JPH08186290A - Algainp-based light-emitting device - Google Patents

Algainp-based light-emitting device

Info

Publication number
JPH08186290A
JPH08186290A JP33792194A JP33792194A JPH08186290A JP H08186290 A JPH08186290 A JP H08186290A JP 33792194 A JP33792194 A JP 33792194A JP 33792194 A JP33792194 A JP 33792194A JP H08186290 A JPH08186290 A JP H08186290A
Authority
JP
Japan
Prior art keywords
layer
light emitting
algainp
emitting device
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33792194A
Other languages
Japanese (ja)
Other versions
JP2937054B2 (en
Inventor
Nobuhiko Noto
宣彦 能登
Keizo Yasutomi
敬三 安富
Takuo Takenaka
卓夫 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP33792194A priority Critical patent/JP2937054B2/en
Priority to EP95309391A priority patent/EP0720242A3/en
Priority to US08/577,961 priority patent/US5739553A/en
Priority claimed from US08/577,961 external-priority patent/US5739553A/en
Publication of JPH08186290A publication Critical patent/JPH08186290A/en
Application granted granted Critical
Publication of JP2937054B2 publication Critical patent/JP2937054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide an AlGaInP-based light-emitting device which is long-lived and whose reliability is high. CONSTITUTION: An n-type (Al0.7 Ga0.7 )0.51 In0.49 P clad layer 12 (thickness: about 1μm), an (Al0.15 Ga0.85 )0.51 In0.49 P active layer 13 (thickness: about 0.6μm) and a p-type (Al0.7 Ga0.3 )0.51 In0.49 P clad layer 14 (thickness: about 1μm) as well as a p-type Al0.7 Ga0.3 As layer 15a (thickness: about 3μm) and a p-type GaAs0.5 P0.5 layer 15b (thickness: about 7μm) which constitute a p-type current diffusion layer 15 are laminated and formed sequentially on an n-type GaAs substrate 11. Then, a surface electrode 16 is formed on the p-type GaAs0.5 P0.5 layer 15b, a rear-surface electrode 17 is formed on the rear surface of the n-type GaAs substrte, and a light-emitting device 10 is constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体を用いた
半導体発光装置に関し、特にAlGaInPを活性層と
する半導体発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device using a compound semiconductor, and more particularly to a semiconductor light emitting device using AlGaInP as an active layer.

【0002】[0002]

【従来の技術】AlGaInP系材料は、窒化物を除く
III−V族化合物半導体混晶中で最大の直接遷移型バ
ンドギャップを有する。斯かる大きな直接遷移型バンド
ギャップを有するAlGaInP系材料を用いた発光装
置は、550〜650nm波長域(緑色〜赤色域)にお
いて高輝度の発光が可能であるので、近年、主に屋外表
示への応用が進められている。
2. Description of the Related Art AlGaInP-based materials have the largest direct transition type bandgap among III-V compound semiconductor mixed crystals excluding nitrides. Since the light emitting device using the AlGaInP-based material having such a large direct transition type band gap can emit light with high brightness in the wavelength range of 550 to 650 nm (green to red range), it is mainly used for outdoor display in recent years. Applications are being advanced.

【0003】図3は、従来のAlGaInP系発光装置
の一例を示す概略断面説明図である。この従来のAlG
aInP系発光装置20は、第1導電型のGaAs基板
11上に、第1導電型の(Alx Ga1-x 0.51In
0.49Pクラッド層12(厚さ約1μm)、(Aly Ga
1-y 0.51In0.49P活性層13(厚さ約0.6μ
m)、第2導電型の(Alz Ga1-z 0.51In0.49
クラッド層14(厚さ約1μm)及び第2導電型の電流
拡散層25(厚さ数μm以上)を順次積層形成し、前記
p型電流拡散層25上に上面電極16、前記GaAs基
板11の下面に下面電極17を設けた構成になってい
る。
FIG. 3 is a schematic sectional view showing an example of a conventional AlGaInP light emitting device. This conventional AlG
The aInP-based light emitting device 20 includes a first conductivity type (Al x Ga 1 -x ) 0.51 In layer on a first conductivity type GaAs substrate 11.
0.49 P cladding layer 12 (thickness: about 1μm), (Al y Ga
1-y ) 0.51 In 0.49 P active layer 13 (thickness about 0.6μ
m), the second conductivity type (Al z Ga 1-z ) 0.51 In 0.49 P
The clad layer 14 (thickness: about 1 μm) and the second conductivity type current diffusion layer 25 (thickness: several μm or more) are sequentially laminated, and the upper electrode 16 and the GaAs substrate 11 are formed on the p-type current diffusion layer 25. The bottom surface electrode 17 is provided on the bottom surface.

【0004】ここで、(Aly Ga1-y 0.51In0.49
P活性層13と該活性層13より大きいバンドギャップ
を有する2つのAlGaInPクラッド層すなわち第1
導電型の(Alx Ga1-x 0.51In0.49Pクラッド層
12と第2導電型の(AlzGa1-z 0.51In0.49
クラッド層14とで構成されるダブルヘテロ接合構造は
発光層部18を構成し、前記ダブルヘテロ接合構造を構
成する各AlGaInP層のAl組成x,y,zは0≦
y≦0.7,y<x,y<zなる関係を満たす。また、
前記(Aly Ga1-y 0.51In0.49P活性層13は発
光層として機能する。なお、以下の説明において、特別
の事情がない場合、前記(Alx Ga1-x 0.51In
0.49P、(Aly Ga1-y 0.51In0.49P及び(Al
z Ga1-z 0.51In0.49Pを総称して(AlB Ga
1-B 0.51In0.49P又は単にAlGaInPと表記す
る。
Here, (Al y Ga 1-y ) 0.51 In 0.49
P active layer 13 and two AlGaInP cladding layers having a bandgap larger than that of the active layer 13, that is, the first
Conductivity type (Al x Ga 1-x ) 0.51 In 0.49 P cladding layer 12 and second conductivity type (Al z Ga 1-z ) 0.51 In 0.49 P
The double heterojunction structure composed of the cladding layer 14 constitutes the light emitting layer portion 18, and the Al composition x, y, z of each AlGaInP layer composing the double heterojunction structure is 0 ≦.
The relations y ≦ 0.7, y <x, y <z are satisfied. Also,
The (Al y Ga 1-y) 0.51 In 0.49 P active layer 13 functions as a light-emitting layer. In the following description, if there is no special circumstance, the above (Al x Ga 1-x ) 0.51 In
0.49 P, (Al y Ga 1 -y) 0.51 In 0.49 P and (Al
z Ga 1-z ) 0.51 In 0.49 P are collectively referred to as (Al B Ga
1-B ) 0.51 In 0.49 P or simply AlGaInP.

【0005】上記のようなAlGaInP系発光装置に
おいては、前記発光層部18上に電流拡散層を設ける必
要があり、特にAlGaInPとは異なる材料からなる
電流拡散層を設ける必要がある。その理由を図3を参照
して説明する。図3には、上面電極16からの電流分布
を符号19で示した。
In the AlGaInP type light emitting device as described above, it is necessary to provide a current diffusion layer on the light emitting layer portion 18, and in particular, it is necessary to provide a current diffusion layer made of a material different from AlGaInP. The reason will be described with reference to FIG. In FIG. 3, the current distribution from the upper surface electrode 16 is indicated by reference numeral 19.

【0006】AlGaInP系発光装置の通電発光にお
いては、上面電極16からの電流を前記発光層部18の
全域、特にAlGaInP活性層13全域に効果的に拡
散させて効率的に発光させることが望ましく、そのため
には上面電極16とAlGaInP活性層13との間の
距離(厚さ)を所定以上(数μm以上)にする必要があ
る。
In energization light emission of the AlGaInP light emitting device, it is desirable that the current from the upper surface electrode 16 is effectively diffused throughout the light emitting layer portion 18, particularly the entire AlGaInP active layer 13 to allow efficient light emission. For that purpose, the distance (thickness) between the upper surface electrode 16 and the AlGaInP active layer 13 needs to be set to a predetermined value or more (several μm or more).

【0007】ところで、AlGaInP系発光装置は、
通常、図3に示すように、GaAs基板11上に、該G
aAs基板11と格子整合させて、AlGaInP系の
前記した層12(厚さ約1μm)、層13(厚さ約0.
6μm)、層14(厚さ約1μm)を(AlB
1-B 0.51In0.49Pなる組成で形成させるが、全厚
で4μmを超える厚さの(AlB Ga1-B 0.51In
0.49P層を結晶性を損なうことなく形成させることは極
めて困難である。従って、上面電極16からの電流を前
記活性層13の全域に効果的に拡散させるためには、上
面電極16と前記活性層13との間の厚さを数μm以上
にする必要があるが、この厚さの層の形成はAlGaI
nP系材料では上記した理由により不可能に近い。
By the way, the AlGaInP type light emitting device is
Normally, as shown in FIG.
The AlGaInP-based layer 12 (thickness: about 1 μm) and the layer 13 (thickness: about 0.
6 μm), layer 14 (thickness about 1 μm) (Al B G
a 1-B ) 0.51 In 0.49 P, but with a total thickness of more than 4 μm (Al B Ga 1-B ) 0.51 In
It is extremely difficult to form a 0.49 P layer without impairing crystallinity. Therefore, in order to effectively diffuse the current from the upper surface electrode 16 to the entire area of the active layer 13, the thickness between the upper surface electrode 16 and the active layer 13 needs to be several μm or more. A layer of this thickness is formed by AlGaI
For nP-based materials, it is almost impossible due to the above reasons.

【0008】そこで、従来、AlGaInP系以外の材
料からなる層を電流拡散層25として前記発光層部18
上に形成し、上面電極16からの電流をAlGaInP
活性層13全域に効果的に拡散させて、効率的な発光を
得ることが行われていた。
Therefore, conventionally, a layer made of a material other than AlGaInP is used as the current diffusion layer 25 and the light emitting layer portion 18 is formed.
Is formed on the upper surface, and the current from the upper surface electrode 16 is applied to AlGaInP.
Efficient light emission has been achieved by effectively diffusing the entire active layer 13.

【0009】前記電流拡散層25の材料としては、前記
AlGaInP活性層13から放射される光子が吸収さ
れないという前提から、該光子のエネルギーより大きい
直接型バンドギャップ([数1])
As a material for the current diffusion layer 25, on the assumption that photons emitted from the AlGaInP active layer 13 are not absorbed, a direct band gap ([Equation 1]) larger than the energy of the photons is used.

【0010】[0010]

【数1】 を有するAlw Ga1-w As(0.45≦w<1で通常
w≒0.7)またはGaPが従来より用いられていた。
[Equation 1] Al w Ga 1-w As (having a value of 0.45 ≦ w <1 and usually w≈0.7) or GaP has been conventionally used.

【0011】[0011]

【発明が解決しようとする課題】しかし、前記Alw
1-w AsまたはGaPを前記電流拡散層の材料として
用いた場合、両者とも大きな問題を有しており、以下に
これについて説明する。
However, the above Al w G
When a 1-w As or GaP is used as the material of the current spreading layer, both have serious problems, which will be described below.

【0012】(Alw Ga1-w As電流拡散層)AlG
aInP活性層13での発光がAlw Ga1-w As電流
拡散層25で吸収されないために、通常AlAs混晶比
wの大きい(例えばw≒0.7)高Al濃度のAlw
1-w Asが用いられている。前記高Al濃度のAlw
Ga1-wAsを電流拡散層25の材料として用いた場
合、斯かる高Al濃度のAlw Ga1-w Asは非常に酸
化し易いため、このAlGaInP系発光装置20を屋
外で通電発光使用すると、前記Alw Ga1-w As電流
拡散層25の酸化に伴い、発光輝度の劣化、さらには破
壊を惹き起こすという問題があった。但し、Alw Ga
1-w Asと(AlB Ga1-B 0.51In0.49Pとの格子
不整合率は、約0.1%と非常に低い故に、(Alz
1-z 0.51In0.49Pクラッド層14と、該クラッド
層14上に形成されたAlw Ga1-w As電流拡散層2
5との間において良好な結晶界面が形成されると共に、
良好な結晶品質を有するAlw Ga1-wAs電流拡散層
が得られるという利点を有している。
(Al w Ga 1-w As current diffusion layer) AlG
Since the light emitted from the aInP active layer 13 is not absorbed by the Al w Ga 1-w As current diffusion layer 25, the AlAs mixed crystal ratio w is usually large (for example, w≈0.7) and the Al w G having a high Al concentration is used.
a 1-w As is used. Al w with high Al concentration
When Ga 1-w As is used as the material of the current diffusion layer 25, such Al w Ga 1-w As having a high Al concentration is very easy to oxidize. Then, there is a problem that the oxidation of the Al w Ga 1 -w As current diffusion layer 25 causes deterioration of the emission luminance and further destruction. However, Al w Ga
Since the lattice mismatch ratio between 1-w As and (Al B Ga 1-B ) 0.51 In 0.49 P is very low at about 0.1%, (Al z G
a 1-z ) 0.51 In 0.49 P clad layer 14 and Al w Ga 1-w As current diffusion layer 2 formed on the clad layer 14.
5 and a good crystal interface is formed,
It has the advantage that an Al w Ga 1-w As current spreading layer with good crystal quality can be obtained.

【0013】(GaP電流拡散層)GaPは(AlB
1-B 0.51In0.49Pとの格子不整合率、約4%と非
常に高い故に、(Alz Ga1-z 0.51In0.49Pクラ
ッド層14上へのGaPの結晶成長が極めて困難であ
る。更に、格子不整合率が約4%あると、前記クラッド
層14と該クラッド層14上に形成されたGaP電流拡
散層25との界面には約1×1012cm-2もの転位が発
生すると共に、この界面には局所的な内部応力が発生す
る。これらの転位及び内部応力は発光層部18、特に発
光に主たる役割を担うAlGaInP活性層13にまで
影響を及ぼす。このため、このAlGaInP系発光装
置20を通電発光使用すると、デバイス特性、特に発光
輝度の劣化を生じるという、問題があった。但し、Ga
Pは酸化しにくい材料であるため、前記高Al濃度のA
w Ga1-w Asのような問題を惹き起こさないという
利点を有している。
(GaP current spreading layer) GaP is (Al B G
a 1-B ) 0.51 In 0.49 P, which has a very high lattice mismatch rate of about 4%, so that it is extremely difficult to grow GaP crystals on the (Al z Ga 1-z ) 0.51 In 0.49 P cladding layer 14. Is. Further, when the lattice mismatch rate is about 4%, dislocations of about 1 × 10 12 cm -2 occur at the interface between the cladding layer 14 and the GaP current diffusion layer 25 formed on the cladding layer 14. At the same time, a local internal stress is generated at this interface. These dislocations and internal stress affect the light emitting layer portion 18, especially the AlGaInP active layer 13 that plays a major role in light emission. Therefore, when the AlGaInP-based light emitting device 20 is used for energization and light emission, there is a problem that the device characteristics, particularly, the emission brightness is deteriorated. However, Ga
Since P is a material that is difficult to oxidize, the high Al concentration of A
It has the advantage of not causing problems like l w Ga 1-w As.

【0014】そこで、本発明は、発光層部を構成する
(AlB Ga1-B 0.51In0.49Pと良好な格子整合を
し、且つ酸化されにくい電流拡散層を備え、長時間通電
発光しても発光特性等に劣化を生じない、長寿命且つ信
頼性の高いAlGaInP系発光装置を提供することを
目的とする。
Therefore, the present invention has good lattice matching with (Al B Ga 1 -B ) 0.51 In 0.49 P forming the light emitting layer portion, and is provided with a current diffusion layer which is hard to be oxidized, and emits current for a long time. It is an object of the present invention to provide an AlGaInP-based light emitting device that has a long life and high reliability, in which the light emitting characteristics and the like do not deteriorate.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、GaAs基板上に、AlGaInPダブ
ルヘテロ接合構造からなる発光層部及び該発光層部上に
形成された電流拡散層を有するAlGaInP系発光装
置において、前記電流拡散層が、前記発光層部の(Al
y Ga1-y 0.51In0.49P活性層から放射される光子
のエネルギーより大きい直接型バンドギャップ([数
1])
In order to solve the above problems, the present invention provides a light emitting layer portion having an AlGaInP double heterojunction structure on a GaAs substrate and a current spreading layer formed on the light emitting layer portion. In the AlGaInP-based light emitting device having, the current spreading layer may be formed of (Al
y Ga 1-y ) 0.51 In 0.49 P Direct type band gap ([Equation 1]) larger than the energy of photons emitted from the active layer

【0016】[0016]

【数1】 を有するAlw Ga1-w As層及び該Alw Ga1-w
s層上に形成したGaAs1-v v 層の2層からなるよ
うにした。
[Equation 1] Al w Ga 1-w As layer having Al and the Al w Ga 1-w A
The GaAs layer is composed of two layers, a GaAs 1-v P v layer formed on the s layer.

【0017】前記(Aly Ga1-y 0.51In0.49P活
性層のAl組成yは0≦y≦0.7であり、前記Alw
Ga1-w AsのAlAs混晶比w及び前記GaAs1-v
vのGaP混晶比vは、夫々0.45≦w<1及び
0.4≦v<0.8であるのが好適である。
The Al composition y of the (Al y Ga 1-y ) 0.51 In 0.49 P active layer is 0 ≦ y ≦ 0.7, and the Al w
Ga 1-w As AlAs mixed crystal ratio w and GaAs 1-v
The GaP mixed crystal ratio v of P v is preferably 0.45 ≦ w <1 and 0.4 ≦ v <0.8, respectively.

【0018】また、前記電流拡散層の総厚(Alw Ga
1-w As層の厚さとGaAs1-v v 層の厚さとの和)
は、発光層部の結晶性を維持し、且つ電流拡散層を十分
に行うためには5μm以上とする必要があり、発光光の
外部取り出し効率を高くするには厚い程効率が大きい。
The total thickness of the current spreading layer (Al w Ga
Sum of 1-w As layer thickness and GaAs 1-v P v layer thickness)
Is required to be 5 μm or more in order to maintain the crystallinity of the light emitting layer portion and to sufficiently perform the current diffusion layer. The thicker the efficiency, the higher the efficiency of extracting emitted light to the outside.

【0019】Alw Ga1-w Asは、GaAs基板と格
子整合させて成長した(AlB Ga1-B 0.51In0.49
Pとは格子定数が非常に近いため、AlGaInP発光
層部と該発光層部上に成長したAlw Ga1-w As層と
の間において良好な結晶界面が形成されると共に、良好
な結晶品質を有するAlw Ga1-w As層が得られる。
また、GaAs1-v v は混晶比vの変化に伴ない格子
定数は変化するが、例えば、GaAs0.5 0.5 層を前
記Alw Ga1-w As層上に形成させた場合、Alw
1-w AsとGaAs0.5 0.5 との格子不整合率は2
%程度となり、GaPを電流拡散層として直接成長する
場合と比較すると、低い転位密度のGaAsP層を成長
することができる。しかも、本発明の2重構造の電流拡
散層においては、転位が発生する界面がAlw Ga1-w
As層とGaAs1-v v 層との界面であるため、前記
界面はAlw Ga1-w As層の厚さの分だけ前記発光層
部から隔たることとなり、前記界面で発生した転位は発
光層部にまで影響を及ぼしにくくなる。これにより、発
光層部の高結晶品質が維持され得る。
Al w Ga 1-w As was grown to be lattice-matched with a GaAs substrate (Al B Ga 1-B ) 0.51 In 0.49.
Since the lattice constant is very close to that of P, a good crystal interface is formed between the AlGaInP light emitting layer portion and the Al w Ga 1-w As layer grown on the light emitting layer portion, and a good crystal quality is obtained. An Al w Ga 1-w As layer is obtained.
Although the lattice constant of GaAs 1-v P v changes with the change of the mixed crystal ratio v, for example, when a GaAs 0.5 P 0.5 layer is formed on the Al w Ga 1-w As layer, Al w G
The lattice mismatch between a 1-w As and GaAs 0.5 P 0.5 is 2
%, And a GaAsP layer having a low dislocation density can be grown as compared with the case where GaP is directly grown as a current diffusion layer. In addition, in the double current diffusion layer of the present invention, the interface where dislocations occur is Al w Ga 1-w.
Since it is the interface between the As layer and the GaAs 1-v P v layer, the interface is separated from the light emitting layer portion by the thickness of the Al w Ga 1-w As layer, and the dislocation generated at the interface is generated. Is less likely to affect the light emitting layer portion. Thereby, the high crystal quality of the light emitting layer portion can be maintained.

【0020】更に、GaAs1-v v はGaPと同様に
非常に酸化されにくい材料であるため、GaAs1-v
v 層はAlw Ga1-w As層の酸化を防止する保護膜の
役目を果たすという効果がある。
Furthermore, since GaAs 1-v P v is a hard material that is highly oxidized similarly to GaP, GaAs 1-v P
The v layer has an effect of serving as a protective film for preventing oxidation of the Al w Ga 1-w As layer.

【0021】[0021]

【実施例】以下、本発明のAlGaInP発光装置につ
いて、図1及び図2を参照して説明する。但し、この実
施例に記憶されている化学式、元素、層構成、膜厚、そ
の相対位置などは特に特定的な記載がない限りは、この
発明の範囲をそれのみに限定する趣旨ではなく単なる説
明例に過ぎない。
EXAMPLES An AlGaInP light emitting device of the present invention will be described below with reference to FIGS. However, chemical formulas, elements, layer constitutions, film thicknesses, relative positions and the like stored in this example are not merely intended to limit the scope of the present invention unless otherwise specified, and are simply explained. It's just an example.

【0022】本実施例及び比較例のAlGaInP発光
装置の各層の成長にはMOVPE法(有機金属気相成長
法)を用いる。Al、Ga、In、P、及びAsの原料
としては各々トリメチルアルミニウム[Al(CH3
3 :TMAl]、トリメチルガリウム[Ga(CH3
3 :TMGa]、トリメチルインジウム[In(C
3 3 :TMIn]、ホスフィン(PH3 )及びアル
シン(AsH3 )を用いる。更に、n型及びp型のドー
パント源としては、各々セレン化水素(H2 Se)及び
ジメチル亜鉛[Zn(CH3 2 :DMZn]を用い
る。
The MOVPE method (metalorganic vapor phase epitaxy) is used to grow each layer of the AlGaInP light emitting devices of the present example and the comparative example. The raw materials of Al, Ga, In, P, and As are trimethylaluminum [Al (CH 3 ), respectively.
3 : TMAl], trimethylgallium [Ga (CH 3 ).
3 : TMGa], trimethylindium [In (C
H 3 ) 3 : TMIn], phosphine (PH 3 ) and arsine (AsH 3 ) are used. Further, hydrogen selenide (H 2 Se) and dimethyl zinc [Zn (CH 3 ) 2 : DMZn] are used as n-type and p-type dopant sources, respectively.

【0023】図2はMOVPE法で各層を成長する際に
用いる成長装置の構造例を示す。同図において、前記各
種のIII族金属の有機物の蒸気と、気相のV族元素の
水素化物とを成長の組成に応じて分圧及び流量を選択し
て混合し、得られた混合ガスを反応室50に供給し、反
応室50に配置したn型又はp型GaAs基板上に所望
の成長層を形成する。図中、51はホスフィン(P
3 )及びアルシン(AsH3 )等の気相水素化物を貯
蔵するガスボンベで、圧力/流量調整器52及び制御弁
53を介して水素等のキャリアガス流路55に送給され
る。56はトリメチルアルミニウム[TMAl]、トリ
メチルガリウム[TMGa]、トリメチルインジウム
[TMIn]等の金属の蒸気を生成するバブリング槽
で、圧力/流量調整器52により調圧/流量制御された
水素ガスによりバブリングされた金属有機物蒸気が制御
弁53を介して水素等のキャリアガス経路55に送給さ
れる。そして前記III族金属の有機物の蒸気と、V族
元素水素化物とは、前記ガス経路55を介して成長の組
成に応じて分圧及び流量を選択して所定の混合ガスを生
成し、該混合ガスを発熱体が囲繞され所定圧力と所定温
度に調整された反応室50に供給し、反応室50に配置
したn型またはp型GaAs基板上に所望の成長層を積
層形成する。具体的には、50Torrの減圧下で、V
族元素とIII族元素との供給量比(V/III比)が
100となるように混合したガスを成長層の原料ガスと
して用い、成長温度710℃、成長速度4μm/時の成
長条件でGaAs基板上にAlGaInP系発光装置の
各層を積層形成させる。このようにして得られたエピタ
キシャルウェ−ハを素子化することにより、AlGaI
nP系発光装置が得られる。
FIG. 2 shows an example of the structure of a growth apparatus used when growing each layer by the MOVPE method. In the same figure, vapors of the various Group III metal organic materials and hydrides of vapor phase Group V elements are mixed by selecting the partial pressure and the flow rate according to the composition of growth, and the obtained mixed gas is It is supplied to the reaction chamber 50 and a desired growth layer is formed on the n-type or p-type GaAs substrate arranged in the reaction chamber 50. In the figure, 51 is phosphine (P
H 3 ), a gas cylinder for storing gas phase hydrides such as arsine (AsH 3 ), and is supplied to a carrier gas flow passage 55 for hydrogen or the like via a pressure / flow rate regulator 52 and a control valve 53. Reference numeral 56 is a bubbling tank for producing vapors of metals such as trimethylaluminum [TMAl], trimethylgallium [TMGa], and trimethylindium [TMIn], and is bubbled with hydrogen gas whose pressure / flow rate is controlled by the pressure / flow rate regulator 52. The organic metal vapor is sent to the carrier gas passage 55 such as hydrogen through the control valve 53. The group III metal organic vapor and the group V element hydride are mixed with each other to generate a predetermined mixed gas by selecting a partial pressure and a flow rate according to the composition of growth through the gas passage 55. The gas is supplied to a reaction chamber 50 surrounded by a heating element and adjusted to a predetermined pressure and a predetermined temperature, and a desired growth layer is laminated on an n-type or p-type GaAs substrate arranged in the reaction chamber 50. Specifically, under a reduced pressure of 50 Torr, V
A gas mixed so that the supply amount ratio (V / III ratio) of the group element and the group III element is 100 is used as a source gas for the growth layer, and GaAs is grown under the growth conditions of a growth temperature of 710 ° C. and a growth rate of 4 μm / hour. Each layer of the AlGaInP light emitting device is laminated on the substrate. By forming the epitaxial wafer thus obtained into a device, AlGaI
An nP light emitting device can be obtained.

【0024】上気した製造方法により、本実施例のAl
GaInP系発光装置10を製造した。図1は本発明の
AlGaInP系発光装置の一実施例を示す概略断面説
明である。同図において図3と同一部材または類似部材
は同一符号を用いる。この発光装置10は、n型GaA
s基板11上に、n型(Al0.7 Ga0.3 0.51In0.
49Pクラッド層12(厚さ約1μm)、(Al0.15Ga
0.850.51In0.49P活性層13(厚さ約0.6μ
m)、p型(Al0.7 Ga0.3 0.51In0.49Pクラッ
ド層14(厚さ約1μm)及びp型電流拡散層15を構
成するp型Al0.7 Ga0.3 As層15a(厚さ約3μ
m)、p型GaAs0.5 0.5 層15b(厚さ約7μ
m)を順次積層形成し、前記p型GaAs0.5 0.5
15b上に上面電極16、n型GaAs基板の下面に下
面電極17を設けた構成になっている。
According to the above manufacturing method, the Al of this embodiment is
A GaInP light emitting device 10 was manufactured. FIG. 1 is a schematic sectional view showing an embodiment of the AlGaInP light emitting device of the present invention. In the figure, the same members as those in FIG. The light emitting device 10 is an n-type GaA.
On the s substrate 11, n-type (Al 0.7 Ga 0.3 ) 0.51 In 0.
49 P clad layer 12 (thickness about 1 μm), (Al 0.15 Ga
0.85 ) 0.51 In 0.49 P active layer 13 (thickness 0.6 μ
m), p-type (Al 0.7 Ga 0.3 ) 0.51 In 0.49 P clad layer 14 (thickness: about 1 μm), and p-type Al 0.7 Ga 0.3 As layer 15 a (thickness: about 3 μm) constituting the p-type current diffusion layer 15.
m), p-type GaAs 0.5 P 0.5 layer 15b (thickness about 7μ
m) are sequentially laminated, and the upper surface electrode 16 is provided on the p-type GaAs 0.5 P 0.5 layer 15b and the lower surface electrode 17 is provided on the lower surface of the n-type GaAs substrate.

【0025】(諸特性の評価結果)[表1]は、本実施
例のAlGaInP系発光装置における諸特性の評価結
果を、比較例1及び比較例2の従来構造のAlGaIn
P系発光装置のそれと比較して示したものである。な
お、比較例1及び比較例2のAlGaInP系発光装置
は、図3に示す従来構造のAlGaInP系発光装置で
あり、p型電流拡散層25として、それぞれp型Al
0.7 Ga0.3 As電流拡散層(約10μm)及びp型G
aP層(厚さ約10μm)を形成したこと以外は実施例
と同じである。
(Evaluation results of various characteristics) [Table 1] shows the evaluation results of various characteristics of the AlGaInP-based light emitting device of the present embodiment, as well as the AlGaIn of the conventional structures of Comparative Example 1 and Comparative Example 2.
This is shown in comparison with that of the P-based light emitting device. The AlGaInP-based light-emitting devices of Comparative Example 1 and Comparative Example 2 are the AlGaInP-based light-emitting devices of the conventional structure shown in FIG. 3, and the p-type current diffusion layers 25 are each formed of p-type Al.
0.7 Ga 0.3 As current diffusion layer (about 10 μm) and p-type G
The same as the example except that the aP layer (thickness: about 10 μm) was formed.

【0026】[表1]から明らかなように、本実施例の
AlGaInP系発光装置は、従来のAlGaInP系
発光装置(比較例1及び比較例2)と比較して、高発光
輝度、且つ発光輝度の劣化のほとんどないAlGaIn
P系発光装置であり、本発明の有効性が立証された。す
なわち、電流拡散層をAl0.7 Ga0.3 As層のみで形
成した場合(比較例1)、発光層部を形成する(AlB
Ga1-B 0.51In0.49Pとの格子整合が良好であるた
め、初期の発光輝度は100と高いものの、電流拡散層
が酸化され易いため長期使用による劣化が起こりライフ
66%と劣る。一方、電流拡散層をGaPのみで形成し
た場合(比較例2)には、発光層部を形成する(AlB
Ga1-B 0.51In0.49Pとの格子不整合率が高いため
に、該発光層部とGaP電流拡散層との界面に存在する
転位及び内部応力がAlGaInP活性層にまで影響を
及ぼし、初期の発光輝度は83と低く、かつライフも8
8%と劣ることがわかる。これに対し、実施例では初期
の発光輝度は100と高く、ライフも98%と良好であ
り、電流拡散層を上記の2層で構成したことの効果が顕
著であることがわかる。
As is clear from [Table 1], the AlGaInP-based light-emitting device of this example has a higher emission brightness and emission brightness than the conventional AlGaInP-based light-emitting devices (Comparative Example 1 and Comparative Example 2). AlGaIn with almost no deterioration
It is a P-type light emitting device, and the effectiveness of the present invention has been proved. That is, when the current diffusion layer is formed only by the Al 0.7 Ga 0.3 As layer (Comparative Example 1), the light emitting layer portion is formed (Al B
Since the lattice matching with Ga 1-B ) 0.51 In 0.49 P is good, the initial emission luminance is as high as 100, but the current diffusion layer is easily oxidized and deteriorates due to long-term use, resulting in a poor life of 66%. On the other hand, when the current diffusion layer is formed of GaP only (Comparative Example 2), the light emitting layer portion is formed (Al B
Ga 1-B ) 0.51 In 0.49 P has a high lattice mismatch rate, so that dislocations and internal stress existing at the interface between the light emitting layer portion and the GaP current diffusion layer affect the AlGaInP active layer as well. Has a low luminance of 83 and a life of 8
It turns out that it is inferior to 8%. On the other hand, in the example, the initial emission luminance is as high as 100 and the life is as good as 98%, and it can be seen that the effect of forming the current diffusion layer by the above two layers is remarkable.

【0027】[0027]

【表1】 [Table 1]

【0028】[表1]において、評価データは、(10
エピタキシャルウエーハ)×(10発光装置/エピタキ
シャルウエーハ)=100発光装置の平均値である。ま
た、 輝度測定電流:20mA ライフ(別称:残光率) 残光率=(I/I0 )×100(%) I0 :初期輝度 I :85℃、湿度85%の環境下で、DC50mAで
1000時間通電発光させた後の輝度 である。
In Table 1, the evaluation data is (10
Epitaxial wafer) × (10 light emitting device / epitaxial wafer) = 100 Average value of light emitting device. Luminance measurement current: 20 mA Life (also called afterglow rate) Afterglow rate = (I / I 0 ) × 100 (%) I 0 : Initial luminance I: 85 ° C., 85% humidity, DC 50 mA It is the luminance after energization and light emission for 1000 hours.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
発光層部を構成する(AlB Ga1-B0.51In0.49
との格子整合が良好なAlw Ga1-w As層及び該Al
w Ga1-w As層上に形成された酸化されにくいGaA
1-v v 層の2層からなる電流拡散層を備えたことに
より、長時間通電発光使用しても発光特性等に劣化を生
じない長寿命且つ信頼性の高いAlGaInP系発光装
置が得られる。
As described above, according to the present invention,
Constituting the light emitting layer (Al B Ga 1-B ) 0.51 In 0.49 P
Al w Ga 1-w As layer having good lattice matching with Al and the Al
oxidizable GaA formed on w Ga 1-w As layer
By providing the current diffusion layer composed of two layers, s 1 -v P v layer, a long-life and highly reliable AlGaInP-based light emitting device that does not cause deterioration in light emission characteristics even when used for long-time light emission is obtained. To be

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のAlGaInP系発光装置の一実施例
を示す概略断面説明図である。
FIG. 1 is a schematic cross-sectional explanatory view showing an embodiment of an AlGaInP-based light emitting device of the present invention.

【図2】MOVPE法で各層を成長する際に用いる製造
装置の一例を示す概略説明図である。
FIG. 2 is a schematic explanatory view showing an example of a manufacturing apparatus used when growing each layer by the MOVPE method.

【図3】従来のAlGaInP系発光装置(比較例1、
比較例2及び一般例)の一実施例を示す概略断面説明図
である。
FIG. 3 shows a conventional AlGaInP light emitting device (Comparative Example 1,
It is a schematic cross section explanatory drawing which shows one Example of the comparative example 2 and a general example.

【符号の説明】[Explanation of symbols]

10 本発明の実施例に係るAlGaInP系発光装
置 11 GaAs基板 12 クラッド層 13 活性層 14 クラッド層 15 本発明の実施例に係るAlGaInP系発光装
置の電流拡散層 15a AlGaAs層 15b GaAsP層 16 上面電極 17 下面電極 18 発光層部(ダブルヘテロ接合構造) 19 電流分布 20 従来のAlGaInP系発光装置 25 従来のAlGaInP系発光装置の電流拡散層
10 AlGaInP-based light emitting device according to an embodiment of the present invention 11 GaAs substrate 12 Clad layer 13 Active layer 14 Clad layer 15 Current diffusion layer of AlGaInP-based light emitting device according to an embodiment of the present invention 15a AlGaAs layer 15b GaAsP layer 16 Top electrode 17 Lower surface electrode 18 Light emitting layer portion (double heterojunction structure) 19 Current distribution 20 Conventional AlGaInP-based light emitting device 25 Current diffusion layer of conventional AlGaInP-based light emitting device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 GaAs基板上に、AlGaInPダブ
ルヘテロ接合構造からなる発光層部及び該発光層部上に
形成された電流拡散層を有するAlGaInP系発光装
置において、 前記電流拡散層が、前記発光層部の(Aly Ga1-y
0.51In0.49P活性層から放射される光子のエネルギー
より大きい直接型バンドギャップ([数1]) 【数1】 を有するAlw Ga1-w As層及び該Alw Ga1-w
s層上に形成したGaAs1-v v 層の2層からなるこ
とを特徴とするAlGaInP系発光装置。
1. An AlGaInP-based light emitting device having a light emitting layer portion having an AlGaInP double heterojunction structure on a GaAs substrate and a current spreading layer formed on the light emitting layer portion, wherein the current spreading layer is the light emitting layer. Part of (Al y Ga 1-y )
0.51 In 0.49 P Direct type band gap larger than the energy of photons emitted from the active layer ([Equation 1]) [Equation 1] Al w Ga 1-w As layer having Al and the Al w Ga 1-w A
An AlGaInP-based light-emitting device comprising two layers of a GaAs 1-v P v layer formed on an s layer.
【請求項2】 前記(Aly Ga1-y 0.51In0.49
活性層のAl組成yが、 0≦y≦0.7 であることを特徴とする請求項1に記載のAlGaIn
P系発光装置。
2. The (Al y Ga 1-y ) 0.51 In 0.49 P
The Al composition y of the active layer is 0 ≦ y ≦ 0.7, and the AlGaIn according to claim 1.
P-based light emitting device.
【請求項3】 前記Alw Ga1-w AsのAlAs混晶
比wが、 0.45≦w<1 であることを特徴とする請求項1または請求項2に記載
のAlGaInP系発光装置。
3. The AlGaInP-based light emitting device according to claim 1, wherein the AlAs mixed crystal ratio w of the Al w Ga 1-w As is 0.45 ≦ w <1.
【請求項4】 前記GaAs1-v v のGaP混晶比v
が、 0.4≦v<0.8 であることを特徴とする請求項1ないし請求項3のいず
れか1項に記載のAlGaInP系発光装置。
Wherein said GaAs 1-v P v of the GaP mixed crystal ratio v
Is 0.4 ≦ v <0.8. 4. The AlGaInP-based light emitting device according to claim 1, wherein
【請求項5】 前記電流拡散層の総厚が5μm以上であ
ることを特徴とする請求項1ないし請求項4のいずれか
1項に記載のAlGaInP系発光装置。
5. The AlGaInP-based light emitting device according to claim 1, wherein the current diffusion layer has a total thickness of 5 μm or more.
JP33792194A 1994-12-27 1994-12-27 Algainp-based light-emitting device Expired - Fee Related JP2937054B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP33792194A JP2937054B2 (en) 1994-12-27 1994-12-27 Algainp-based light-emitting device
EP95309391A EP0720242A3 (en) 1994-12-27 1995-12-22 AlGaInP light emitting device
US08/577,961 US5739553A (en) 1994-12-27 1995-12-26 Algainp light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33792194A JP2937054B2 (en) 1994-12-27 1994-12-27 Algainp-based light-emitting device
US08/577,961 US5739553A (en) 1994-12-27 1995-12-26 Algainp light-emitting device

Publications (2)

Publication Number Publication Date
JPH08186290A true JPH08186290A (en) 1996-07-16
JP2937054B2 JP2937054B2 (en) 1999-08-23

Family

ID=26575952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33792194A Expired - Fee Related JP2937054B2 (en) 1994-12-27 1994-12-27 Algainp-based light-emitting device

Country Status (1)

Country Link
JP (1) JP2937054B2 (en)

Also Published As

Publication number Publication date
JP2937054B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
US6233265B1 (en) AlGaInN LED and laser diode structures for pure blue or green emission
JP2871477B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP5018433B2 (en) Epitaxial wafer for semiconductor light emitting device and semiconductor light emitting device
JPH0766455A (en) Semiconductor light emitting device
KR100542870B1 (en) Semiconductor light emitting device and method of manufacturing the same
US6163037A (en) Double heterojunction light emitting device possessing a dopant gradient across the N-type layer
JP2900754B2 (en) AlGaInP light emitting device
US7259406B2 (en) Semiconductor optical element
US5739553A (en) Algainp light-emitting device
JPH09283799A (en) Semiconductor light-emitting element
JPH1168150A (en) Semiconductor light-emitting element and its manufacture
JP2937060B2 (en) Algainp based light emission device
US6258619B1 (en) Fabrication of semiconductor light emitting device
JP3788444B2 (en) Light emitting diode and manufacturing method thereof
JP2937054B2 (en) Algainp-based light-emitting device
JP2006253403A (en) Growing method of light emitting diode epitaxial wafer
JP2004356600A (en) Semiconductor light emitting device
JP3622292B2 (en) Semiconductor light emitting device
US6236067B1 (en) Semiconductor light emitting device using an AlGaInP group or AlGaAs group material
JP3697749B2 (en) Semiconductor light emitting device
JP3767621B2 (en) Semiconductor light emitting device
JP4376373B2 (en) Epitaxial wafer for semiconductor light emitting device, manufacturing method thereof, and semiconductor light emitting device
JPH10256667A (en) Semiconductor light emitting element
JP2005235797A (en) Semiconductor light-emitting device
JP3556593B2 (en) Compound semiconductor light emitting device and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees