JPH08184600A - Scanning probe microscope - Google Patents

Scanning probe microscope

Info

Publication number
JPH08184600A
JPH08184600A JP32672494A JP32672494A JPH08184600A JP H08184600 A JPH08184600 A JP H08184600A JP 32672494 A JP32672494 A JP 32672494A JP 32672494 A JP32672494 A JP 32672494A JP H08184600 A JPH08184600 A JP H08184600A
Authority
JP
Japan
Prior art keywords
scanning
probe
sample
expansion
drift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32672494A
Other languages
Japanese (ja)
Inventor
Seiji Heike
誠嗣 平家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32672494A priority Critical patent/JPH08184600A/en
Publication of JPH08184600A publication Critical patent/JPH08184600A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a scanning probe microscope in which the thermal drift between a sample and a probe is compensated and by which a stable and accurate measurement can be performed by locally heating or cooling a constituent member which couples the sample to the probe so as to control its thermal expansion. CONSTITUTION: Temperature control elements 5, 7 in a direction which agrees with the X-axis direction 13 as the scanning direction of a scanning element 3 are attached respectively to partial parts of expansion and contraction parts 9, 11 which function as expansion and contraction materials used to adjust the distance between the element 3 and a sample 1. Then, when a probe 2 for the element 3 is drifted in the X-axis direction to the positive side (16) relatively with reference to the sample 1, a voltage is applied, in a heat-absorbing (cooling) direction, to the element 5, and in a heat- generating direction, to the element 7. Then, the expansion and contraction part 9 is contracted, the expansion and contraction part 11 expanded, the probe 2 is moved in the X-axis direction to the negative side (17), and a thermal drift inside the X-axis direction 13 is offset. When the direction of the drift is opposite, it is sufficient to apply a voltage in the opposite sign to the elements 5, 7. In addition, a thermal drift in the Y-axis direction can be offset in the same method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は走査プローブ顕微鏡、特
に極低温或いは高温等の温度変化の激しい環境下で動作
する走査プローブ顕微鏡において、熱の影響による材料
の伸縮により生ずるプローブと試料間の距離のドリフト
を軽減する場合に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope, and more particularly, to a distance between a probe and a sample caused by expansion and contraction of a material due to the influence of heat in a scanning probe microscope operating in an environment where the temperature changes drastically such as extremely low temperature or high temperature. It is used to reduce the drift of.

【0002】[0002]

【従来の技術】現在、走査プローブ顕微鏡には、走査ト
ンネル顕微鏡、原子間力顕微鏡、磁気力顕微鏡等が存在
する。これらの原理は何れも、鋭く尖らせたプローブを
試料表面から数nmにまで接近させ、この状態において
試料面上のある領域に対してプローブを走査することに
よってプローブの種類、計測目的に応じた表面情報を
得、その情報を元に画像処理を施して試料表面の画像を
得るというのもである。
2. Description of the Related Art Currently, scanning probe microscopes include scanning tunneling microscopes, atomic force microscopes, magnetic force microscopes and the like. In all of these principles, a sharply pointed probe is brought close to a few nm from the sample surface, and in this state, a certain region on the sample surface is scanned with the probe to meet the probe type and the measurement purpose. Surface information is obtained, and image processing is performed based on the information to obtain an image of the sample surface.

【0003】[0003]

【発明が解決しようとする課題】走査プローブ顕微鏡
は、常温のみならず極低温或いは高温下においても動作
可能である。しかしながら、このように外界即ち室温と
の温度差の大きな環境下で動作させる場合には、外界か
らの熱の流入或いは外界への流出に伴う構造材料の伸縮
により、定常状態に達するまでの間、試料に対するプロ
ーブの位置が時間と共に変化するという現象が見られ
る。特に試料のみを加熱或いは冷却する場合、この現象
は顕著となる。
The scanning probe microscope can operate not only at room temperature but also at extremely low temperature or high temperature. However, when operating in an environment with a large temperature difference from the outside, that is, room temperature, due to the expansion and contraction of the structural material accompanying the inflow or outflow of heat from the outside, until the steady state is reached. It can be seen that the position of the probe with respect to the sample changes with time. This phenomenon becomes remarkable especially when only the sample is heated or cooled.

【0004】例えば、構造材料として長さ1cmのステ
ンレス鋼を用いた場合、1℃の温度変化に対して160
nmの変位を生ずる。また走査プローブ顕微鏡が1画像
を得るのに要する時間が通常数秒から数分であり、走査
領域が数nmから数千nmであるから、1分間に1℃の
温度変化が起こるとするならば走査終了までの変位は数
十nmから数百nm程度となり、これによる画像の歪み
が無視しえなくなる。
For example, when stainless steel having a length of 1 cm is used as a structural material, the temperature change of 1 ° C. is 160
A displacement of nm is produced. Moreover, the time required for the scanning probe microscope to obtain one image is usually several seconds to several minutes, and the scanning region is several nm to several thousand nm. Therefore, if a temperature change of 1 ° C. occurs in one minute, the scanning is performed. The displacement until the end is about several tens nm to several hundreds nm, and the image distortion due to this is not negligible.

【0005】温度ドリフトを防止する手段として、まず
走査プローブ顕微鏡の構成部品として熱膨張率の小さな
材料を選ぶか、或いは熱膨張が互いに相殺するように材
料及び構造を選ぶことが考えられるが、試料及びプロー
ブの熱膨張率まで考慮することは甚だ困難である。ま
た、走査自体をドリフト方向にソフト的に補正するとい
う手法も提案されているが、ドリフトに追随し得る範囲
が走査範囲内に制限されているという問題がある。
As a means for preventing the temperature drift, it is conceivable to first select a material having a small coefficient of thermal expansion as a component of the scanning probe microscope, or a material and a structure so that the thermal expansions cancel each other. It is very difficult to consider the thermal expansion coefficient of the probe. Although a method of softly correcting the scanning itself in the drift direction has been proposed, there is a problem that the range that can follow the drift is limited to the scanning range.

【0006】本発明の目的は、走査プローブ顕微鏡観察
における熱ドリフトを補償する手段を提供するものであ
る。
It is an object of the present invention to provide a means of compensating for thermal drift in scanning probe microscopy.

【0007】[0007]

【課題を解決するための手段】本発明によれば、上記課
題を解決するために走査プローブ顕微鏡を構成する構成
材料を局所的に加熱或いは冷却することにより、試料−
プローブ間の熱ドリフトを補償する手段が提供される。
According to the present invention, in order to solve the above-mentioned problems, the sample material is locally heated or cooled to form a sample-
Means are provided to compensate for thermal drift between the probes.

【0008】[0008]

【作用】本発明によれば、試料−プローブ間を結合する
走査プローブ顕微鏡の構成部分に対して局所的な加熱或
いは冷却を行い、熱膨張を制御することによって熱ドリ
フトを相殺し、ドリフト補償を可能とする。加熱冷却の
制御方法としては熱源或いは冷熱源を直接制御する方法
及び、熱源或いは冷熱源からの熱伝導を制御する方法が
ある。
According to the present invention, the components of the scanning probe microscope that couple the sample and the probe are locally heated or cooled to control the thermal expansion, thereby canceling the thermal drift and compensating for the drift. It is possible. As a heating / cooling control method, there are a method of directly controlling a heat source or a cold heat source and a method of controlling heat conduction from the heat source or the cold heat source.

【0009】前者の場合、加熱冷却の手段としてペルテ
ィエ素子、抵抗加熱等を用いる方法があり、発熱量或い
は吸熱量を電気的に制御することが可能である。
In the former case, there is a method of using a Peltier element, resistance heating or the like as a heating and cooling means, and it is possible to electrically control the amount of heat generation or the amount of heat absorption.

【0010】後者の場合、試料−プローブ間を結合する
走査プローブ顕微鏡の構成部分に対して、熱源或いは冷
熱源との熱伝導が可能な熱伝導材料を機械的に接触させ
た構造を用い、接触圧力を変化させることにより真の接
触面積を変化させ、接触面における熱伝導特性の制御を
行う。このような構造を複数配置することにより走査面
内方向及び走査面に垂直方向の熱ドリフトを補償するこ
とが可能となる。
In the latter case, a structure in which a heat conducting material capable of conducting heat to a heat source or a cold heat source is mechanically brought into contact with the components of the scanning probe microscope for coupling between the sample and the probe is used. By changing the pressure, the true contact area is changed, and the heat conduction characteristics at the contact surface are controlled. By disposing a plurality of such structures, it becomes possible to compensate for the thermal drift in the scanning plane and in the direction perpendicular to the scanning plane.

【0011】[0011]

【実施例】【Example】

実施例1 本実施例においては、走査プローブ顕微鏡の構成材料を
直接加熱或いは冷却することにより熱ドリフト補償を行
う。
Example 1 In this example, thermal drift compensation is performed by directly heating or cooling the constituent materials of the scanning probe microscope.

【0012】図1に示す走査トンネル顕微鏡は、ベース
部100、ベース部100の上に配置される試料1、探
針2、走査素子3、走査素子3を保持する粗動機構4、
粗動機構4を保持する上部ベース200及び走査素子3
−試料1間を連結する支持部9、10、11、12から
なる。走査素子3−試料1間を連結する支持部9、1
0、11、12は走査素子3−試料1間の距離を調整す
るための伸縮部として機能するから、以下伸縮部と称す
る。伸縮部9、10、11、12の一部には走査素子3
の走査におけるX軸方向13、Y軸方向14と一致する
方向に温度制御素子5、6、7、8がそれぞれ取付けら
れている。
The scanning tunneling microscope shown in FIG. 1 comprises a base portion 100, a sample 1 arranged on the base portion 100, a probe 2, a scanning element 3, and a coarse movement mechanism 4 for holding the scanning element 3.
Upper base 200 holding scanning mechanism 4 and scanning element 3
-It consists of the support parts 9, 10, 11, 12 which connect between the samples 1. Supports 9 and 1 for connecting the scanning element 3 to the sample 1
Since 0, 11, and 12 function as expansion / contraction units for adjusting the distance between the scanning element 3 and the sample 1, they are hereinafter referred to as expansion / contraction units. The scanning element 3 is provided on a part of the expansion / contraction part 9, 10, 11, 12.
The temperature control elements 5, 6, 7, and 8 are attached in the directions that coincide with the X-axis direction 13 and the Y-axis direction 14 in the scanning.

【0013】図2にY軸方向14から見た内部構造の側
面図を示す。探針2が試料1に対して相対的にX軸正方
向16にドリフトしている場合、温度制御素子5に対し
吸熱方向に、温度制御素子7に対し発熱方向にそれぞれ
電圧を印加すると、伸縮部9が収縮し伸縮部11が膨張
することにより、探針2はX軸負方向17に移動しX軸
方向13内におけるドリフトが相殺される。ドリフトの
向きが逆の場合には温度制御素子5、7に逆符号の電圧
を印加すればよい。また、Y軸方向14内におけるドリ
フトに関しては温度制御素子6、8を用いて同様に制御
を行う。Z軸方向15、即ち試料1に対して垂直方向に
Z軸負方向18のドリフトが存在する場合、温度制御素
子5、6、7、8に対し吸熱方向に電圧を印加すると、
伸縮部9、10、11、12が収縮することにより、探
針2はZ軸正方向19に移動しZ軸方向15内における
ドリフトが相殺される。ドリフトの向きが逆の場合には
温度制御素子5、6、7、8に対し発熱方向に電圧を印
加すればよい。
FIG. 2 shows a side view of the internal structure as seen from the Y-axis direction 14. When the probe 2 is drifting in the X-axis positive direction 16 relative to the sample 1, when voltage is applied to the temperature control element 5 in the heat absorption direction and to the temperature control element 7 in the heat generation direction, expansion and contraction occur. When the part 9 contracts and the expansion / contraction part 11 expands, the probe 2 moves in the X-axis negative direction 17 and the drift in the X-axis direction 13 is offset. When the drift direction is opposite, a voltage having the opposite sign may be applied to the temperature control elements 5 and 7. Further, the drift in the Y-axis direction 14 is similarly controlled by using the temperature control elements 6 and 8. When there is a drift in the Z-axis direction 15, that is, in the Z-axis negative direction 18 perpendicular to the sample 1, when a voltage is applied to the temperature control elements 5, 6, 7, and 8 in the heat absorption direction,
The contraction of the expansion / contraction parts 9, 10, 11, 12 causes the probe 2 to move in the Z-axis positive direction 19 and offset the drift in the Z-axis direction 15. When the drift direction is opposite, a voltage may be applied to the temperature control elements 5, 6, 7, 8 in the direction of heat generation.

【0014】温度制御素子5、6、7、8に、X軸方向
13或いはY軸方向14内ドリフト制御電圧及びZ軸方
向15内ドリフト制御電圧を加算した電圧を印加するこ
とにより、あらゆる方向のドリフトを制御することが可
能となる。
By applying a voltage obtained by adding the drift control voltage in the X-axis direction 13 or the Y-axis direction 14 and the drift control voltage in the Z-axis direction 15 to the temperature control elements 5, 6, 7, and 8, all the directions are controlled. It is possible to control the drift.

【0015】試料1としてグラファイト、探針2として
タングステン、温度制御素子5、6、7、8としてペル
ティエ素子、伸縮部9、10、11、12としてステン
レス板を用いて室温、大気中において測定を行った。当
初、試料面内及び垂直方向共に1nm/sの熱ドリフト
が観察されたが、上で述べた方法によってドリフト制御
を行ったところ、0、01nm/s以下に低減された。
原子間力顕微鏡、磁気力顕微鏡等、他の走査プローブ顕
微鏡を用いても同様の効果が得られた。動作雰囲気とし
てガス中、真空中或いは溶液中において、また、動作温
度として1K程度から1500K程度までの走査プロー
ブ顕微鏡が動作可能な全ての温度範囲において同様の効
果が得られた。伸縮部9、10、11、12としては、
ステンレス、銅、アルミニウム等の金属、酸化硅素、酸
化アルミニウム等のセラミックス、ベークライト、ポリ
スチレン等の有機物等、熱により可逆的に膨張、収縮を
行うものであれば材料は問わない。
Using graphite as the sample 1, tungsten as the probe 2, Peltier elements as the temperature control elements 5, 6, 7, 8 and stainless steel plates as the expansion / contraction parts 9, 10, 11, 12 at room temperature and in the atmosphere. went. Initially, a thermal drift of 1 nm / s was observed both in the plane of the sample and in the vertical direction, but when the drift control was performed by the method described above, it was reduced to 0,01 nm / s or less.
Similar effects were obtained using other scanning probe microscopes such as an atomic force microscope and a magnetic force microscope. Similar effects were obtained in a gas, a vacuum, or a solution as an operating atmosphere, and in all temperature ranges in which the scanning probe microscope can operate at an operating temperature of about 1K to about 1500K. As the stretchable parts 9, 10, 11, and 12,
Any material may be used, such as metals such as stainless steel, copper and aluminum, ceramics such as silicon oxide and aluminum oxide, organic substances such as bakelite and polystyrene, as long as they can reversibly expand and contract by heat.

【0016】伸縮部9、10、11、12の構造は図1
に示した構造の限りではなく、試料1−探針2間を機械
的に結合する部位であればどこに位置してもよい。図3
に示した走査トンネル顕微鏡においては、伸縮部20は
走査素子3−粗動機構4間に位置している。この場合の
伸縮部20の形状の例を図4に示す。
The structure of the expansion / contraction parts 9, 10, 11, 12 is shown in FIG.
The structure is not limited to the structure shown in 1 above, and may be located anywhere as long as it mechanically connects the sample 1 and the probe 2. FIG.
In the scanning tunneling microscope shown in FIG. 1, the expansion / contraction part 20 is located between the scanning element 3 and the coarse movement mechanism 4. FIG. 4 shows an example of the shape of the expandable portion 20 in this case.

【0017】図4(a)は直方体、図4(b)は円筒型
であり、温度制御素子21は伸縮部20の移動方向が走
査素子3の走査方向と一致するような位置に設けられて
いる。これらの場合、温度制御素子21に印加する電圧
は図1に示した場合の逆符号となる。図4(c)に示す
トライポッド型は、互いに垂直な3本のロッド22から
成り、そのそれぞれに取付けられた温度制御素子21を
用いてロッド22を伸縮させることにより探針2の変位
を制御する。この何れを用いても同様の効果が得られ
た。
FIG. 4A is a rectangular parallelepiped, and FIG. 4B is a cylindrical type, and the temperature control element 21 is provided at a position such that the moving direction of the expansion / contraction part 20 coincides with the scanning direction of the scanning element 3. There is. In these cases, the voltage applied to the temperature control element 21 has the opposite sign to that shown in FIG. The tripod type shown in FIG. 4C is composed of three rods 22 which are perpendicular to each other, and the displacement of the probe 2 is controlled by expanding and contracting the rods 22 using the temperature control elements 21 attached to the respective rods 22. . The same effect was obtained using any of these.

【0018】実施例2 本実施例においては、温度制御素子として抵抗加熱を利
用した熱ドリフト補償装置を示す。
Example 2 In this example, a thermal drift compensating device using resistance heating as a temperature control element is shown.

【0019】図5に示す走査トンネル顕微鏡は、ベース
100、試料1、探針2、走査素子3、粗動機構4、上
部ベース200及び走査素子3−試料1間を連結する支
持部9、10、11、12からなる。走査素子3−試料
1間を連結する伸縮部9、10、11、12には、走査
素子3の走査のX軸方向13、Y軸方向14と一致する
方向に抵抗加熱素子30、31、32、33がそれぞれ
取付けられており、伸縮部35には抵抗加熱素子34が
取付けられている。
The scanning tunneling microscope shown in FIG. 5 includes a base 100, a sample 1, a probe 2, a scanning element 3, a coarse movement mechanism 4, an upper base 200, and supporting portions 9 and 10 for connecting between the scanning element 3 and the sample 1. , 11 and 12. In the expansion / contraction portions 9, 10, 11, 12 connecting the scanning element 3 and the sample 1, the resistance heating elements 30, 31, 32 are aligned in the X-axis direction 13 and the Y-axis direction 14 of the scanning of the scanning element 3. , 33 are attached respectively, and the expansion / contraction part 35 is attached with the resistance heating element 34.

【0020】図6にY軸方向14から見た内部構造の側
面図を示す。探針2が試料1に対して相対的にX軸負方
向17にドリフトしている場合、抵抗加熱素子30を用
いて加熱すると、伸縮部9が膨張することにより、探針
2はX軸正方向16に移動しX軸方向13内におけるド
リフトが相殺される。ドリフトの向きが逆の場合には抵
抗加熱素子32を用いて伸縮部11を加熱すればよい。
また、Y軸方向14内におけるドリフトに関しては抵抗
加熱素子31、33を用いて同様に制御を行う。Z軸方
向15、即ち試料1に対して垂直方向にZ軸負方向18
のドリフトが存在する場合、抵抗加熱素子34を用いて
伸縮部35を加熱し、膨張させることにより、探針2は
Z軸正方向19に移動しZ軸方向15内におけるドリフ
トが相殺される。ドリフトの向きが逆の場合には抵抗加
熱素子30、31、32、33を用いて伸縮部9、1
0、11、12を加熱すればよい。ただし、抵抗加熱素
子30、31、32、33には、X軸方向13或いはY
軸方向14内ドリフト制御電流及びZ軸方向15内ドリ
フト制御電流を加算した電流を通電する必要がある。
FIG. 6 shows a side view of the internal structure as seen from the Y-axis direction 14. When the probe 2 drifts in the X-axis negative direction 17 relative to the sample 1, when the resistance heating element 30 is used for heating, the expandable portion 9 expands, so that the probe 2 moves in the X-axis positive direction. The movement in the direction 16 is canceled out by the drift in the X-axis direction 13. When the drift direction is opposite, the stretchable portion 11 may be heated using the resistance heating element 32.
Further, the drift in the Y-axis direction 14 is similarly controlled using the resistance heating elements 31 and 33. Z-axis direction 15, that is, the Z-axis negative direction 18 perpendicular to the sample 1
When there is a drift of No. 2, the resistance heating element 34 is used to heat and expand the expansion / contraction portion 35, so that the probe 2 moves in the Z-axis positive direction 19 and the drift in the Z-axis direction 15 is offset. When the drift direction is opposite, the resistance heating elements 30, 31, 32, 33 are used to expand / contract the expansion / contraction parts 9, 1.
It is sufficient to heat 0, 11, and 12. However, in the resistance heating elements 30, 31, 32, 33, the X-axis direction 13 or Y
It is necessary to supply a current obtained by adding the drift control current in the axial direction 14 and the drift control current in the Z-axis direction 15.

【0021】試料1としてシリコン、探針2として白金
−イリジウム、抵抗加熱素子30、31、32、33と
してタングステンヒータ、伸縮部9、10、11、12
としてステンレス板を用いて室温、大気中において測定
を行った。当初、試料面内及び垂直方向共に1nm/s
の熱ドリフトが観察されたが、上で述べた方法によって
ドリフト制御を行ったところ、0、01nm/s以下に
低減された。原子間力顕微鏡、磁気力顕微鏡等、他の走
査プローブ顕微鏡を用いても同様の効果が得られた。動
作雰囲気としてガス中、真空中或いは溶液中において、
また、動作温度として1K程度から1500K程度まで
の走査プローブ顕微鏡が動作可能な全ての温度範囲にお
いて同様の効果が得られた。抵抗加熱素子30、31、
32、33としては、タングステン、ニクロム線、黒鉛
等、通電加熱を行えるものであれば材料は問わない。伸
縮部9、10、11、12としては、ステンレス、銅、
アルミニウム等の金属、酸化硅素、酸化アルミニウム等
のセラミックス、ベークライト、ポリスチレン等の有機
物等、熱により可逆的に膨張、収縮を行うものであれば
材料は問わない。
Silicon is used as the sample 1, platinum-iridium is used as the probe 2, tungsten heaters are used as the resistance heating elements 30, 31, 32 and 33, and expandable portions 9, 10, 11 and 12 are used.
Was measured at room temperature in the atmosphere using a stainless steel plate. Initially, 1 nm / s both in the sample plane and in the vertical direction
Thermal drift was observed, but when drift control was performed by the method described above, it was reduced to 0.01 nm / s or less. Similar effects were obtained using other scanning probe microscopes such as an atomic force microscope and a magnetic force microscope. In gas, vacuum or solution as an operating atmosphere,
The same effect was obtained in all operating temperature ranges of the scanning probe microscope from 1K to 1500K. Resistance heating elements 30, 31,
The materials for the materials 32 and 33 are not limited as long as they can be electrically heated, such as tungsten, nichrome wire, and graphite. The stretchable parts 9, 10, 11, 12 include stainless steel, copper,
Any material may be used as long as it reversibly expands and contracts by heat, such as metals such as aluminum, ceramics such as silicon oxide and aluminum oxide, and organic substances such as bakelite and polystyrene.

【0022】実施例3 本実施例においては、走査プローブ顕微鏡の構成材料と
熱源との間の熱伝導を制御することにより熱ドリフト補
償を行う装置を示す。
Embodiment 3 This embodiment shows an apparatus for performing thermal drift compensation by controlling the heat conduction between the constituent material of the scanning probe microscope and the heat source.

【0023】図7に極低温走査トンネル顕微鏡の断面図
を示す。本走査トンネル顕微鏡は、試料1、探針2及び
走査素子3からなり、走査トンネル顕微鏡本体40は支
持管48により真空容器41内に固定された状態で真空
排気され、さらに真空容器41は液体窒素等の冷媒43
で満たされたデュワーびん42内に導入され、走査トン
ネル顕微鏡本体40の温度調節が可能となっている。走
査素子3は移動台44に固定され、移動台44は4個の
ボールベアリング45及び2個のばね46により挟み込
まれ、上下方向に自在に移動可能である。
FIG. 7 shows a sectional view of a cryogenic scanning tunneling microscope. The present scanning tunneling microscope comprises a sample 1, a probe 2, and a scanning element 3. The scanning tunneling microscope main body 40 is evacuated while being fixed in a vacuum container 41 by a support tube 48, and the vacuum container 41 is further filled with liquid nitrogen. Refrigerant 43 such as
The temperature of the scanning tunneling microscope body 40 can be adjusted by being introduced into the Dewar bottle 42 filled with. The scanning element 3 is fixed to a movable base 44, and the movable base 44 is sandwiched by four ball bearings 45 and two springs 46, and is movable in the vertical direction.

【0024】真空容器41の上端外部にステッピングモ
ータ47があり、これにより支持管48内の回転軸49
を通して駆動ねじ50を回転する。駆動ねじ50は移動
台44上端に設けられた雌ねじ穴51にねじ込まれてい
るため、駆動ねじ50の回転により移動台44は上下方
向に移動し、走査素子3の下端に取付けられた探針2と
試料1との間隔を制御する。
A stepping motor 47 is provided on the outside of the upper end of the vacuum container 41, whereby a rotary shaft 49 in a support tube 48 is provided.
Drive screw 50 through. Since the driving screw 50 is screwed into the female screw hole 51 provided at the upper end of the moving base 44, the moving base 44 moves in the vertical direction by the rotation of the driving screw 50, and the probe 2 attached to the lower end of the scanning element 3 is moved. The distance between the sample and the sample 1 is controlled.

【0025】さらに、走査トンネル顕微鏡本体40の伸
縮部52、53には真空容器41より突出した熱伝導部
54、55がそれぞれ接触している。熱伝導部は紙面に
垂直な方向にも同様に存在する。熱伝導部54、55の
熱伝導を制御することにより、冷媒43−伸縮部52、
53間の熱交換を制御することが可能となる。
Further, the heat conducting portions 54 and 55 protruding from the vacuum container 41 are in contact with the expanding and contracting portions 52 and 53 of the scanning tunneling microscope body 40, respectively. The heat conducting portion also exists in the direction perpendicular to the paper surface. By controlling the heat conduction of the heat conduction parts 54, 55, the refrigerant 43-the expansion / contraction part 52,
It becomes possible to control the heat exchange between 53.

【0026】図8に熱伝導部54、55の詳細な構造例
を示す。
FIG. 8 shows a detailed structural example of the heat conducting portions 54 and 55.

【0027】図8(a)に示す熱伝導部においては、ピ
エゾ素子56を挟み込むように固定部57と接触部58
が存在し、両者の間を熱伝導体59が結合している。固
定部57を冷媒43に固定し、接触部58を伸縮部5
2、53に接触させることにより、ピエゾ素子56の伸
縮による接触面における接触圧力変化に応じた熱伝導の
制御が可能となる。固定部57及び接触部58として
は、銅、アルミニウム、金等の金属、酸化硅素、酸化ア
ルミニウム等のセラミックス、ベークライト、テフロン
等の有機物等が使用可能である。熱伝導体49として
は、銅線、金箔、ばね、バイトンゴム等の柔軟性のある
材料であればよい。また、ピエゾ素子56を熱伝導体と
して用いるならば熱伝導体59、固定部57及び接触部
58は省略可能である。
In the heat conducting portion shown in FIG. 8A, the fixing portion 57 and the contact portion 58 are arranged so as to sandwich the piezo element 56.
Exists, and the heat conductor 59 is coupled between them. The fixed portion 57 is fixed to the refrigerant 43, and the contact portion 58 is connected to the expandable portion 5
By bringing them into contact with 2, 53, it becomes possible to control the heat conduction according to the contact pressure change on the contact surface due to the expansion and contraction of the piezo element 56. As the fixing portion 57 and the contact portion 58, metals such as copper, aluminum and gold, ceramics such as silicon oxide and aluminum oxide, organic substances such as bakelite and Teflon can be used. The heat conductor 49 may be a flexible material such as copper wire, gold foil, spring, or viton rubber. If the piezo element 56 is used as a heat conductor, the heat conductor 59, the fixing portion 57, and the contact portion 58 can be omitted.

【0028】図8(b)においては、熱伝導体61の両
端に設けられた板ばね60を、その間に位置するピエゾ
素子56を用いて押すことにより接触圧力を制御する。
熱伝導体61としては、銅、アルミニウム、金等の金
属、酸化硅素、酸化アルミニウム等のセラミックス、ベ
ークライト、テフロン等の有機物等が使用可能である。
板ばね60としては、ステンレス、チタン等の金属が適
している。
In FIG. 8B, the contact pressure is controlled by pushing the leaf springs 60 provided at both ends of the heat conductor 61 by using the piezo elements 56 located between them.
As the heat conductor 61, metals such as copper, aluminum and gold, ceramics such as silicon oxide and aluminum oxide, organic substances such as bakelite and Teflon can be used.
A metal such as stainless steel or titanium is suitable for the leaf spring 60.

【0029】図7において、走査トンネル顕微鏡本体4
0を冷媒43を用いて冷却した場合についての動作説明
をする。探針2が試料1に対して相対的にX軸正方向1
6にドリフトしている場合、熱伝導部54を延ばし熱伝
導度を増大させ、熱伝導部55を縮め熱伝導度を減少さ
せる。これにより伸縮部52は温度降下に伴って収縮
し、伸縮部53は温度上昇に伴って膨張するために、探
針2はX軸負方向17に移動しX軸方向13内における
ドリフトが相殺される。ドリフトの向きが逆の場合には
逆の動作を行えばよい。また、Y軸方向内におけるドリ
フトに関しても同様の制御を行う。Z軸方向15、即ち
試料1に対して垂直方向にZ軸負方向18のドリフトが
存在する場合、熱伝導部54、55を用いて伸縮部5
2、53の温度を降下させ収縮させ、Y軸方向に関して
も同様の動作をさせることにより、探針2はZ軸正方向
19に移動しZ軸方向15内におけるドリフトが相殺さ
れる。ドリフトの向きが逆の場合には逆の動作を行う。
In FIG. 7, the scanning tunneling microscope body 4 is shown.
The operation when 0 is cooled by using the refrigerant 43 will be described. The probe 2 is in the positive X-axis direction 1 relative to the sample 1.
When drifting to 6, the heat conducting portion 54 is extended to increase the heat conductivity, and the heat conducting portion 55 is contracted to reduce the heat conductivity. As a result, the expansion / contraction part 52 contracts as the temperature decreases, and the expansion / contraction part 53 expands as the temperature rises, so that the probe 2 moves in the X-axis negative direction 17 and the drift in the X-axis direction 13 is offset. It When the drift direction is opposite, the opposite operation may be performed. Further, similar control is performed for drift in the Y-axis direction. When there is a drift in the Z-axis direction 15, that is, in the direction perpendicular to the sample 1 in the Z-axis negative direction 18, the heat conducting portions 54 and 55 are used to expand and contract the stretchable portion 5.
By decreasing and contracting the temperatures of 2, 53 and performing the same operation in the Y-axis direction, the probe 2 moves in the Z-axis positive direction 19 and the drift in the Z-axis direction 15 is offset. If the drift direction is opposite, the reverse operation is performed.

【0030】試料1としてシリコン、探針2として金、
側壁52、53としてステンレス板を用い、冷媒43と
して液体窒素を用いて、試料1を―196度に冷却しな
がら超高真空中において測定を行った。また、熱伝導部
54、55としては図8(a)に示したものを用い、固
定部57及び接触部58として銅、熱伝導体59として
銅線を使用した。当初、試料面内及び垂直方向共に10
nm/sの熱ドリフトが観察されたが、上で述べた方法
によってドリフト制御を行ったところ、0、01nm/
s以下に低減された。伸縮部52、53としては、ステ
ンレス、銅、アルミニウム等の金属、酸化硅素、酸化ア
ルミニウム等のセラミックス、ベークライト、ポリスチ
レン等の有機物等、熱により可逆的に膨張、収縮を行う
ものであれば材料は問わない。冷媒43としては、液体
窒素、液体ヘリウム、冷水等、試料1との温度差が10
K程度以上あればよい。また、動作雰囲気としてはガス
中、真空中或いは溶液中の何れにおいても動作する。原
子間力顕微鏡、磁気力顕微鏡等、他の走査プローブ顕微
鏡を用いても同様の効果が得られた。
Silicon as the sample 1, gold as the probe 2,
A stainless plate was used as the side walls 52 and 53, and liquid nitrogen was used as the coolant 43, while the sample 1 was cooled to −196 ° C., and measurement was performed in an ultrahigh vacuum. The heat conducting parts 54 and 55 shown in FIG. 8A were used, the fixing part 57 and the contact part 58 were made of copper, and the heat conductor 59 was made of copper wire. Initially, 10 both in the sample plane and in the vertical direction
Although a thermal drift of nm / s was observed, when drift control was performed by the method described above, it was 0,01 nm /
s or less. As the stretchable portions 52 and 53, materials such as metals such as stainless steel, copper, and aluminum, ceramics such as silicon oxide and aluminum oxide, organic substances such as bakelite, polystyrene, and the like that can reversibly expand and contract by heat are made of materials. It doesn't matter. The coolant 43 is liquid nitrogen, liquid helium, cold water, or the like, and has a temperature difference from the sample 1 of 10
It should be about K or more. The operating atmosphere is gas, vacuum, or solution. Similar effects were obtained using other scanning probe microscopes such as an atomic force microscope and a magnetic force microscope.

【0031】[0031]

【発明の効果】本発明によれば、走査プローブ顕微鏡の
不安定要因の一つであった熱的なドリフトを軽減し、従
来の方法と比較してより安定かつ精密な測定が可能とな
る。特に低温或いは高温動作においてはその効果は大き
い。
According to the present invention, thermal drift, which is one of the factors causing instability of a scanning probe microscope, can be reduced, and more stable and precise measurement can be performed as compared with the conventional method. The effect is particularly great in low-temperature or high-temperature operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】走査素子3−試料1間を連結する支持部を直接
加熱或いは冷却することにより熱ドリフト補償を行った
走査プローブ顕微鏡の斜視図。
FIG. 1 is a perspective view of a scanning probe microscope in which thermal drift compensation is performed by directly heating or cooling a supporting portion that connects a scanning element and a sample 1.

【図2】図1の走査プローブ顕微鏡の側面図。FIG. 2 is a side view of the scanning probe microscope of FIG.

【図3】走査素子3の支持部を直接加熱或いは冷却する
ことにより熱ドリフト補償を行った走査プローブ顕微鏡
の斜視図。
FIG. 3 is a perspective view of a scanning probe microscope in which thermal drift compensation is performed by directly heating or cooling a supporting portion of the scanning element 3.

【図4】図3の支持部を直接加熱或いは冷却するための
構成例を示す斜視図で(a)は直方体型伸縮部、(b)
は円筒型伸縮部、(c)はトライポッド型伸縮部とした
例。
FIG. 4 is a perspective view showing an example of a structure for directly heating or cooling the support portion of FIG. 3, (a) is a rectangular parallelepiped expansion / contraction portion, and (b) is a perspective view.
Is a cylindrical expansion / contraction part, and (c) is a tripod expansion / contraction part.

【図5】走査素子3−試料1間を連結する支持部を直接
加熱或いは冷却することにより熱ドリフト補償を行った
走査プローブ顕微鏡の他の例の斜視図。
FIG. 5 is a perspective view of another example of the scanning probe microscope in which the thermal drift compensation is performed by directly heating or cooling the supporting portion connecting the scanning element and the sample 1.

【図6】図5の走査プローブ顕微鏡の側面図。6 is a side view of the scanning probe microscope of FIG.

【図7】走査素子3−試料1間を連結する支持部を直接
加熱或いは冷却することにより熱ドリフト補償を行った
走査プローブ顕微鏡の他の例の斜視図。
FIG. 7 is a perspective view of another example of a scanning probe microscope in which thermal drift compensation is performed by directly heating or cooling a support portion that connects the scanning element and the sample 1.

【図8】図7の熱伝導部の例を示す側面図で、(a)は
柔軟性のある熱伝導体を用いた熱伝導部、(b)は板ば
ねを用いた熱伝導部。
8A and 8B are side views showing examples of the heat conducting portion of FIG. 7, where FIG. 8A is a heat conducting portion using a flexible heat conductor, and FIG. 8B is a heat conducting portion using a leaf spring.

【符号の説明】[Explanation of symbols]

1…試料、2…探針、3…走査素子、4…粗動機構、
5、6、7、8、21…温度制御素子、9、10、1
1、12、20、35、52、53…伸縮部、13…X
軸方向、14…Y軸方向、15…Z軸方向、16…X軸
正方向、17…X軸負方向、18…Z軸負方向、19…
Z軸正方向、22…ロッド、30、31、32、33、
34…抵抗加熱素子、40…走査トンネル顕微鏡本体、
41…真空容器、42…デュワーびん、43…冷媒、4
4…移動台、45…ボールベアリング、46…ばね、4
7…ステッピングモータ、48…支持管、49…回転
軸、50…駆動ねじ、51…雌ねじ穴、54、55…熱
伝導部、56…ピエゾ素子、57…固定部、58…接触
部、59…熱伝導体、60、61…板ばね。
1 ... sample, 2 ... probe, 3 ... scanning element, 4 ... coarse movement mechanism,
5, 6, 7, 8, 21 ... Temperature control element, 9, 10, 1
1, 12, 20, 35, 52, 53 ... Expandable portion, 13 ... X
Axial direction, 14 ... Y-axis direction, 15 ... Z-axis direction, 16 ... X-axis positive direction, 17 ... X-axis negative direction, 18 ... Z-axis negative direction, 19 ...
Z-axis positive direction, 22 ... Rod, 30, 31, 32, 33,
34 ... Resistance heating element, 40 ... Scanning tunneling microscope body,
41 ... Vacuum container, 42 ... Dewar bottle, 43 ... Refrigerant, 4
4 ... Moving base, 45 ... Ball bearing, 46 ... Spring, 4
7 ... Stepping motor, 48 ... Support tube, 49 ... Rotating shaft, 50 ... Drive screw, 51 ... Female screw hole, 54, 55 ... Heat conduction part, 56 ... Piezo element, 57 ... Fixed part, 58 ... Contact part, 59 ... Heat conductors 60, 61 ... Leaf springs.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】走査プローブ顕微鏡において、プローブー
探針間を所定の関係に位置付ける構造物の局所的な温度
制御を行うことにより、プローブー探針間の位置的な熱
ドリフトを補償する走査プローブ顕微鏡。
1. A scanning probe microscope that compensates for positional thermal drift between the probe and the probe by locally controlling the temperature of a structure that positions the probe and the probe in a predetermined relationship.
【請求項2】温度制御が熱源による加熱或いは冷却であ
り、該熱源の温度を制御する請求項1記載の走査プロー
ブ顕微鏡。
2. The scanning probe microscope according to claim 1, wherein the temperature control is heating or cooling by a heat source, and the temperature of the heat source is controlled.
【請求項3】熱源がペルティエ素子である請求項2記載
の走査プローブ顕微鏡。
3. The scanning probe microscope according to claim 2, wherein the heat source is a Peltier element.
【請求項4】熱源が抵抗加熱である請求項2記載の走査
プローブ顕微鏡。
4. The scanning probe microscope according to claim 2, wherein the heat source is resistance heating.
【請求項5】前記構造物と熱源との間の熱伝導を制御す
る請求項1記載の走査プローブ顕微鏡。
5. The scanning probe microscope according to claim 1, wherein heat conduction between the structure and a heat source is controlled.
【請求項6】熱伝導制御が機械的接触面における接触圧
力の制御である請求項5記載の走査プローブ顕微鏡。
6. The scanning probe microscope according to claim 5, wherein the heat conduction control is control of contact pressure at the mechanical contact surface.
【請求項7】接触圧力の制御がピエゾ素子による温度制
御である請求項6記載の走査プローブ顕微鏡。
7. The scanning probe microscope according to claim 6, wherein the control of the contact pressure is temperature control by a piezo element.
JP32672494A 1994-12-28 1994-12-28 Scanning probe microscope Pending JPH08184600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32672494A JPH08184600A (en) 1994-12-28 1994-12-28 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32672494A JPH08184600A (en) 1994-12-28 1994-12-28 Scanning probe microscope

Publications (1)

Publication Number Publication Date
JPH08184600A true JPH08184600A (en) 1996-07-16

Family

ID=18190972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32672494A Pending JPH08184600A (en) 1994-12-28 1994-12-28 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JPH08184600A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734426B2 (en) * 2001-06-15 2004-05-11 Sii Nanotechnology Inc. Probe scanning device
JP2007198815A (en) * 2006-01-25 2007-08-09 Canon Inc Probe unit and atomic force microscope
WO2011116389A2 (en) 2010-03-19 2011-09-22 Bruker Nano, Inc. Low drift scanning probe microscope

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734426B2 (en) * 2001-06-15 2004-05-11 Sii Nanotechnology Inc. Probe scanning device
JP2007198815A (en) * 2006-01-25 2007-08-09 Canon Inc Probe unit and atomic force microscope
WO2011116389A2 (en) 2010-03-19 2011-09-22 Bruker Nano, Inc. Low drift scanning probe microscope
US20110239336A1 (en) * 2010-03-19 2011-09-29 Brucker Nano, Inc. Low Drift Scanning Probe Microscope
EP2548033A2 (en) * 2010-03-19 2013-01-23 Bruker Nano, Inc. Low drift scanning probe microscope
CN103069279A (en) * 2010-03-19 2013-04-24 布鲁克纳米公司 Low drift scanning probe microscope
US8869310B2 (en) * 2010-03-19 2014-10-21 Bruker Nano, Inc. Low drift scanning probe microscope
EP2548033A4 (en) * 2010-03-19 2014-12-31 Bruker Nano Inc Low drift scanning probe microscope
US20150074859A1 (en) * 2010-03-19 2015-03-12 Bruker Nano, Inc. Low Drift Scanning Probe Microscope
US9116168B2 (en) 2010-03-19 2015-08-25 Bruker Nano, Inc. Low drift scanning probe microscope

Similar Documents

Publication Publication Date Title
US4798989A (en) Scanning tunneling microscope installed in electron microscope
US5654546A (en) Variable temperature scanning probe microscope based on a peltier device
EP0538861B1 (en) Electron microscope specimen holder
US5821545A (en) Heated stage for a scanning probe microscope
US9116168B2 (en) Low drift scanning probe microscope
US4841148A (en) Variable temperature scanning tunneling microscope
Lyding et al. Variable‐temperature scanning tunneling microscope
Rust et al. High precision mechanical approach mechanism for a low temperature scanning tunneling microscope
Messerschmidt et al. High-temperature straining stage for in situ experiments in the high-voltage electron microscope
US5635836A (en) Mechanical apparatus with rod, pivot, and translation means for positioning a sample for use with a scanning microscope
JPH08184600A (en) Scanning probe microscope
US8763161B2 (en) Zero thermal expansion, low heat transfer, variable temperature sample assembly for probe microscopy
US5055680A (en) Scanning tunneling microscope
Adhikari et al. Low temperature and high magnetic field performance of a commercial piezo-actuator probed via laser interferometry
US10900997B2 (en) Low drift system for a metrology instrument
Albrektsen et al. A compact scanning tunnelling microscope with thermal compensation
Diaconescu et al. An ultrahigh vacuum fast-scanning and variable temperature scanning tunneling microscope for large scale imaging
Oulevey et al. Simple low-drift heating stage for scanning probe microscopes
JP2000241332A (en) Scanning probe microscope
JP4190832B2 (en) Transmission electron microscope
US7906887B2 (en) Microsystem and method for positioning a second element with respect to a first element in a microsystem
Tzalenchuk et al. A variable temperature scanning SQUID microscope
Chen et al. An atomic‐resolution cryogenic scanning tunneling microscope
JP2002181681A (en) Scanning probe microscope
CA1312681C (en) Variable temperature scanning tunneling microscope