the reducing agent solution was adjusted to 20 ° C., the metal ion solution was dropped into the solution while stirring, the ceramics fine particles were precipitated, filtered, and washed with water. Metal particles were found in the deposited fine particles, but after filtration and washing with water, 80 to 15 in the atmosphere.
When heat-treated at 00 ° C for 1 hour, the composition was Zr
It became ceramic fine particles of 3.3 Ni 12.4 B 13.3 O 71.0 . FIG. 5 shows the relationship between the heat treatment temperature and the particle size of the ceramic fine particles, and the relationship between the heat treatment temperature and the oxygen concentration (atomic%) in the ceramic fine particles.

【0027】[0027]

【発明の効果】以上のように、本発明法によれば、従来
困難な湿式法でホウ化物セラミックス微粒子を製造する
ことができる。
As described above, according to the method of the present invention, it is possible to produce boride ceramics fine particles by a wet method which is conventionally difficult.

【図面の簡単な説明】[Brief description of drawings]

【図1】はKBH4/金属イオンのモル濃度比と得られ
たセラミックス微粒子の組成(原子%)の関係を示すグ
ラフである。
FIG. 1 is a graph showing the relationship between the molar concentration ratio of KBH 4 / metal ion and the composition (atomic%) of the obtained ceramic fine particles.

【図2】は還元剤と金属イオンのモル濃度比によるセラ
ミックス微粒子の収率を示すグラフである。
FIG. 2 is a graph showing the yield of ceramic fine particles according to the molar concentration ratio of a reducing agent and metal ions.

【図3】は還元剤溶液の温度とセラミックス微粒子の収
率の関係並びに還元剤溶液の温度と酸素濃度(原子%)
との関係を示すグラフである。
FIG. 3 shows the relationship between the temperature of the reducing agent solution and the yield of the ceramic fine particles, the temperature of the reducing agent solution and the oxygen concentration (atomic%).
It is a graph which shows the relationship with.

【図4】は還元剤溶液のpHとセラミックス微粒子の収
率の関係並びに還元剤溶液のpHと酸素濃度(原子%)
との関係を示すグラフである。
FIG. 4 shows the relationship between the pH of the reducing agent solution and the yield of the fine ceramic particles, the pH of the reducing agent solution and the oxygen concentration (atomic%).
It is a graph which shows the relationship with.

【図5】は熱処理温度とセラミックス微粒子の粒径の関
係並びに熱処理温度とセラミックス微粒子中の酸素濃度
(原子%)との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the heat treatment temperature and the particle size of the ceramic fine particles, and the relationship between the heat treatment temperature and the oxygen concentration (atomic%) in the ceramic fine particles.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素化ホウ素化合物またはアミンボラ
ン誘導体を含有する還元剤溶液中にTiイオンおよび/
またはZrイオンを含有する金属イオン溶液を混合し
て、還元剤と金属イオンとを反応させることを特徴とす
るホウ素含有セラミックス微粒子の製造方法。
1. In a reducing agent solution containing a borohydride compound or an amine borane derivative, Ti ions and / or
Alternatively, a method for producing fine particles of boron-containing ceramics is characterized by mixing a metal ion solution containing Zr ions and reacting the reducing agent with the metal ions.
【請求項2】 請求項1の金属イオン溶液にTi、Z
r以外の他の遷移金属イオンの1種または2種以上をさ
らに含有させて、その濃度をモル濃度比で(Tiイオン
および/またはZrイオン濃度)/(他の遷移金属イオ
ン濃度)≧1にすることを特徴とするホウ素含有セラミ
ックス微粒子の製造方法。
2. The metal ion solution according to claim 1 containing Ti, Z
One or more transition metal ions other than r are further contained, and the concentration thereof is (Ti ion and / or Zr ion concentration) / (other transition metal ion concentration) ≧ 1 in molar concentration ratio. A method for producing fine particles of boron-containing ceramics, comprising:
【請求項3】 請求項1の金属イオン溶液がTi、Z
r以外の他の遷移金属の1種または2種以上のイオンを
さらに含有させて、その濃度をモル濃度比で(Tiイオ
ンおよび/またはZrイオン濃度)/(他の遷移金属イ
オン濃度)<1にするとともに、得られた微粒子に酸化
雰囲気中で100〜1400℃の熱処理を施すことを特
徴とするホウ素含有セラミックス微粒子の製造方法。
3. The metal ion solution according to claim 1 is Ti, Z
1 or 2 or more ions of other transition metals other than r are further contained, and the concentration thereof is (Ti ion and / or Zr ion concentration) / (other transition metal ion concentration) <1 in molar concentration ratio. In addition to the above, the method for producing boron-containing ceramic fine particles is characterized in that the obtained fine particles are heat-treated at 100 to 1400 ° C. in an oxidizing atmosphere.
【請求項4】 還元剤溶液の水素化ホウ素化合物また
はアミンボラン誘導体濃度と金属イオン溶液の金属イオ
ン濃度とをモル濃度比で前者/後者≧1にして、還元剤
溶液のpHを8〜13.5にし、0〜80℃で反応させ
ることを特徴とする請求項1〜3に記載のいずれかのホ
ウ素含有セラミックス微粒子の製造方法。
4. The pH of the reducing agent solution is adjusted to 8 to 13.5 by setting the molar ratio of the concentration of borohydride compound or amine borane derivative in the reducing agent solution and the concentration of metal ion in the metal ion solution to the former / latter ≧ 1. 4. The method for producing fine particles of boron-containing ceramics according to claim 1, wherein the reaction is performed at 0 to 80 ° C.
JP1747295A 1995-01-09 1995-01-09 Production of fine particle of boron-containing ceramic Withdrawn JPH08188413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1747295A JPH08188413A (en) 1995-01-09 1995-01-09 Production of fine particle of boron-containing ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1747295A JPH08188413A (en) 1995-01-09 1995-01-09 Production of fine particle of boron-containing ceramic

Publications (1)

Publication Number Publication Date
JPH08188413A true JPH08188413A (en) 1996-07-23

Family

ID=11944964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1747295A Withdrawn JPH08188413A (en) 1995-01-09 1995-01-09 Production of fine particle of boron-containing ceramic

Country Status (1)

Country Link
JP (1) JPH08188413A (en)

Similar Documents

Publication Publication Date Title
US7470306B2 (en) Method for producing fine metal powder
US4745094A (en) Mono- or multi-metal microaggregates, a method for their preparation and their application in the catalysis of the photoreduction of water
JP2011506242A (en) Uniform nanoparticle core doping of cathode material precursor
JP4496026B2 (en) Method for producing metallic copper fine particles
EP2141125A1 (en) Chromium hydroxide, method for producing the same, trivalent chromium-containing solution using the same, and chromium plating method
US5085693A (en) Hydrazine bath for chemical deposition of platinum and/or palladium, and method of manufacturing such a bath
US4780342A (en) Electroless nickel plating composition and method for its preparation and use
KR101061600B1 (en) Manufacturing method of cobalt powder
JP2007191786A (en) Nickel powder and method for producing nickel powder
RU2130822C1 (en) Method of preparing hard material powders
CN104884193B (en) Not solvent-laden silver synthesis and the silver-colored product thus prepared
JP2020007633A (en) Nickel coupling particle and manufacturing method therefor
CN109759099A (en) A kind of photochemical catalyst and preparation method thereof, application
Miura et al. Silver delafossite nitride, AgTaN2?
JPH08188413A (en) Production of fine particle of boron-containing ceramic
US4844739A (en) Hydrazine bath for chemically depositing nickel and/or cobalt, and a method of preparing such a bath
CA1290993C (en) Stabilized alkaline gold bath for electroless deposition of gold
RU2410205C2 (en) Method of producing ultra-dispersed metal powder
US4454010A (en) Palladium plating procedure
JP2003119023A (en) Method for producing ito powder, and ito powder
JPH04289107A (en) Production of fine alloy particles
JPS60238406A (en) Manufacture of hyperfine metallic powder
US20100324155A1 (en) Preparation of inorganic foam
Glavee et al. Preparation of magnetic fine particles by borohydride reduction
JPS60121274A (en) Electroless plating liquid

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402