JPH08185877A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JPH08185877A
JPH08185877A JP6340301A JP34030194A JPH08185877A JP H08185877 A JPH08185877 A JP H08185877A JP 6340301 A JP6340301 A JP 6340301A JP 34030194 A JP34030194 A JP 34030194A JP H08185877 A JPH08185877 A JP H08185877A
Authority
JP
Japan
Prior art keywords
water
fuel cell
gas
cooling water
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6340301A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nonobe
康宏 野々部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6340301A priority Critical patent/JPH08185877A/en
Publication of JPH08185877A publication Critical patent/JPH08185877A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To make the humidification water system of a fuel cell system free from maintenance. CONSTITUTION: An antifreezing solution made of ethylene glycol mixed with water is circulating in a cooling water circulation passage 40 having a fuel cell 12 as part of a pipeline, and the fuel cell 12 is cooled with the antifreezing solution. Also, the passage 40 is fitted with a water separator device 44 for refining and separating water from the solution via an ultrafiltration film. Water not containing ethylene glycol is refined from the solution circulating through the passage 40, due to the filtration of only water through the film and this refined water is separated from the passage 40. Then, the refined and separated water is supplied to a humidifier 18 laid between a methanol reforming device 20 and the fuel cell 12, as water for humidifying hydrogen gases, and reserved in the humidifier 18. In other words, the water reserved therein for humidifying hydrogen gases is procured from the solution via refining and separating processes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素を含有するガスの
供給を受け、該水素含有ガスを燃料ガスとする燃料電池
を有する燃料電池システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell system having a fuel cell which receives a gas containing hydrogen and uses the hydrogen-containing gas as a fuel gas.

【0002】[0002]

【従来の技術】一般に、水素リッチな水素ガスを燃料ガ
スとする燃料電池は、水素イオンをH+ x2O)の水
和状態で透過する電解質と電極とを有し、電極反応を促
進させるための触媒層を介在させてこの電解質を電極で
挟持して備える。このような燃料電池は、用いる電解質
の種類により種々のもの(例えば、固体高分子型燃料電
池,りん酸型燃料電池等)があるが、アノード,カソー
ドの両電極において進行する電極反応は、以下の通りで
ある。
2. Description of the Related Art Generally, a fuel cell using hydrogen-rich hydrogen gas as a fuel gas has an electrolyte and an electrode that permeate hydrogen ions in a hydrated state of H + ( x H 2 O), and electrode reaction. This electrolyte is sandwiched between electrodes with a catalyst layer for promoting it interposed therebetween. Although there are various types of such fuel cells (for example, polymer electrolyte fuel cells, phosphoric acid fuel cells, etc.) depending on the type of electrolyte used, the electrode reactions that proceed at both the anode and cathode electrodes are as follows. Is the street.

【0003】アノード:2H2 →4H+ +4e- … カソード:4H+ +4e- +O2 →2H2O …[0003] The anode: 2H 2 → 4H + + 4e - ... cathode: 4H + + 4e - + O 2 → 2H 2 O ...

【0004】そして、アノードに水素ガスが供給される
と、アノードではの反応式が進行して水素イオンが生
成する。この生成した水素イオンがH+ x2O)の水
和状態で電解質(固体高分子型燃料電池であれば固体高
分子電解質膜)を透過(拡散)してカソードに至り、こ
のカソードに酸素含有ガス、例えば空気が供給されてい
ると、カソードではの反応式が進行する。この,
の電極反応が各極で進行することで、燃料電池は起電力
を呈することになる。
When hydrogen gas is supplied to the anode, the reaction formula in the anode proceeds and hydrogen ions are generated. The generated hydrogen ions permeate (diffuse) the electrolyte (a solid polymer electrolyte membrane in the case of a solid polymer electrolyte fuel cell) in the hydrated state of H + ( x H 2 O), and reach the cathode. When an oxygen-containing gas such as air is supplied, the reaction formula at the cathode proceeds. this,
The fuel cell exhibits an electromotive force by the electrode reaction of (1) proceeding at each electrode.

【0005】燃料電池の電解質は、水素イオンが上記し
た水和状態でアノード側からカソード側に電解質を透過
(拡散)する都合上、アノード側で水分が不足する状態
となる。また、固体高分子型燃料電池に用いられる固体
高分子電解質膜は、適度な湿潤状態にあれば良好な電気
伝導性(イオン導電性)を発揮するが、含水率が低下す
るとイオン導電性が悪化して電解質として機能しなくな
り、場合によっては電極反応を停止させてしまう。ま
た、含水率が高すぎてもイオン導電性が悪化する傾向が
ある。このため、アノードには、燃料ガスとしての水素
ガスを供給すると共に、適当な量の水を常時補給する必
要がある。従って、燃料電池には、水蒸気にて加湿した
水素ガスが供給されている。
The electrolyte of the fuel cell is in a state where water content is insufficient on the anode side because hydrogen ions permeate (diffuse) the electrolyte from the anode side to the cathode side in the above-mentioned hydrated state. Further, the solid polymer electrolyte membrane used in the solid polymer electrolyte fuel cell exhibits good electric conductivity (ionic conductivity) if it is in an appropriate wet state, but if the water content decreases, the ionic conductivity deteriorates. As a result, the electrolyte does not function as an electrolyte and the electrode reaction is stopped in some cases. Also, if the water content is too high, the ionic conductivity tends to deteriorate. For this reason, it is necessary to supply hydrogen gas as a fuel gas to the anode and constantly supply an appropriate amount of water. Therefore, hydrogen gas humidified with water vapor is supplied to the fuel cell.

【0006】水蒸気加湿された水素ガスを燃料電池に供
給するには、種々の方法があるが、最も単純な方法とし
て、次のような技術がよく知られている。つまり、燃料
電池に到る水素ガスの供給管経路に加湿装置を設け、こ
の加湿装置によりガス中に燃料電池の手前で水蒸気を添
加し、水蒸気添加により加湿した水素ガスを燃料電池に
供給する技術が提案されている。
There are various methods for supplying the steam-humidified hydrogen gas to the fuel cell, but the following technique is well known as the simplest method. In other words, a technology is provided in which a humidifying device is provided in the hydrogen gas supply pipe path leading to the fuel cell, water vapor is added to the gas in front of the fuel cell by the humidifying device, and the hydrogen gas humidified by adding steam is supplied to the fuel cell. Is proposed.

【0007】この加湿装置としては、ガスをバブリング
して加湿する加湿器のほか、水蒸気を透過するガス拡散
膜を介してガスを加湿する加湿器などがある。
As the humidifying device, there are a humidifier for bubbling gas to humidify it, and a humidifier for humidifying gas through a gas diffusion film that transmits water vapor.

【0008】その一方、上記した電極反応は、いずれも
発熱反応である。よって、当該反応の円滑な進行を図る
ために、循環する冷却水で燃料電池を冷却することが広
く行なわれている(特開平5−190193)。
On the other hand, the above electrode reactions are all exothermic reactions. Therefore, in order to make the reaction proceed smoothly, it is widely practiced to cool the fuel cell with circulating cooling water (Japanese Patent Laid-Open No. 5-190193).

【0009】従って、燃料電池システムでは、燃料電池
に加湿済みの水素ガスを供給するための加湿用の水と、
燃料電池の冷却用の水とが必要となる。
Therefore, in the fuel cell system, the humidifying water for supplying the humidified hydrogen gas to the fuel cell,
Water for cooling the fuel cell is required.

【0010】[0010]

【発明が解決しようとする課題】ところで、燃料電池シ
ステムを車両等に搭載する場合には、寒冷地への移動或
いは寒冷地域での支障のない稼動を考慮して、水に凝固
点降下剤を混合した不凍液を燃料電池の冷却水とするこ
とが一般的である。その一方、水素ガス加湿用の水とし
ては、水蒸気として水素ガスと共にアノードへ供給され
ることから、電解質膜や電極の触媒の汚濁等を避けるた
めにも、純水に近似した精製水、即ち凝固点降下剤等の
不純物が含有されていない水である必要がある。
By the way, when a fuel cell system is mounted on a vehicle or the like, water is mixed with a freezing point depressant in consideration of movement to a cold region or operation without a hindrance in a cold region. It is common to use the antifreeze as cooling water for the fuel cell. On the other hand, as water for humidifying hydrogen gas, since it is supplied to the anode together with hydrogen gas as water vapor, in order to avoid contamination of the electrolyte membrane or the catalyst of the electrode, purified water close to pure water, that is, the freezing point It must be water that does not contain impurities such as depressants.

【0011】従って、従来の燃料電池システムでは、加
湿用の水と冷却用の水とを別系統で別個に必要とすると
共に、加湿用の水の補給をも必要とする。そして、この
加湿用の水と冷却用の水とを、加湿装置と冷却管路とに
それぞれ用いなければならなかった。このため、加湿用
の水の補給といったメンテナンスが必要となり、煩雑で
あった。この場合、加湿用の水の精製装置を精製される
水の供給管路と共に冷却水系とは個別に設ければ、上記
のメンテナンスが不要となる。しかし、燃料電池システ
ムにおける加湿水系,冷却水系の構成が複雑化して、そ
の設置スペースの拡大や設置コストの上昇を招くため、
現実的な解決にはならない。なお、上記した問題点は、
燃料電池システムを搭載した車両等に固有のものではな
い。つまり、燃料電池システムを発電設備として地上に
設置したプラントの場合であっても、不凍液を冷却水と
して用いれば、これら問題点は生じる。
Therefore, in the conventional fuel cell system, it is necessary to separately supply the humidifying water and the cooling water in separate systems, and also to supply the humidifying water. Then, the humidifying water and the cooling water had to be used for the humidifying device and the cooling pipe, respectively. Therefore, maintenance such as replenishment of water for humidification is required, which is complicated. In this case, if the water purification device for humidification is provided separately from the cooling water system together with the water supply pipeline to be purified, the above maintenance becomes unnecessary. However, since the humidification water system and the cooling water system in the fuel cell system are complicated in configuration, the installation space is increased and the installation cost is increased.
It is not a realistic solution. In addition, the above problems are
It is not unique to a vehicle equipped with a fuel cell system. That is, even in the case of a plant in which the fuel cell system is installed on the ground as a power generation facility, these problems occur if the antifreeze liquid is used as the cooling water.

【0012】本発明は、上記問題点を解決するためにな
され、簡単な構成で燃料電池システムにおける加湿水系
についてのメンテナンスフリー化を図ることを目的とす
る。
The present invention has been made to solve the above problems, and an object of the present invention is to make the humidification water system in a fuel cell system maintenance-free with a simple structure.

【0013】[0013]

【課題を解決するための手段】かかる目的を達成するた
めの請求項1記載の燃料電池システムで採用した手段
は、水素を含有するガスの供給を受け、該水素含有ガス
を燃料ガスとする燃料電池を有する燃料電池システムで
あって、水に凝固点降下剤を混合した不凍液を、前記燃
料電池を管路の一部とする冷却水系で循環させ、前記燃
料電池を冷却する冷却手段と、前記燃料電池に供給され
る水素含有ガスを、燃料電池に到る管路において加湿す
るガス加湿手段と、前記冷却水系の循環経路に設けら
れ、循環する前記不凍液から前記凝固点降下剤を含まな
い水を精製し、該精製した水を前記冷却水系から分離す
る分離手段と、該分離した水を、前記循環経路から分岐
した経路を経て前記ガス加湿手段にガス加湿用の水とし
て供給する加湿水供給手段とを備えることをその要旨と
する。
The means adopted in the fuel cell system according to claim 1 for attaining the above object is a fuel which is supplied with a gas containing hydrogen and uses the hydrogen containing gas as a fuel gas. A fuel cell system having a cell, wherein an antifreeze liquid in which water is mixed with a freezing point depressant is circulated in a cooling water system having the fuel cell as a part of a pipe line, and cooling means for cooling the fuel cell; A gas humidifying means for humidifying a hydrogen-containing gas supplied to a cell in a pipe leading to a fuel cell, and a cooling passage system circulation path provided to purify water free from the freezing point depressant from the circulating antifreeze. A separation means for separating the purified water from the cooling water system, and a humidification water supply for supplying the separated water as water for gas humidification to the gas humidification means via a path branched from the circulation path. In that it comprises a stage as its gist.

【0014】請求項2記載の燃料電池システムでは、前
記分離手段により前記冷却水系から分離された水の量に
相当する量の水を、前記冷却水系に補給する水補給手段
を有する。
According to another aspect of the fuel cell system of the present invention, there is provided water replenishing means for replenishing the cooling water system with an amount of water corresponding to the amount of water separated from the cooling water system by the separating means.

【0015】[0015]

【作用】上記構成を有する請求項1記載の燃料電池シス
テムでは、冷却手段により、不凍液を冷却水系で循環さ
せて燃料電池を冷却する一方、ガス加湿手段により、水
素含有ガスを燃料電池に到る管路において加湿する。そ
して、この加湿手段には、次のようにして、水素含有ガ
ス加湿用の水を供給する。
In the fuel cell system according to claim 1 having the above structure, the cooling means circulates the antifreeze liquid in the cooling water system to cool the fuel cell, while the gas humidifying means delivers the hydrogen-containing gas to the fuel cell. Humidify in pipeline. Then, water for humidifying the hydrogen-containing gas is supplied to the humidifying means as follows.

【0016】冷却水系の循環経路に設けられた分離手段
は、循環する不凍液から凝固点降下剤を含まない水を精
製し、この精製した水を冷却水系から分離する。この精
製された水は、凝固点降下剤を含まないことから、燃料
電池に加湿用の水として供給されても、電解質膜や電極
の触媒を汚濁することはない。つまり、分離手段により
精製・分離された水は、水素含有ガス加湿用の水として
支障はない。そして、請求項1記載の燃料電池システム
は、この加湿用の水として支障のない水を分離手段によ
り冷却水系から調達し、その水を、加湿水供給手段によ
り、ガス加湿用の水としてガス加湿手段に供給する。こ
のため、ガス加湿用の水の補給作業を要しない。また、
冷却水系の循環経路への分離手段の設置,循環経路から
ガス加湿手段への分岐経路の設置等だけで良く、加湿水
系,冷却水系の構成の複雑化を招かない。
The separating means provided in the circulation path of the cooling water system purifies water containing no freezing point depressant from the circulating antifreeze liquid and separates the purified water from the cooling water system. Since the purified water does not contain the freezing point depressant, it does not pollute the electrolyte membrane or the electrode catalyst even if it is supplied to the fuel cell as humidifying water. That is, the water purified / separated by the separating means does not cause any trouble as water for humidifying the hydrogen-containing gas. The fuel cell system according to claim 1 procures water that does not interfere as humidifying water from the cooling water system by the separating means, and uses the humidifying water supply means to humidify the gas as water for gas humidification. Supply to the means. Therefore, it is not necessary to replenish the gas humidifying water. Also,
It suffices to install a separating means in the circulation path of the cooling water system, a branch path from the circulation path to the gas humidifying means, etc., and does not complicate the configuration of the humidification water system and the cooling water system.

【0017】なお、冷却水系では、不凍液がその一部を
分離手段により凝固点降下剤を含まない水に精製・分離
されるものの、依然として凝固点降下剤は水に混合され
ている。よって、冷却水系での不凍液の循環は継続さ
れ、燃料電池の冷却に支障はない。
In the cooling water system, a part of the antifreeze liquid is purified and separated into water containing no freezing point depressant by the separating means, but the freezing point depressant is still mixed with water. Therefore, the circulation of the antifreeze liquid in the cooling water system is continued, and there is no hindrance to the cooling of the fuel cell.

【0018】請求項2記載の燃料電池システムでは、分
離手段により冷却水系から分離された水の量に相当する
量の水を、水補給手段により冷却水系に補給するので、
冷却水系における不凍液の液量や凝固点降下剤の濃度に
不用意な変動をもたらさない。
In the fuel cell system according to the second aspect of the present invention, the water replenishing means replenishes the cooling water system with the amount of water separated from the cooling water system by the separating means.
It does not cause inadvertent fluctuations in the amount of antifreeze and the concentration of freezing point depressant in the cooling water system.

【0019】[0019]

【実施例】次に、本発明に係る燃料電池システムの好適
な実施例について、図面に基づき説明する。図1は、実
施例の燃料電池システム10のブロック図である。
The preferred embodiments of the fuel cell system according to the present invention will now be described with reference to the drawings. FIG. 1 is a block diagram of a fuel cell system 10 of the embodiment.

【0020】実施例の燃料電池システム10は、固体高
分子型燃料電池(以下、単に燃料電池と略称する)12
を中心に備え、燃料電池12には、酸素ガス供給管路1
4からは酸素含有ガスである空気が、水素ガス供給管路
16からはメタノールを水蒸気改質して得られた水素ガ
ス(水素リッチガス,H2 :75%,CO2 :25%)
が、それぞれ供給される。水素ガス供給管路16の管路
には、水素ガス中に水を水蒸気として混在させる加湿器
18と、メタノール改質装置20とが設けられている。
なお、上記の両管路には適宜な箇所に逆流防止弁が設け
られているが、本発明の要旨とは直接関係しないので図
示されていない。
The fuel cell system 10 of the embodiment is a solid polymer fuel cell (hereinafter simply referred to as a fuel cell) 12
The fuel cell 12 is equipped with an oxygen gas supply line 1
4 is air, which is an oxygen-containing gas, and hydrogen gas is obtained from the hydrogen gas supply pipe 16 by steam reforming of methanol (hydrogen-rich gas, H 2 : 75%, CO 2 : 25%).
Are supplied respectively. The hydrogen gas supply pipeline 16 is provided with a humidifier 18 for mixing water in the hydrogen gas as water vapor and a methanol reformer 20.
Although a check valve is provided at an appropriate position in each of the above-mentioned pipes, it is not shown because it is not directly related to the gist of the present invention.

【0021】燃料電池12は、固体高分子電解質膜を陽
陰の電極で挟持して備え、カソードへの空気とアノード
への水素ガスとの供給を受けて陽陰の電極において上記
の,の電極反応を進行させる。そして、燃料電池1
2は、当該電極反応を経て得られた起電力により、図示
しない配線を介して外部の駆動機器、例えば電気自動車
におけるモータを駆動する。
The fuel cell 12 comprises a solid polymer electrolyte membrane sandwiched between positive and negative electrodes, and is supplied with air to the cathode and hydrogen gas to the anode, and the electrodes of the positive and negative electrodes are used. Allow the reaction to proceed. And the fuel cell 1
Reference numeral 2 drives an external drive device, for example, a motor in an electric vehicle, via a wiring (not shown) by an electromotive force obtained through the electrode reaction.

【0022】メタノール改質装置20は、メタノールタ
ンク26から圧送ポンプ28によりメタノールの供給を
受け、水タンク30から圧送ポンプ32により水の供給
を受ける。そして、メタノール改質装置20は、改質触
媒を介してメタノールと水との改質反応を250〜30
0℃の温度で進行させてメタノールを水蒸気改質し、水
素ガスを生成する。この生成された水素ガスは、その下
流の加湿器18に送り出される。
The methanol reformer 20 receives the supply of methanol from the methanol tank 26 by the pressure feed pump 28 and the supply of water from the water tank 30 by the pressure feed pump 32. Then, the methanol reforming device 20 causes the reforming reaction of methanol and water to reach 250 to 30 via the reforming catalyst.
Methanol is steam reformed by advancing at a temperature of 0 ° C. to generate hydrogen gas. The produced hydrogen gas is sent to the humidifier 18 downstream thereof.

【0023】メタノール改質装置20から水素ガスが送
り出される加湿器18は、不純物の含有量が少ない水を
ガス加湿用の水として貯留し、当該貯留水中をガスが通
過する間にガスを加湿する周知のバブリング式の加湿器
である。そして、この加湿器18は、燃料電池12に供
給される水素ガスを、燃料電池12に到る水素ガス供給
管路16の管路において加湿する。
The humidifier 18 to which hydrogen gas is sent from the methanol reforming device 20 stores water having a small amount of impurities as water for gas humidification, and humidifies the gas while the gas passes through the stored water. It is a well-known bubbling type humidifier. Then, the humidifier 18 humidifies the hydrogen gas supplied to the fuel cell 12 in the pipeline of the hydrogen gas supply pipeline 16 reaching the fuel cell 12.

【0024】燃料電池システム10は、この他、燃料電
池12を管路の一部とする冷却水循環路40を備え、不
凍液をこの冷却水循環路40で循環することにより燃料
電池12を冷却する。この不凍液は、水にエチレングリ
コール,グリセリン等の凝固点降下剤を混合したもので
あり、本実施例では、エチレングリコールを5〜50w
t%の濃度で水に混合した不凍液を用いた。
In addition to this, the fuel cell system 10 is provided with a cooling water circulation passage 40 having the fuel cell 12 as a part of a pipe, and the antifreeze liquid is circulated in the cooling water circulation passage 40 to cool the fuel cell 12. This antifreeze is a mixture of water and a freezing point depressant such as ethylene glycol and glycerin. In this embodiment, 5 to 50 w of ethylene glycol is added.
An antifreeze mixed with water at a concentration of t% was used.

【0025】冷却水循環路40には、管路の不凍液を約
100〜700kPa(約1〜7kgf/cm2 )の圧
力で循環させる圧送ポンプ42が設けられている。ま
た、圧送ポンプ42の下流には、管路の不凍液から水を
精製・分離する水分離装置44と、管路の不凍液温度を
燃料電池12の冷却に十分な温度まで熱交換(冷却)す
る熱交換器46とが配設されている。
The cooling water circulation passage 40 is provided with a pressure feed pump 42 for circulating the antifreeze liquid in the pipe passage at a pressure of about 100 to 700 kPa (about 1 to 7 kgf / cm 2 ). Further, downstream of the pressure pump 42, a water separation device 44 for purifying and separating water from the antifreeze liquid in the pipeline, and heat for exchanging (cooling) the temperature of the antifreeze liquid in the pipeline to a temperature sufficient for cooling the fuel cell 12. An exchanger 46 is provided.

【0026】水分離装置44は、図2の概念図に示すよ
うに、0.005〜0.05μmの径の細孔を有する限
外ろ過膜44aを備え、不凍液中の凝固点降下剤である
エチレングリコールの分子径と水分子の分子径との相違
を利用して、不凍液における水分子のみを過膜44aを
透過させる。従って、圧送ポンプ42により上記した圧
力で水分離装置44に不凍液が導入されると、分子径の
小さい水分子のみが過膜44aを透過する。このため、
水分離装置44では、冷却水循環路40を循環する不凍
液からエチレングリコールを含まない水が精製され、こ
の精製された水は冷却水循環路40から分離される。そ
して、水分離装置44と加湿器18との間には、精製水
導入管路48が設けられているので、水分離装置44で
精製・分離された水は、冷却水循環路40から分岐した
精製水導入管路48を経て加湿器18に水素ガス加湿用
の水として供給され、この加湿器18にて貯留される。
As shown in the conceptual diagram of FIG. 2, the water separator 44 is equipped with an ultrafiltration membrane 44a having pores with a diameter of 0.005 to 0.05 μm, and is ethylene, which is a freezing point depressant in antifreeze. By utilizing the difference between the molecular diameter of glycol and the molecular diameter of water molecules, only the water molecules in the antifreeze liquid are permeated through the permeation membrane 44a. Therefore, when the antifreeze liquid is introduced into the water separation device 44 by the pressure feed pump 42 at the above-mentioned pressure, only water molecules having a small molecular diameter pass through the overmembrane 44a. For this reason,
In the water separation device 44, water containing no ethylene glycol is purified from the antifreeze liquid circulating in the cooling water circulation passage 40, and the purified water is separated from the cooling water circulation passage 40. Since a purified water introducing pipe 48 is provided between the water separator 44 and the humidifier 18, the water purified / separated by the water separator 44 is branched from the cooling water circulation passage 40. It is supplied to the humidifier 18 as water for humidifying the hydrogen gas through the water introducing pipe 48, and is stored in the humidifier 18.

【0027】水分離装置44における限外ろ過膜44a
は、ポリスルフォン,ポリアクリルニトリル,酢酸セル
ロース,芳香族ナイロン等の種々の材料の膜成形をへて
形成され、ポリスルフォン製の限外ろ過膜44aとすれ
ば耐久性が高く好ましい。
Ultrafiltration membrane 44a in the water separator 44
Is formed by forming a membrane of various materials such as polysulfone, polyacrylonitrile, cellulose acetate, and aromatic nylon. It is preferable that the ultrafiltration membrane 44a made of polysulfone has high durability.

【0028】本実施例では、水の精製効率を高めるため
に、水分離装置44を次のように構成した。つまり、水
分離装置44は、図3に示すように、中空繊維膜状の限
外ろ過膜44aを数百本の束として外筒44bに収納し
て備え、外筒44bには加湿器18に到る精製水導入管
路48が接続されている。そして、この水分離装置44
は、その両端をシール材44cにてシールして冷却水循
環路40に組み込まれている。従って、水分離装置44
は、限外ろ過膜44aの各中空繊維膜内を不凍液を通過
させ、中空繊維膜の内部からその外部に水を透過させて
上記の水の精製・分離を行ない、加湿器18に水素ガス
加湿用の水を供給する。なお、水分離装置44は、中空
繊維膜状の限外ろ過膜44aを収納済みの外筒44bを
単位としてモジュール化されており、冷却水循環路40
へは、当該環路に設けられた対向する支持ブロック45
間にシール材44cを介在させて嵌め込むことで組み込
まれる。
In this embodiment, in order to improve the water purification efficiency, the water separator 44 is constructed as follows. That is, as shown in FIG. 3, the water separation device 44 is provided with the hollow fiber membrane-shaped ultrafiltration membranes 44a stored in the outer cylinder 44b as a bundle of several hundreds, and the humidifier 18 is provided in the outer cylinder 44b. The purified water introduction pipe line 48 is connected. And this water separation device 44
Is assembled in the cooling water circulation passage 40 by sealing both ends thereof with the sealing material 44c. Therefore, the water separation device 44
Conducts the antifreeze liquid through each hollow fiber membrane of the ultrafiltration membrane 44a, permeates water from the inside of the hollow fiber membrane to the outside thereof to purify and separate the water, and humidify the humidifier 18 with hydrogen gas. Supply water for. The water separation device 44 is modularized in units of an outer cylinder 44b in which a hollow fiber membrane-shaped ultrafiltration membrane 44a has been stored, and the cooling water circulation passage 40 is provided.
To the opposite support block 45 provided in the circuit.
It is assembled by inserting the sealing material 44c in between.

【0029】また、水タンク30からは、水補給管50
が冷却水循環路40に水分離装置44下流で合流するよ
う設けられており、管路のバルブ52による管路開度の
調整を経て、冷却水循環路40に水タンク30から水が
補給される。この場合、バルブ52は、上記した水分離
装置44により冷却水循環路40の不凍液から精製・分
離される水の量に相当する量の水が冷却水循環路40に
補給できるよう、管路開度を調整する。つまり、バルブ
52は、精製水導入管路48を通過する水の流量に応じ
て、図示しない制御装置により駆動制御される。なお、
この水補給管50にも逆流防止弁が設けられていること
は勿論である。
Further, from the water tank 30, a water supply pipe 50
Is provided so as to join the cooling water circulation path 40 downstream of the water separation device 44, and water is replenished from the water tank 30 to the cooling water circulation path 40 after the pipeline opening degree is adjusted by the valve 52 of the pipeline. In this case, the valve 52 has a pipe opening degree so that the cooling water circulation passage 40 can be replenished with water in an amount corresponding to the amount of water purified and separated from the antifreeze liquid in the cooling water circulation passage 40 by the water separation device 44. adjust. That is, the valve 52 is drive-controlled by a control device (not shown) according to the flow rate of water passing through the purified water introduction pipe line 48. In addition,
It goes without saying that the water supply pipe 50 is also provided with a check valve.

【0030】次に、燃料電池システム10の性能評価に
ついて説明する。比較対象となるシステムは冷却水循環
路40に水分離装置44を備えないシステムであり、加
湿器18には直接純水を補給して水素ガスを加湿する従
来の燃料電池システム(従来例システム)と、加湿器1
8には不凍液を供給してその不凍液にて水素ガスを加湿
することとした燃料電池システム(比較例システム)の
二つのシステムである。そして、これらの各燃料電池シ
ステムについて、各システムにおける燃料電池の電池特
性(I−V特性)を電流密度が0〜1.5mA/cm2
の範囲に亘って測定した。その結果を図4に示す。
Next, performance evaluation of the fuel cell system 10 will be described. The system to be compared is a system in which the water separator 44 is not provided in the cooling water circulation path 40, and a conventional fuel cell system (conventional example system) that directly supplies pure water to the humidifier 18 to humidify hydrogen gas. , Humidifier 1
Reference numeral 8 denotes two systems of a fuel cell system (comparative example system) in which an antifreeze liquid is supplied and hydrogen gas is humidified by the antifreeze liquid. Then, regarding each of these fuel cell systems, the cell characteristics (IV characteristics) of the fuel cell in each system are shown in terms of current density of 0 to 1.5 mA / cm 2.
Was measured over the range. FIG. 4 shows the results.

【0031】図4から明らかなように、本実施例の燃料
電池システム10では、従来例システムとその電流密度
の範囲(0〜1.5mA/cm2 )に亘ってほぼ同一の
特性を得られた。このため、本実施例の燃料電池システ
ム10のように水分離装置44により不凍液から精製・
分離した水で水素ガスを加湿しても、水素ガスの加湿は
純水による加湿の場合と同等の電池特性を得ることがで
きるといえる。また、不凍液にて加湿する比較例システ
ムでは、格段に劣る電池特性しか得られない。よって、
これらのことから、水分離装置44により不凍液から精
製・分離した水は、水素ガス加湿用の水としてなんら支
障はないといえる。
As is apparent from FIG. 4, the fuel cell system 10 of the present embodiment can obtain substantially the same characteristics as the conventional system over the current density range (0 to 1.5 mA / cm 2 ). It was Therefore, as in the fuel cell system 10 of the present embodiment, the water separation device 44 purifies the antifreeze liquid.
Even if the hydrogen gas is humidified with the separated water, it can be said that the humidification of the hydrogen gas can obtain the same battery characteristics as the case of humidification with pure water. In addition, the comparative example system which is humidified with an antifreeze solution has only significantly inferior battery characteristics. Therefore,
From these things, it can be said that the water purified and separated from the antifreeze liquid by the water separation device 44 has no problem as the water for humidifying hydrogen gas.

【0032】そして、本実施例の燃料電池システム10
は、水素ガス加湿用の水として支障のない水を水分離装
置44により冷却水循環路40の不凍液から調達し、そ
の水を、ガス加湿用の水として加湿器18に供給する。
このため、本実施例の燃料電池システム10によれば、
加湿器18へガス加湿用の水を補給する作業を要しない
ので、水素ガスの加湿水系のメンテナンスフリー化を図
ることができる。しかも、このメンテナンスフリー化
を、冷却水循環路40への水分離装置44の設置,精製
水導入管路48の設置といった簡単な構成で実現するこ
とができる。また、水素ガス加湿用の加湿水系を燃料電
池12の冷却水系である冷却水循環路40から分岐する
だけでよいので、その管路構成が簡略化される。よっ
て、構成の簡略化や設置スペースの省スペース化を通し
て、車両等への燃料電池システム10の搭載性を向上す
ることができると共に、設置コスト(搭載コスト)を低
減することができる。
Then, the fuel cell system 10 of the present embodiment.
Supplies, as water for humidifying hydrogen gas, water that does not interfere with the operation of the water separator 44 from the antifreezing liquid in the cooling water circulation path 40 and supplies the water to the humidifier 18 as water for humidifying gas.
Therefore, according to the fuel cell system 10 of the present embodiment,
Since it is not necessary to replenish the humidifier 18 with the water for humidifying the gas, the hydrogen gas humidifying system can be maintenance-free. Moreover, this maintenance-free operation can be realized with a simple configuration such as installation of the water separation device 44 in the cooling water circulation passage 40 and installation of the purified water introduction pipe passage 48. Further, since the humidifying water system for humidifying the hydrogen gas only has to be branched from the cooling water circulating passage 40 which is the cooling water system of the fuel cell 12, the pipe line configuration is simplified. Therefore, it is possible to improve the mountability of the fuel cell system 10 in a vehicle or the like and reduce the installation cost (mounting cost) through the simplification of the configuration and the saving of the installation space.

【0033】また、燃料電池システム10では、水分離
装置44による不凍液からの水の精製・分離により、冷
却水循環路40では不凍液から精製・分離された水の量
だけ不凍液の液量が減少する。しかし、本実施例の燃料
電池システム10では、液量減少分の水を、バルブ52
による管路開度の調整を経て水タンク30から冷却水循
環路40に補給する。よって、本実施例の燃料電池シス
テム10によれば、冷却水循環路40における不凍液の
液量やエチレングリコールの濃度を不用意に変動させな
いので、不凍液の循環による燃料電池12の冷却効率
を、循環流量の変更等を行なうことなく維持できる。
Further, in the fuel cell system 10, the water separation device 44 purifies and separates water from the antifreeze liquid, so that the cooling water circulation path 40 reduces the amount of the antifreeze liquid by the amount of the water purified and separated from the antifreeze liquid. However, in the fuel cell system 10 of the present embodiment, the amount of water corresponding to the decrease in the liquid amount is adjusted to
The water tank 30 is replenished to the cooling water circulation path 40 after adjusting the opening degree of the pipeline. Therefore, according to the fuel cell system 10 of the present embodiment, the liquid amount of the antifreeze liquid and the concentration of ethylene glycol in the cooling water circulation passage 40 are not inadvertently changed, so that the cooling efficiency of the fuel cell 12 due to the circulation of the antifreeze liquid can be improved. It can be maintained without making any changes.

【0034】以上本発明の一実施例について説明した
が、本発明はこの様な実施例になんら限定されるもので
はなく、本発明の要旨を逸脱しない範囲において種々な
る態様で実施し得ることは勿論である。
Although one embodiment of the present invention has been described above, the present invention is not limited to such an embodiment and can be implemented in various modes without departing from the scope of the present invention. Of course.

【0035】例えば、本実施例の燃料電池システム10
では、不凍液から水を精製・分離するに当たり、不凍液
における水分子のみを透過させる過膜44aを有する水
分離装置44を用い、不凍液中のエチレングリコールの
分子径と水分子の分子径との相違を利用した。しかしこ
れに限られるものではなく、水とエチレングリコールの
沸点の相違を利用して不凍液から水を精製・分離する構
成や、メンブレンフィルタ等のろ過膜を用い分子径の相
違を利用して不凍液から水を精製・分離する構成等を採
ることもできることは勿論である。
For example, the fuel cell system 10 of this embodiment
Then, when purifying and separating water from the antifreeze, a water separator 44 having a permeation membrane 44a that allows only water molecules in the antifreeze to pass is used, and the difference between the molecular diameter of ethylene glycol and the molecular diameter of water molecules in the antifreeze is determined. used. However, the present invention is not limited to this, and the structure that purifies and separates water from the antifreeze liquid by utilizing the difference in boiling point between water and ethylene glycol, and the difference in the molecular diameter by using a filtration membrane such as a membrane filter is used. It goes without saying that a configuration for purifying / separating water can be adopted.

【0036】また、加湿器18をバブリング式の加湿器
としたが、水蒸気を透過するガス拡散膜を介してガスを
加湿する加湿器とすることもできる。
Although the humidifier 18 is a bubbling type humidifier, it may be a humidifier that humidifies gas through a gas diffusion film that allows water vapor to pass therethrough.

【0037】更に、燃料電池12への水素ガス供給源と
してメタノール改質装置20を用いた構成としたが、水
素貯蔵機器(例えば、水素ガスボンベや水素貯蔵合金
等)から水素ガスを燃料電池12に供給するよう構成す
ることもできる。また、システムにおける燃料電池とし
ては、固体高分子型燃料電池に限らず、りん酸型燃料電
池等であってもよいことは勿論である。
Further, although the methanol reformer 20 is used as a hydrogen gas supply source to the fuel cell 12, hydrogen gas is supplied to the fuel cell 12 from a hydrogen storage device (for example, a hydrogen gas cylinder or a hydrogen storage alloy). It can also be configured to supply. Further, the fuel cell in the system is not limited to the polymer electrolyte fuel cell, and it goes without saying that a phosphoric acid fuel cell or the like may be used.

【0038】[0038]

【発明の効果】以上詳述したように請求項1記載の燃料
電池システムでは、水素含有ガス加湿用の水として支障
のない水を、冷却水系の循環する不凍液から精製・分離
を経て調達し、その水をガス加湿用の水として供給す
る。しかも、冷却水系の循環経路への分離手段の設置,
循環経路からガス加湿手段への分岐経路の設置等によ
り、水素含有ガス加湿用の加湿水系を燃料電池の冷却水
系から分岐するだけでよい。このため、請求項1記載の
燃料電池システムによれば、ガス加湿用の水の補給作業
を要しないので加湿水系におけるメンテナンスフリー化
を図ることができると共に、加湿水系,冷却水系の管路
構成の簡略化をも図ることができる。
As described in detail above, in the fuel cell system according to the first aspect, water that does not interfere as the water for humidifying the hydrogen-containing gas is procured from the circulating antifreeze of the cooling water system through purification and separation, The water is supplied as water for gas humidification. Moreover, the installation of separation means in the circulation path of the cooling water system,
It is only necessary to branch the humidifying water system for humidifying the hydrogen-containing gas from the cooling water system of the fuel cell by installing a branch path from the circulation path to the gas humidifying means. Therefore, according to the fuel cell system of the first aspect, it is possible to make the humidification water system maintenance-free because it is not necessary to replenish the water for gas humidification, and at the same time, the humidification water system and the cooling water system are configured to have a pipeline structure. It can also be simplified.

【0039】請求項2記載の燃料電池システムでは、冷
却水系から分離された水の量に相当する量の水の冷却水
系への補給を通して、冷却水系における不凍液の液量や
凝固点降下剤の濃度に不用意な変動をもたらさない。よ
って、請求項2記載の燃料電池システムによれば、不凍
液の循環による燃料電池の冷却効率を、不凍液の循環流
量の変更等を行なうことなく維持できる。
In the fuel cell system according to the second aspect, the amount of the antifreeze liquid and the concentration of the freezing point depressant in the cooling water system are increased by supplying the amount of water separated from the cooling water system to the cooling water system. It does not cause careless fluctuation. Therefore, according to the fuel cell system of the second aspect, the cooling efficiency of the fuel cell by circulating the antifreeze liquid can be maintained without changing the circulation flow rate of the antifreeze liquid.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の燃料電池システム10のブロック図。FIG. 1 is a block diagram of a fuel cell system 10 according to an embodiment.

【図2】燃料電池システム10における水分離装置44
の概念図。
FIG. 2 is a water separation device 44 in the fuel cell system 10.
Conceptual illustration.

【図3】実施例の水分離装置44の概略構成を示す模式
図。
FIG. 3 is a schematic diagram showing a schematic configuration of a water separation device 44 of an embodiment.

【図4】実施例の燃料電池システム10と従来例の燃料
電池システムおよび比較例の燃料電池システムとの評価
の結果を示すグラフ。
FIG. 4 is a graph showing the evaluation results of the fuel cell system 10 of the example, the fuel cell system of the conventional example, and the fuel cell system of the comparative example.

【符号の説明】[Explanation of symbols]

10…燃料電池システム 12…燃料電池 16…水素ガス供給管路 18…加湿器 20…メタノール改質装置 40…冷却水循環路 42…圧送ポンプ 44…水分離装置 44a…限外ろ過膜 46…熱交換器 48…精製水導入管路 50…水補給管 52…バルブ 10 ... Fuel cell system 12 ... Fuel cell 16 ... Hydrogen gas supply line 18 ... Humidifier 20 ... Methanol reforming device 40 ... Cooling water circulation line 42 ... Pressure pump 44 ... Water separation device 44a ... Ultrafiltration membrane 46 ... Heat exchange Container 48 ... Purified water introduction pipe 50 ... Water supply pipe 52 ... Valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素を含有するガスの供給を受け、該水
素含有ガスを燃料ガスとする燃料電池を有する燃料電池
システムであって、 水に凝固点降下剤を混合した不凍液を、前記燃料電池を
管路の一部とする冷却水系で循環させ、前記燃料電池を
冷却する冷却手段と、 前記燃料電池に供給される水素含有ガスを、燃料電池に
到る管路において加湿するガス加湿手段と、 前記冷却水系の循環経路に設けられ、循環する前記不凍
液から前記凝固点降下剤を含まない水を精製し、該精製
した水を前記冷却水系から分離する分離手段と、 該分離した水を、前記循環経路から分岐した経路を経て
前記ガス加湿手段にガス加湿用の水として供給する加湿
水供給手段とを備えることを特徴とする燃料電池システ
ム。
1. A fuel cell system having a fuel cell which is supplied with a gas containing hydrogen and which uses the hydrogen-containing gas as a fuel gas, wherein an antifreeze solution in which water is mixed with a freezing point depressant is used. A cooling unit that circulates in a cooling water system that is a part of a pipe, cools the fuel cell, and a hydrogen-containing gas supplied to the fuel cell, a gas humidifying unit that humidifies the hydrogen-containing gas in the pipe that reaches the fuel cell, Separation means provided in the circulation path of the cooling water system, for purifying water containing no freezing point depressant from the circulating antifreeze liquid, and separating the purified water from the cooling water system, and the separated water, A fuel cell system, comprising: a humidification water supply unit that supplies the gas humidification unit as water for gas humidification via a path branched from the path.
【請求項2】 請求項1記載の燃料電池システムであっ
て、 前記分離手段により前記冷却水系から分離された水の量
に相当する量の水を、前記冷却水系に補給する水補給手
段を有する燃料電池システム。
2. The fuel cell system according to claim 1, further comprising water replenishing means for replenishing the cooling water system with an amount of water corresponding to the amount of water separated from the cooling water system by the separating means. Fuel cell system.
JP6340301A 1994-12-28 1994-12-28 Fuel cell system Pending JPH08185877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6340301A JPH08185877A (en) 1994-12-28 1994-12-28 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6340301A JPH08185877A (en) 1994-12-28 1994-12-28 Fuel cell system

Publications (1)

Publication Number Publication Date
JPH08185877A true JPH08185877A (en) 1996-07-16

Family

ID=18335640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6340301A Pending JPH08185877A (en) 1994-12-28 1994-12-28 Fuel cell system

Country Status (1)

Country Link
JP (1) JPH08185877A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831543A1 (en) * 1996-09-02 1998-03-25 Honda Giken Kogyo Kabushiki Kaisha Gas humidifying device for use with a fuel cell
WO2000017951A1 (en) * 1998-09-22 2000-03-30 Ballard Power Systems Inc. Antifreeze cooling subsystem
WO2000025379A1 (en) * 1998-10-26 2000-05-04 Kabushiki Kaisha Toshiba Solid polymer type fuel cell system
EP1061600A2 (en) * 1999-06-14 2000-12-20 Atecs Mannesmann AG Fuel cell arrangement
JP2001135338A (en) * 1999-11-04 2001-05-18 Toyota Motor Corp Fuel cell equipment and method of operating fuel cell
JP2002056866A (en) * 2000-08-09 2002-02-22 Toyota Motor Corp Fuel cell system considering freeze proofing of cooling system
JP2003505851A (en) * 1999-07-22 2003-02-12 インターナショナル フュエル セルズ,エルエルシー Direct antifreeze cooled fuel cell
JP2003515233A (en) * 1999-10-25 2003-04-22 ユーティーシー フューエル セルズ,エルエルシー Direct antifreeze-cooled fuel cell power equipment
JP2003515895A (en) * 1999-11-22 2003-05-07 ユーティーシー フューエル セルズ,エルエルシー Actuator for direct antifreeze-cooled fuel cell power equipment
JP2003518712A (en) * 1999-12-20 2003-06-10 ユーティーシー フューエル セルズ,エルエルシー Direct antifreeze-cooled fuel cell power plant system
WO2002059992A3 (en) * 2001-01-26 2003-07-31 Daimler Chrysler Ag Method for improving the water balance of fuel cells
WO2003067694A1 (en) * 2002-02-08 2003-08-14 Nissan Motor Co., Ltd. Freeze prevention of a fuel cell power plant
US6730425B2 (en) 2000-07-14 2004-05-04 Toyota Jidosha Kabushiki Kaisha Fuel cell system having cool apparatus
JP2004164971A (en) * 2002-11-12 2004-06-10 Toyota Central Res & Dev Lab Inc Fuel cell system
JP2007511059A (en) * 2003-11-05 2007-04-26 ユーティーシー フューエル セルズ,エルエルシー Freezing-resistant fuel cell power generator using two-component mixed coolant
US7611787B2 (en) 2004-09-08 2009-11-03 Honeywell International Inc. Colorant treated ion exchange resins, method of making, heat transfer systems and assemblies containing the same, and method of use
US7662304B2 (en) 2004-09-08 2010-02-16 Honeywell International Inc. Corrosion inhibitors, corrosion inhibiting heat transfer fluids, and the use thereof
US7754097B2 (en) 2005-08-12 2010-07-13 Honeywell International Inc. Method for stabilizing an engine coolant concentrate and preventing hard water salt formation upon dilution
US7985349B2 (en) 2004-09-08 2011-07-26 Honeywell International Inc. Non-conductive colored heat transfer fluids
US8658326B2 (en) 2004-09-08 2014-02-25 Prestone Products Corporation Heat transfer system, fluid, and method
US9587154B2 (en) 2004-09-08 2017-03-07 Prestone Products Corporation Treated ion exchange resins, method of making, assemblies and heat transfer systems containing the same, and method of use
DE102017204824B3 (en) 2017-03-22 2018-06-14 Ford Global Technologies, Llc Cooling system of a vehicle engine having a separation unit

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831543A1 (en) * 1996-09-02 1998-03-25 Honda Giken Kogyo Kabushiki Kaisha Gas humidifying device for use with a fuel cell
WO2000017951A1 (en) * 1998-09-22 2000-03-30 Ballard Power Systems Inc. Antifreeze cooling subsystem
US7303831B2 (en) 1998-09-22 2007-12-04 Ballard Powers Systems Inc. Antifreeze cooling subsystem
US6572994B1 (en) 1998-10-26 2003-06-03 Kabushiki Kaisha Toshiba Polymer electrolyte fuel cell system
WO2000025379A1 (en) * 1998-10-26 2000-05-04 Kabushiki Kaisha Toshiba Solid polymer type fuel cell system
DE19982376B4 (en) * 1998-10-26 2010-05-27 Kabushiki Kaisha Toshiba, Kawasaki Polymer-electrolyte fuel cell system
EP1061600A2 (en) * 1999-06-14 2000-12-20 Atecs Mannesmann AG Fuel cell arrangement
EP1061600A3 (en) * 1999-06-14 2004-05-06 Siemens Aktiengesellschaft Fuel cell arrangement
JP2003505851A (en) * 1999-07-22 2003-02-12 インターナショナル フュエル セルズ,エルエルシー Direct antifreeze cooled fuel cell
JP2003515233A (en) * 1999-10-25 2003-04-22 ユーティーシー フューエル セルズ,エルエルシー Direct antifreeze-cooled fuel cell power equipment
JP2001135338A (en) * 1999-11-04 2001-05-18 Toyota Motor Corp Fuel cell equipment and method of operating fuel cell
JP2003515895A (en) * 1999-11-22 2003-05-07 ユーティーシー フューエル セルズ,エルエルシー Actuator for direct antifreeze-cooled fuel cell power equipment
JP2003518712A (en) * 1999-12-20 2003-06-10 ユーティーシー フューエル セルズ,エルエルシー Direct antifreeze-cooled fuel cell power plant system
US6730425B2 (en) 2000-07-14 2004-05-04 Toyota Jidosha Kabushiki Kaisha Fuel cell system having cool apparatus
JP2002056866A (en) * 2000-08-09 2002-02-22 Toyota Motor Corp Fuel cell system considering freeze proofing of cooling system
JP4710111B2 (en) * 2000-08-09 2011-06-29 トヨタ自動車株式会社 Fuel cell system considering prevention of freezing of cooling system
WO2002059992A3 (en) * 2001-01-26 2003-07-31 Daimler Chrysler Ag Method for improving the water balance of fuel cells
WO2003067694A1 (en) * 2002-02-08 2003-08-14 Nissan Motor Co., Ltd. Freeze prevention of a fuel cell power plant
CN1322620C (en) * 2002-02-08 2007-06-20 日产自动车株式会社 Integrated circuit
US7267898B2 (en) 2002-02-08 2007-09-11 Nissan Motor Co., Ltd. Freeze prevention of a fuel cell power plant
JP2004164971A (en) * 2002-11-12 2004-06-10 Toyota Central Res & Dev Lab Inc Fuel cell system
JP4626797B2 (en) * 2002-11-12 2011-02-09 株式会社豊田中央研究所 Fuel cell system
JP2007511059A (en) * 2003-11-05 2007-04-26 ユーティーシー フューエル セルズ,エルエルシー Freezing-resistant fuel cell power generator using two-component mixed coolant
US7854253B2 (en) 2004-09-08 2010-12-21 Honeywell International Inc. Corrosion inhibitors, corrosion inhibiting heat transfer fluids, and the use thereof
US7662304B2 (en) 2004-09-08 2010-02-16 Honeywell International Inc. Corrosion inhibitors, corrosion inhibiting heat transfer fluids, and the use thereof
US7611787B2 (en) 2004-09-08 2009-11-03 Honeywell International Inc. Colorant treated ion exchange resins, method of making, heat transfer systems and assemblies containing the same, and method of use
US7985349B2 (en) 2004-09-08 2011-07-26 Honeywell International Inc. Non-conductive colored heat transfer fluids
US8658326B2 (en) 2004-09-08 2014-02-25 Prestone Products Corporation Heat transfer system, fluid, and method
US9587154B2 (en) 2004-09-08 2017-03-07 Prestone Products Corporation Treated ion exchange resins, method of making, assemblies and heat transfer systems containing the same, and method of use
US7754097B2 (en) 2005-08-12 2010-07-13 Honeywell International Inc. Method for stabilizing an engine coolant concentrate and preventing hard water salt formation upon dilution
DE102017204824B3 (en) 2017-03-22 2018-06-14 Ford Global Technologies, Llc Cooling system of a vehicle engine having a separation unit
US10378425B2 (en) 2017-03-22 2019-08-13 Ford Global Technologies, Llc Systems and methods for a cooling system of a vehicle engine

Similar Documents

Publication Publication Date Title
JPH08185877A (en) Fuel cell system
JP3654443B2 (en) Fuel cell having built-in humidifier and method for humidifying fuel cell process gas
CA2368925C (en) Fuel cell system
US8304123B2 (en) Ambient pressure fuel cell system employing partial air humidification
EP1929568B1 (en) Fuel cell stacks and systems with fluid-responsive temperature regulation
US7264233B2 (en) Humidifier
JP2001185194A (en) Moisturizing apparatus for fuel cell
CA2321548A1 (en) Liquid fuel cell system
WO2002093674A1 (en) Fine pore enthalpy exchange barrier for a fuel cell power plant
EP1352438A1 (en) Fine pore enthalpy exchange barrier for a fuel cell power plant
JPH08507405A (en) Solid polymer fuel cell installation including water separation at the anode
JP2002367641A (en) Fuel cell and driving method of the same
JP2000164231A (en) Solid high molecular fuel cell system
JP2004504701A (en) Sub-ambient pressure refrigerant loop for fuel cell power installations
JP2000208156A (en) Solid polymer fuel cell system
US20080152977A1 (en) Humidifier for fuel cell and process for warming the same
JPH0992310A (en) Solid polymer type fuel cell system
JP6152436B1 (en) Fuel cell system
JPH06119931A (en) Device of humidifying system for fuel cell
US20230006223A1 (en) Methods and Apparatus for Mold Mitigation in Fuel Cell Humidifiers
JP2004529458A (en) Method for improving the moisture balance of a fuel cell
JP2008243540A (en) Polymer electrolyte fuel cell power-generating device
JP4000971B2 (en) Fuel cell system
JPH11111311A (en) Solid polymer type fuel cell
JP5266635B2 (en) Fuel cell system