JPH08184559A - Method and apparatus for evaluating orientation of magnetic recording medium - Google Patents

Method and apparatus for evaluating orientation of magnetic recording medium

Info

Publication number
JPH08184559A
JPH08184559A JP33742894A JP33742894A JPH08184559A JP H08184559 A JPH08184559 A JP H08184559A JP 33742894 A JP33742894 A JP 33742894A JP 33742894 A JP33742894 A JP 33742894A JP H08184559 A JPH08184559 A JP H08184559A
Authority
JP
Japan
Prior art keywords
recording medium
magnetic recording
orientation
light
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33742894A
Other languages
Japanese (ja)
Inventor
Masahide Shioga
政秀 塩賀
Hironobu Kawashiri
浩宣 河尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP33742894A priority Critical patent/JPH08184559A/en
Publication of JPH08184559A publication Critical patent/JPH08184559A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To evaluate the orientation of the surface part of a magnetic recording medium. CONSTITUTION: Light Ri emitted from a semiconductor laser 13 is passed through a polarizing plate 14 to be a p-polarized light. A magnetic recording medium 10 is set on a stage 15 so that the longitudinal direction of the medium 10 and the direction of p-polarized light Ri are included in one plane. Irradiation of the medium 10 with the p-polarized light Ri and reception of a reflected light Rr by a photodiode 22 are repeated while varying the incident angle β. A first complex permittivity ε0 is determined from the relationship of the intensity of reflected light and the incident angle β. The stage 15 is then turned by 90 deg. so that the longitudinal and vertical directions of the medium 10 and the direction of the p-polarized light Ri are included in one plane and a second complex permittivity εs is determined similarly. Such an evaluation is made that the larger the difference between the complex part εj0 of the first complex permittivity ε0 and the complex part εjs of the second complex permittivity εs , the higher the orientation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】この発明は,磁気テープ,フロッピィ・デ
ィスクなどの磁気記録媒体において用いられる磁性材料
の配向度を評価する装置および方法に関する。
TECHNICAL FIELD The present invention relates to an apparatus and method for evaluating the degree of orientation of a magnetic material used in a magnetic recording medium such as a magnetic tape or a floppy disk.

【0002】[0002]

【発明の背景】図8(A) に示すように,通常の状態にあ
る原子はその中心に核71があり,核71のまわりに電子72
がある。誘電体中における電子72のモデルが図9に示さ
れている。図9に示すように誘電体において電子72は束
縛状態にある。
BACKGROUND OF THE INVENTION As shown in FIG. 8 (A), an atom in a normal state has a nucleus 71 at its center, and an electron 72 around the nucleus 71.
There is. A model of electrons 72 in the dielectric is shown in FIG. As shown in FIG. 9, electrons 72 are bound in the dielectric.

【0003】電子72に電界Eが印加されると,図9(B)
に示すように電界Eの方向と反対方向に電子72が動く。
これにより図8(C) に示すように見掛け上双極子ができ
る(分極)。以上が原子分極と呼ばれる現象の概略であ
る。結晶内においても同様に電荷分布が外部電界により
変位することによって分極が生じる。
When an electric field E is applied to the electrons 72, FIG.
As shown in, the electrons 72 move in the direction opposite to the direction of the electric field E.
This makes an apparent dipole (polarization) as shown in Fig. 8 (C). The above is the outline of the phenomenon called atomic polarization. In the crystal as well, polarization is similarly generated when the charge distribution is displaced by the external electric field.

【0004】一般に磁性材料は磁気特性(微視的には結
晶内の電子スピンによる)をよくするために異方性結晶
構造を持つ微粒子集合体もしくは多結晶体である。個々
の異方性結晶においては構造上結晶軸に依存した分極特
性を持つ。結論として集合体である磁性材料の分極特性
は,個々の異方性結晶軸の分布と磁気異方特性を反映し
ており,分極特性を調べることにより異方性結晶軸の分
布と磁気異方特性を導くことができる。
In general, a magnetic material is a fine particle aggregate or a polycrystalline body having an anisotropic crystal structure in order to improve magnetic characteristics (microscopically, due to electron spin in the crystal). The structure of each anisotropic crystal has a polarization characteristic that depends on the crystal axis. As a conclusion, the polarization characteristics of the magnetic material as an aggregate reflect the distribution of individual anisotropic crystal axes and the magnetic anisotropy characteristics. The property can be derived.

【0005】結晶軸の向きが一方向にそろっているほど
配向度が高いといい(図11参照),ふぞろいほど配向度
が低いという。
It is said that the more the crystal axes are aligned in one direction, the higher the orientation degree is (see FIG. 11), and the more the orientation is, the lower the orientation degree is.

【0006】磁気記録媒体のうち,たとえば磁気テープ
は一方向に走行させられながら情報が記録されることか
ら,磁性材料の配向度は高いことが好ましい。これに対
して,磁気記録媒体のうち,たとえばフロッピィ・ディ
スクは回転しながら情報が記録されることから,磁性材
料の配向度は低いことが好ましい。磁気記録媒体はその
種類に応じて配向度を変える必要があり,配向度の評価
は重要である。
Among magnetic recording media, a magnetic tape, for example, records information while traveling in one direction, so that the degree of orientation of the magnetic material is preferably high. On the other hand, among magnetic recording media, for example, a floppy disk records information while rotating, so that it is preferable that the degree of orientation of the magnetic material is low. The degree of orientation of magnetic recording media must be changed according to the type, and it is important to evaluate the degree of orientation.

【0007】配向度の評価方法としては,たとえばV.S.
M.(Vibrating Sample Magnetmeter)法が知られてい
る。V.S.M.法は,配向度を評価する磁気記録媒体を,コ
イル近傍において動かし,コイルを貫く磁束線の数の変
化を検出することにより配向度を評価する方法である。
As a method of evaluating the orientation degree, for example, VS
The M. (Vibrating Sample Magnetmeter) method is known. The VSM method is a method for evaluating the orientation degree by moving the magnetic recording medium for evaluating the orientation degree in the vicinity of the coil and detecting the change in the number of magnetic flux lines passing through the coil.

【0008】しかしながら,V.S.M.法による配向度の評
価では磁気記録媒体に塗布されている磁性材料表面だけ
でなく内面の磁性材料の配向度も含めて評価されてしま
う。
However, in the evaluation of the degree of orientation by the VSM method, not only the surface of the magnetic material coated on the magnetic recording medium but also the degree of orientation of the inner magnetic material is evaluated.

【0009】一方,磁気記録媒体における表面部は磁気
ヘッドに近いため,その磁気特性が再生信号に与える影
響も大きい。また高密度,高周波記録を行なう磁気記録
媒体ほど記録磁気ループが表面部において形成される。
これらのことからもわかるように,磁気記録媒体におけ
る磁性材料の配向度において重要なものは,磁気記録媒
体の磁性材料の表面の配向度である。
On the other hand, since the surface portion of the magnetic recording medium is close to the magnetic head, its magnetic characteristics have a great influence on the reproduced signal. In addition, a recording magnetic loop is formed on the surface of a magnetic recording medium for high density and high frequency recording.
As can be seen from these facts, what is important in the orientation degree of the magnetic material in the magnetic recording medium is the orientation degree of the surface of the magnetic material in the magnetic recording medium.

【0010】[0010]

【発明の開示】この発明は,磁気記録媒体の磁性材料の
表面の配向度を,比較的容易に評価できるようにするこ
とを目的とする。
DISCLOSURE OF THE INVENTION An object of the present invention is to make it possible to evaluate the degree of orientation of the surface of a magnetic material of a magnetic recording medium relatively easily.

【0011】この発明による磁気記録媒体の配向度評価
方法は,被検査物である磁気記録媒体の表面に直交し,
かつ互いに直交する2つの平面を設定し,一方の平面内
において上記磁気記録媒体へ光ビームを照射し,上記磁
気記録媒体からの反射光を受光し,光ビームの照射と受
光とを入射角度を変えて繰返し,受光した反射光の反射
光強度と反射光強度が得られたときの入射角とにもとづ
いて,上記一方の平面に平行な方向における磁気記録媒
体の第1の複素誘電率を算出し,上記平面のうち他方の
平面内において上記磁気記録媒体へ光ビームを照射し,
上記磁気記録媒体からの反射光を受光し,光ビームの照
射と受光とを入射角度を変えて繰返し,受光した反射光
の反射光強度と反射光強度が得られたときの入射角とに
もとづいて,上記他方の平面に平行な方向における磁気
記録媒体の第2の複素誘電率を算出することを特徴とす
る。
The method of evaluating the degree of orientation of a magnetic recording medium according to the present invention is orthogonal to the surface of the magnetic recording medium which is the object to be inspected,
In addition, two planes orthogonal to each other are set, the light beam is irradiated to the magnetic recording medium in one plane, the reflected light from the magnetic recording medium is received, and the incident angle between the light beam irradiation and the light reception is set. The first complex permittivity of the magnetic recording medium in the direction parallel to the above-mentioned one plane is calculated based on the reflected light intensity of the received reflected light and the incident angle when the reflected light intensity is obtained by repeatedly changing it. And irradiating the magnetic recording medium with a light beam in the other of the planes,
Based on the reflected light intensity of the received reflected light and the incident angle when the reflected light intensity is obtained, the reflected light from the magnetic recording medium is received, and the light beam irradiation and the light reception are repeated by changing the incident angle. Then, the second complex dielectric constant of the magnetic recording medium in the direction parallel to the other plane is calculated.

【0012】この発明による磁気記録媒体の配向度評価
装置は,被検査物である磁気記録媒体の表面に直交し,
かつ互いに直交する2つの平面を設定し,一方の平面内
において上記磁気記録内に光ビームを照射する第1の光
源,上記設定された平面のうち他方の平面阿智において
上記磁気記録媒体に光ビームを照射する第2の光源,上
記磁気記録媒体からの反射光を受光する受光素子,上記
第1の光源および上記第2の光源から照射する光ビーム
の,上記磁気記録媒体への入射角を変える入射角変更手
段,上記第1の光源からの上記磁気記録媒体への光ビー
ムの照射および上記受光素子による反射光の受光を,上
記入射角変更手段を用いて入射角度を変えることにより
得られた,それぞれの反射光強度と反射光強度が得られ
たときの入射角とにもとづいて上記一方の平面に平行な
方向における磁気記録媒体の第1の複素誘電率を算出す
る第1の算出手段,ならびに上記第2の光源からの上記
磁気記録媒体への光ビームの照射および上記受光素子に
よる反射光の受光を,上記入射角変更手段を用いて入射
角度を変えることにより得られた,それぞれの反射光強
度と反射光強度が得られたときの入射角とにもとづいて
上記他方の平面に平行な方向における磁気記録媒体の第
2の複素誘電率を算出する第2の算出手段を備えている
ことを特徴とする。
The magnetic recording medium orientation evaluation apparatus according to the present invention is orthogonal to the surface of the magnetic recording medium to be inspected,
And a first light source that sets two planes orthogonal to each other and irradiates a light beam into the magnetic recording in one of the planes, and a light beam to the magnetic recording medium in the other plane of the set plane. A second light source for irradiating the magnetic recording medium, a light receiving element for receiving reflected light from the magnetic recording medium, an incident angle of the light beam emitted from the first light source and the second light source to the magnetic recording medium, Incident angle changing means, irradiation of the light beam from the first light source to the magnetic recording medium, and reception of reflected light by the light receiving element are obtained by changing the incident angle using the incident angle changing means. First calculating means for calculating the first complex dielectric constant of the magnetic recording medium in the direction parallel to the one plane based on the respective reflected light intensities and the incident angles at which the reflected light intensities are obtained. Also, the respective reflections obtained by irradiating the magnetic recording medium with the light beam from the second light source and receiving the reflected light by the light receiving element by changing the incident angle using the incident angle changing means. Second calculation means for calculating the second complex dielectric constant of the magnetic recording medium in the direction parallel to the other plane based on the incident angle when the light intensity and the reflected light intensity are obtained. Is characterized by.

【0013】配向の程度は複素誘電率εの変化として現
われることが一般に知られている。したがって複素誘電
率εを指標として,磁気記録媒体の配向の程度を評価す
ることが可能である。
It is generally known that the degree of orientation appears as a change in complex permittivity ε. Therefore, the degree of orientation of the magnetic recording medium can be evaluated using the complex dielectric constant ε as an index.

【0014】配向の程度を調べる磁気記録媒体に光ビー
ムを照射したとき複素屈折率が分かれば,複素誘電率を
検出することができる。複素屈折率は,磁気記録媒体へ
の光ビームの照射および上記受光素子による反射光の受
光を,入射角度を変えることにより得られた,それぞれ
の反射光強度と反射光強度が得られたときの入射角とに
もとづいて算出することができる。したがって,複素誘
電率は,上記反射光強度と,反射光強度が得られたとき
の入射角にもとづいて算出することができる。
The complex permittivity can be detected if the complex refractive index is known when the light beam is applied to the magnetic recording medium for examining the degree of orientation. The complex refractive index is obtained by irradiating the magnetic recording medium with a light beam and receiving the reflected light by the light receiving element by changing the incident angle. It can be calculated based on the incident angle. Therefore, the complex permittivity can be calculated based on the reflected light intensity and the incident angle when the reflected light intensity is obtained.

【0015】図11に示すように磁気記録媒体の配向度が
高い場合は,磁気記録媒体10の長手方向と垂直方向とで
は磁性針MNの方向性が垂直に変わる。したがって,磁
気記録媒体に,その長手方向から光ビームを照射して得
られた複素誘電率の大きさと長手方向と垂直な方向から
光ビームを照射して得られた複素誘電率の差は大きい。
これに対し,図10に示すように磁気記録媒体の配向度が
低い場合は,磁気記録媒体10の長手方向と垂直方向とで
は磁性針MNの方向性はあまり変わらない。したがって
磁気記録媒体に,その長手方向から光ビームを照射して
得られた複素誘電率の大きさと長手方向と垂直方向から
光ビームを照射して得られた複素誘電率の大きさの差は
小さい。
As shown in FIG. 11, when the orientation of the magnetic recording medium is high, the directionality of the magnetic needle MN changes vertically between the longitudinal direction of the magnetic recording medium 10 and the vertical direction. Therefore, there is a large difference between the magnitude of the complex permittivity obtained by irradiating the magnetic recording medium with the light beam in the longitudinal direction and the complex permittivity obtained by irradiating the magnetic beam with the light beam in the direction perpendicular to the longitudinal direction.
On the other hand, when the degree of orientation of the magnetic recording medium is low as shown in FIG. 10, the directionality of the magnetic needle MN does not change much between the longitudinal direction and the vertical direction of the magnetic recording medium 10. Therefore, the difference between the magnitude of the complex permittivity obtained by irradiating the magnetic recording medium with the light beam in the longitudinal direction and the magnitude of the complex permittivity obtained by irradiating the magnetic beam with the light beam in the longitudinal direction is small. .

【0016】以上のことから,磁気記録媒体の配向の程
度は,磁気記録媒体の表面に直交し,かつ互いに直交す
る2つの平面を設定したときに,一方の平面方向から光
ビームを照射して得られた複素誘電率の大きさと他方の
平面方向から光ビームを照射して得られた複素誘電率の
大きさの差から把握することができる。
From the above, the degree of orientation of the magnetic recording medium is determined by irradiating a light beam from one plane direction when two planes which are orthogonal to the surface of the magnetic recording medium and orthogonal to each other are set. This can be understood from the difference between the magnitude of the obtained complex permittivity and the magnitude of the complex permittivity obtained by irradiating the light beam from the other plane direction.

【0017】この発明は,このような磁気記録媒体の配
向の度合と複素誘電率の関係を利用している。
The present invention utilizes the relationship between the degree of orientation of such a magnetic recording medium and the complex dielectric constant.

【0018】この発明によると,上記一方の平面内にお
いて磁気記録媒体に光ビームを照射し,その反射光強度
と入射角とにもとづいて上記第1の複素誘電率を算出
し,上記他方の平面内において磁気記録媒体に光ビーム
を照射し,その反射光強度と入射角とにもとづいて上記
第2の複素誘電率を算出している。算出された第1の複
素誘電率と第2の複素誘電率とから,磁気記録媒体の配
向度が評価される。たとえば,上記第1の複素誘電率と
上記第2の複素誘電率との差が大きいほど磁気記録媒体
の配向度が高いと評価される。
According to the present invention, the magnetic recording medium is irradiated with the light beam in the one plane, the first complex permittivity is calculated based on the reflected light intensity and the incident angle, and the other plane is calculated. The magnetic recording medium is irradiated with a light beam in the inside, and the second complex permittivity is calculated based on the reflected light intensity and the incident angle. The degree of orientation of the magnetic recording medium is evaluated from the calculated first complex permittivity and second calculated permittivity. For example, it is evaluated that the larger the difference between the first complex permittivity and the second complex permittivity, the higher the degree of orientation of the magnetic recording medium.

【0019】この発明によると,光ビームの反射強度と
入射角とにもとづいて磁気記録媒体の表面の複素誘電率
を算出しているので,磁気記録媒体表面部における配向
の程度を評価することができる。このように再生信号に
与える影響の大きい磁気記録媒体の表面部の配向の程度
を評価することができる。
According to the present invention, since the complex permittivity of the surface of the magnetic recording medium is calculated based on the reflection intensity of the light beam and the incident angle, it is possible to evaluate the degree of orientation on the surface portion of the magnetic recording medium. it can. In this way, it is possible to evaluate the degree of orientation of the surface portion of the magnetic recording medium, which has a great influence on the reproduction signal.

【0020】上記一方の平面は,たとえば磁気記録媒体
の長手方向と平行である。
The one plane is, for example, parallel to the longitudinal direction of the magnetic recording medium.

【0021】また,光ビームを利用しているので,磁気
記録媒体を破壊せずに配向の程度を評価することができ
る。さらに,磁気記録媒体の生産工程中においても,配
向の程度を評価することが可能である。
Since the light beam is used, the degree of orientation can be evaluated without destroying the magnetic recording medium. Furthermore, the degree of orientation can be evaluated even during the production process of the magnetic recording medium.

【0022】上記第1の複素誘電率および上記第2の複
素誘電率は最小2乗法を用いて求めることが可能であ
る。
The first complex permittivity and the second complex permittivity can be obtained by using the least square method.

【0023】上記第1の複素誘電率の虚数部の係数と,
上記第2の複素誘電率の虚数部の係数との差が大きいほ
ど,上記磁気記録媒体の配向度が高いと評価することが
好ましい。複素誘電率の実数部の係数は,直線偏光の入
射角に依存しており,入射角の変化に応じて係数が変化
するからである。
The coefficient of the imaginary part of the first complex permittivity,
It is preferable to evaluate that the larger the difference from the coefficient of the imaginary part of the second complex dielectric constant, the higher the degree of orientation of the magnetic recording medium. This is because the coefficient of the real part of the complex permittivity depends on the incident angle of linearly polarized light, and the coefficient changes according to the change of the incident angle.

【0024】複素誘電率の実数部の係数を用いて配向の
程度の評価をするには,規格化する必要があろう。
In order to evaluate the degree of orientation using the coefficient of the real part of the complex permittivity, it will be necessary to standardize.

【0025】磁気記録媒体に照射する光ビームは直線偏
光であることが好ましい。直線偏光を利用することによ
り配向度が高いときには上記第1の複素誘電率を上記第
2の複素誘電率との差が明確に現われるからである。ま
た直線偏光を用いた方が,上記第1の複素誘電率および
上記第2の複素誘電率の算出も比較的容易となる。
The light beam with which the magnetic recording medium is irradiated is preferably linearly polarized light. This is because the difference between the first complex permittivity and the second complex permittivity clearly appears when the degree of orientation is high by using linearly polarized light. Further, the use of linearly polarized light makes it relatively easy to calculate the first complex permittivity and the second complex permittivity.

【0026】磁気記録媒体に直線偏光を照射する場合は
p偏光であることが好ましい。p偏光を用いると反射光
強度に変曲点が生じるため,最小2乗法を用いて上記第
1の複素誘電率および上記第2の複素誘電率を算出して
も,誤差を少なくすることが可能だからである。
When the magnetic recording medium is irradiated with linearly polarized light, it is preferably p-polarized light. Since an inflection point occurs in reflected light intensity when p-polarized light is used, errors can be reduced even if the first complex permittivity and the second complex permittivity are calculated using the least square method. That's why.

【0027】[0027]

【実施例の説明】図1はこの発明による磁気記録媒体配
向度評価装置の構成を示すものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of a magnetic recording medium orientation degree evaluation device according to the present invention.

【0028】図1に示す配向度評価装置は,磁気記録媒
体の配向度に応じて複素屈折率が異なることを利用して
いる。ここで,複素屈折率εは式1によって表わされ
る。
The orientation degree evaluation apparatus shown in FIG. 1 utilizes the fact that the complex refractive index differs depending on the orientation degree of the magnetic recording medium. Here, the complex refractive index ε is expressed by Equation 1.

【0029】[0029]

【数1】 ε=ε0 2 j2 …式1## EQU1 ## ε = ε 0 n 2 j2 Equation 1

【0030】但し,ε0 は真空の誘電率,nj2は光が屈
折する媒質の複素屈折率である。
Here, ε 0 is the dielectric constant of vacuum, and n j2 is the complex refractive index of the medium in which light is refracted.

【0031】図7に,屈折率n1 の媒質1から屈折率n
2 の媒質2に光が入射する場合の,反射,屈折の様子が
示されている。
[0031] Figure 7, the refractive index n of a medium 1 of refractive index n 1
When light enters the second medium 2, reflecting, state of refraction is shown.

【0032】図7において屈折率ベクトル(屈折率に媒
質中の光線の方向性を関連付けたもの)を考えると,媒
質1における屈折率ベクトルnV1のベクトル成分はnV1
=(n1 sinβ1 ,0,n1 cosβ1 )で表わされ
る。
Considering the refractive index vector (refractive index in which the directionality of the light ray in the medium is related) in FIG. 7, the vector component of the refractive index vector n V1 in the medium 1 is n V1.
= Represented by (n 1 sinβ 1, 0, n 1 cosβ 1).

【0033】一方,媒質2において屈折した光の屈折率
ベクトルnV2のベクトル成分のうちx成分は,媒質1に
おける入射光の屈折率ベクトルnV1のx成分(n1 si
nβ1 )と等しいことが知られている。また,屈折率ベ
クトルnV2のz成分(深さ方向の成分)は,光の吸収が
境界の法線に沿った距離zのみによることを考慮する
と,p−jq(pはエネルギー吸収が無い場合の屈折
率,qは消衰係数)と表わすことができる。
On the other hand, the x component of the vector component of the refractive index vector n V2 of the light refracted in the medium 2 is the x component (n 1 si) of the refractive index vector n V1 of the incident light in the medium 1.
It is known to be equal to nβ 1 ). Also, considering that the z component (component in the depth direction) of the refractive index vector n V2 is due to the fact that the absorption of light depends only on the distance z along the normal line of the boundary, p−jq (p is when there is no energy absorption) Can be expressed as the refractive index of, and q is the extinction coefficient.

【0034】これらのことから,媒質2の複素屈折率n
j2は式2から得られる。
From these facts, the complex refractive index n of the medium 2 is
j2 is obtained from Equation 2.

【0035】[0035]

【数2】 nj2 2 =(p−jq)2 +n1 2 sin2 β1 …式2N j2 2 = (p-jq) 2 + n 1 2 sin 2 β 1 Equation 2

【0036】式2を式1に代入すると,式3が得られ
る。
By substituting equation 2 into equation 1, equation 3 is obtained.

【0037】[0037]

【数3】 ε=ε0 {(p2 −q2 +n1 sinβ)−j2(pq)} …式3## EQU3 ## ε = ε 0 {(p 2 −q 2 + n 1 sin β) −j2 (pq)} Equation 3

【0038】式3において,ε0 ,n1 およびβは既知
であるからpおよびqの大きさが分かれば複素誘電率ε
の大きさも分る。
In equation 3, since ε 0 , n 1 and β are known, if the sizes of p and q are known, the complex permittivity ε
Also know the size of.

【0039】図1に示す配向度評価装置においては,磁
気記録媒体への直線偏光の照射およびこの磁気記録媒体
からの反射光の受光を,磁気記録媒体への直線偏光の入
射角度を変えて繰返し,受光した反射光の反射光強度と
反射光強度が得られたときの入射角とから最小2乗法を
用いてpおよびqの大きさを算出し,複素誘電率εの大
きさを算出している。
In the orientation degree evaluation apparatus shown in FIG. 1, irradiation of linearly polarized light on the magnetic recording medium and reception of reflected light from the magnetic recording medium are repeated by changing the incident angle of the linearly polarized light on the magnetic recording medium. , The magnitudes of p and q are calculated from the reflected light intensity of the received reflected light and the incident angle when the reflected light intensity is obtained by using the least square method, and the magnitude of the complex permittivity ε is calculated. There is.

【0040】このように図1に示す配向度評価装置は,
反射光強度を計測し,計測した反射光強度とそのときの
入射角にもとづいて磁気記録媒体10の複素誘電率εを算
出し,かつ複素誘電率εの大きさは,配向の程度に依存
することを利用して,配向度を評価するものである。
As described above, the orientation degree evaluation apparatus shown in FIG.
The reflected light intensity is measured, and the complex dielectric constant ε of the magnetic recording medium 10 is calculated based on the measured reflected light intensity and the incident angle at that time, and the magnitude of the complex dielectric constant ε depends on the degree of orientation. This is utilized to evaluate the degree of orientation.

【0041】図1を参照して,回転自在なステージ15上
に配向の程度を評価する磁気記録媒体10が置かれてい
る。
Referring to FIG. 1, a magnetic recording medium 10 for evaluating the degree of orientation is placed on a rotatable stage 15.

【0042】半導体レーザ13が,支持機構12の一端部に
固定されている。支持機構12は,半導体レーザ13の出射
光Riが磁気記録媒体10に到達する点Oを中心に,矢印
12方向に所定角度回転自在に支持されている。支持機
構12はハンドル(図示略)を回すことにより,ハンドル
の回転量に応じた角度を動く。したがって支持機構12の
角度位置を調整することにより出射光Riの磁気記録媒
体10についての入射角βも変化する。支持機構12のほぼ
中央部には偏光板14が配置されている。偏光板14は,偏
光板14を通過する光がp偏光となるように,偏光板14の
取付角度が定められている。したがって,半導体レーザ
12の出射光は偏光板14を通過することによりp偏光の直
線偏光となり,p偏光の直線偏光が磁気記録媒体10の表
面を照射し,反射することとなる。
The semiconductor laser 13 is fixed to one end of the support mechanism 12. The support mechanism 12 is supported rotatably by a predetermined angle in the direction of arrow A 12 about a point O where the emitted light Ri of the semiconductor laser 13 reaches the magnetic recording medium 10. By rotating a handle (not shown), the support mechanism 12 moves at an angle according to the amount of rotation of the handle. Therefore, by adjusting the angular position of the support mechanism 12, the incident angle β of the emitted light Ri with respect to the magnetic recording medium 10 also changes. A polarizing plate 14 is arranged substantially in the center of the support mechanism 12. The mounting angle of the polarizing plate 14 is determined so that the light passing through the polarizing plate 14 becomes p-polarized light. Therefore, the semiconductor laser
The outgoing light of 12 becomes p-polarized linearly polarized light by passing through the polarizing plate 14, and the p-polarized linearly polarized light irradiates the surface of the magnetic recording medium 10 and is reflected.

【0043】フォトダイオード22は,支持機構21の一端
部に固定されている。支持機構21も点Oを中心に矢印A
21方向に所定角度回転自在に支持されている。支持機構
21もハンドル(図示略)を回すことにより,ハンドルの
回転量に応じた角度を動く。出射光Riの入射角βが変
わると反射光Rrの反射角も変わるが,反射角に応じて
支持機構21の角度を変えることができ,反射光Rrをフ
ォトダイオード22で受光することができる。
The photodiode 22 is fixed to one end of the support mechanism 21. The support mechanism 21 also has an arrow A around the point O.
It is supported so that it can rotate in a predetermined angle in 21 directions. Support mechanism
21 also rotates a handle (not shown) to move an angle according to the amount of rotation of the handle. When the incident angle β of the emitted light Ri changes, the reflection angle of the reflected light Rr also changes, but the angle of the support mechanism 21 can be changed according to the reflection angle, and the reflected light Rr can be received by the photodiode 22.

【0044】半導体レーザ13は,レーザ・コントローラ
11によって制御される。レーザ・コントローラ11の制御
のもとに半導体レーザ13から出射光Riが出射され偏光
板14を通過してp偏光とされる。p偏光とされた出射光
は,磁気記録媒体10の点Oにおいて反射する。反射光R
rはフォトダイオード22において受光される。
The semiconductor laser 13 is a laser controller
Controlled by 11. Under the control of the laser controller 11, the emitted light Ri is emitted from the semiconductor laser 13 and passes through the polarizing plate 14 to be p-polarized. The p-polarized outgoing light is reflected at the point O of the magnetic recording medium 10. Reflected light R
The light r is received by the photodiode 22.

【0045】反射光Rrの光強度に応じた電流Iがフォ
トダイオード22から出力され増幅回路23に与えられて増
幅される。増幅回路23において増幅された電流は電圧変
換回路24に与えられ,入力する電流値に応じた電圧値に
変換される。電圧変換回路24において変換された電圧値
(反射光強度)を表わす信号はコンピュータ装置25に与
えられる。
A current I corresponding to the light intensity of the reflected light Rr is output from the photodiode 22 and given to the amplifier circuit 23 to be amplified. The current amplified in the amplifier circuit 23 is given to the voltage conversion circuit 24 and converted into a voltage value according to the input current value. A signal representing the voltage value (reflected light intensity) converted by the voltage conversion circuit 24 is given to the computer device 25.

【0046】このような電圧値の計測処理が,磁気記録
媒体10の表面に垂直であって磁気記録媒体10の長手方向
と出射光Riが同一平面内にある場合と,ステージ15を
90度回転させて磁気記録媒体10の長手方向と垂直な方向
と出射光Riが同一平面内にある場合とのそれぞれにお
いて,入射光の角度βを変えて繰返される。
When such a voltage value measurement process is perpendicular to the surface of the magnetic recording medium 10 and the longitudinal direction of the magnetic recording medium 10 and the emitted light Ri are in the same plane, the stage 15 is
It is repeated by changing the angle β of the incident light in the direction perpendicular to the longitudinal direction of the magnetic recording medium 10 by 90 ° rotation and in the case where the emitted light Ri is in the same plane.

【0047】入射角度βを変えて得られた電圧値と入射
角度βとの関係が,図2に示されている。図2には,磁
気記録媒体10の長手方向と出射光Riとが同一平面内に
ある場合(長手方向のグラフ)と,磁気記録媒体10の長
手方向と垂直方向と出射光Riとが同一平面内にある場
合(垂直方向のグラフ)とがそれぞれ示されている。
The relationship between the voltage value obtained by changing the incident angle β and the incident angle β is shown in FIG. In FIG. 2, when the longitudinal direction of the magnetic recording medium 10 and the emitted light Ri are in the same plane (longitudinal direction graph), the longitudinal direction of the magnetic recording medium 10 and the perpendicular direction and the emitted light Ri are in the same plane. In the vertical direction (vertical graph) and.

【0048】図2に示す入射角度βと電圧値との関係を
表わすグラフは,コンピュータ装置25によって表示が制
御されるモニタ表示装置26の表示画面上に表示されると
ともに,必要に応じてプロッタ装置27により印刷され
る。
The graph showing the relationship between the incident angle β and the voltage value shown in FIG. 2 is displayed on the display screen of the monitor display device 26 whose display is controlled by the computer device 25 and, if necessary, the plotter device. Printed by 27.

【0049】図3は,図1に示す配向度評価装置におけ
る配向度評価の処理手順を示すフローチャートである。
FIG. 3 is a flow chart showing the processing procedure of the orientation degree evaluation in the orientation degree evaluation apparatus shown in FIG.

【0050】図3を参照して,長手方向と出射光Riと
が同一平面内になるように磁気記録媒体10がステージ15
上に置かれる。この状態において,入射角度βを変化さ
せながら反射光強度が計測される(ステップ31)。入射
角度βと反射光強度との関係が得られると,後述するよ
うに入射角度βと反射光強度とから最小2乗法を用いて
第1の複素誘電率ε0 の虚数部εj0が算出される(ステ
ップ32)。
Referring to FIG. 3, the magnetic recording medium 10 is mounted on the stage 15 so that the longitudinal direction and the emitted light Ri are in the same plane.
Placed on top. In this state, the reflected light intensity is measured while changing the incident angle β (step 31). When the relationship between the incident angle β and the reflected light intensity is obtained, the imaginary part ε j0 of the first complex permittivity ε 0 is calculated from the incident angle β and the reflected light intensity using the least square method as described later. (Step 32).

【0051】続いて,長手方向に垂直な方向が出射光R
iと同一平面内になるように,磁気記録媒体10が置かれ
たステージ15が90度回転させられる。この状態におい
て,入射角度βを変化させながら反射光強度が計測され
る(ステップ33)。入射角度βと反射光強度との関係が
得られると,最小2乗法を用いて入射角度βと反射光強
度とから第2の複素誘電率εs の虚数部εjsが算出され
る(ステップ34)。
Then, the emitted light R is emitted in the direction perpendicular to the longitudinal direction.
The stage 15 on which the magnetic recording medium 10 is placed is rotated 90 degrees so that it is in the same plane as i. In this state, the reflected light intensity is measured while changing the incident angle β (step 33). When the relationship between the incident angle β and the reflected light intensity is obtained, the imaginary part ε js of the second complex permittivity ε s is calculated from the incident angle β and the reflected light intensity using the least square method (step 34). ).

【0052】第1の複素誘電率ε0 の虚数部εj0と第2
の複素誘電率εs の虚数部εjsとの差が算出され,この
差の大きさにもとづいて磁気記録媒体10の配向度が評価
される(ステップ35)。差が大きいときには磁気記録媒
体の長手方向と長手方向に垂直な方向とでは誘電率の異
方性が顕著であり,図11に示すように配向度は高いと評
価される。これに対し,差が小さいときには磁気記録媒
体の長手方向と長手方向に垂直な方向とでは誘電率の異
方性が小さく,図10に示すように配向度は低いと評価さ
れる。この評価は,評価装置の操作員が,算出された差
を見て評価してもよいし,経験的に得られる具体的なし
きい値を用いてコンピュータ装置25によって評価するよ
うにしてもよい。
The imaginary part ε j0 of the first complex dielectric constant ε 0 and the second
The difference between the complex permittivity ε s and the imaginary part ε js is calculated, and the degree of orientation of the magnetic recording medium 10 is evaluated based on the magnitude of this difference (step 35). When the difference is large, the anisotropy of the dielectric constant is remarkable between the longitudinal direction of the magnetic recording medium and the direction perpendicular to the longitudinal direction, and it is evaluated that the orientation degree is high as shown in FIG. On the other hand, when the difference is small, the dielectric anisotropy is small in the longitudinal direction of the magnetic recording medium and in the direction perpendicular to the longitudinal direction, and it is evaluated that the degree of orientation is low as shown in FIG. This evaluation may be performed by an operator of the evaluation device by looking at the calculated difference, or may be evaluated by the computer device 25 using a concrete threshold value obtained empirically.

【0053】図4は,反射光強度計測処理の処理手順を
示すフローチャートであり,図3のステップ31およびス
テップ33の処理に対応するものである。
FIG. 4 is a flow chart showing the processing procedure of the reflected light intensity measurement processing, which corresponds to the processing of step 31 and step 33 of FIG.

【0054】まず,通過する光がp偏光の直線偏光とな
るように支持機構12に設けられている偏光板14がセット
される(ステップ41)。つづいて,入射角度βが9度と
なるように支持機構12が調整され,かつ入射角度βが9
度とセットされたときの反射光を受光することができる
ように支持機構21が調整される(ステップ42)。
First, the polarizing plate 14 provided on the support mechanism 12 is set so that the light passing therethrough becomes a p-polarized linearly polarized light (step 41). Subsequently, the support mechanism 12 is adjusted so that the incident angle β is 9 degrees, and the incident angle β is 9 °.
The support mechanism 21 is adjusted so as to be able to receive the reflected light when it is set (step 42).

【0055】支持機構12および21が調整されると,レー
ザ・コントローラ11の制御のもとに半導体レーザ13が駆
動され,出射光Riが半導体レーザ13から出射される。
出射光Riは偏光板14においてp偏光の直線偏光とな
り,磁気記録媒体10に入射する。出射光Riは磁気記録
媒体10において反射し,反射光Rrがフォトダイオード
22において受光される。これにより反射光強度が測定さ
れる。
When the support mechanisms 12 and 21 are adjusted, the semiconductor laser 13 is driven under the control of the laser controller 11, and the emitted light Ri is emitted from the semiconductor laser 13.
The emitted light Ri becomes p-polarized linearly polarized light on the polarizing plate 14 and enters the magnetic recording medium 10. The emitted light Ri is reflected by the magnetic recording medium 10, and the reflected light Rr is reflected by the photodiode.
Received at 22. Thereby, the reflected light intensity is measured.

【0056】入射角度βが81度となるまで,入射角度β
が4.5 度ずつ増加されて反射光強度の測定が繰返される
(ステップ44でNO,ステップ45)。入射角度βが変化す
るのに対応して反射光Rrを受光するように支持機構21
を動かすことは言うまでもない。入射角度βが81°とな
ると(ステップ44でYES ),反射光強度計測処理は終了
する。
Until the incident angle β reaches 81 degrees, the incident angle β
Is increased by 4.5 degrees and the measurement of the reflected light intensity is repeated (NO in step 44, step 45). The support mechanism 21 receives the reflected light Rr as the incident angle β changes.
Needless to say to move. When the incident angle β becomes 81 ° (YES in step 44), the reflected light intensity measurement process ends.

【0057】このような反射光強度計測処理は,長手方
向と出射光Riとが同一平面内に置かれた場合と長手方
向に垂直な方向と出射光Riとが同一平面内に置かれた
場合,それぞれについて行なわれる。
Such reflected light intensity measurement processing is performed when the longitudinal direction and the outgoing light Ri are placed on the same plane, and when the direction perpendicular to the longitudinal direction and the outgoing light Ri are placed on the same plane. , Performed for each.

【0058】図5は,複素誘電率εを虚数部εj0,εjs
の算出処理の処理手順を示すフローチャートであり,図
3のステップ32およびステップ34の処理に対応するもの
である。
FIG. 5 shows the complex permittivity ε with the imaginary parts ε j0 and ε js.
4 is a flow chart showing the processing procedure of the calculation processing of FIG. 3 and corresponds to the processing of step 32 and step 34 of FIG.

【0059】反射光強度計測処理において得られた,複
数の入射角度βと反射光強度との関係から最小2乗法を
用いて,磁気記録媒体10の屈折率ベクトルのz成分p−
jqを表わす係数pおよびqがそれぞれ算出される(ス
テップ51)。式3を参照すると複素誘電率の虚数部の係
数は2pqから得ることができる。これにより,係数p
およびqが算出されると,第1の複素誘電率の虚数部ε
j0および第2の複素誘電率の虚数部εjsがそれぞれ算出
される(ステップ52)。
From the relationship between the plurality of incident angles β and the reflected light intensities obtained in the reflected light intensity measurement processing, the z component p− of the refractive index vector of the magnetic recording medium 10 is used by the least square method.
Coefficients p and q representing jq are calculated (step 51). Referring to Equation 3, the coefficient of the imaginary part of the complex permittivity can be obtained from 2pq. As a result, the coefficient p
And q are calculated, the imaginary part ε of the first complex permittivity
j0 and the imaginary part ε js of the second complex permittivity are calculated (step 52).

【0060】図6は最小2乗法を用いて係数pおよびq
を算出する処理手順を示すフローチャートであり,図5
のステップ51の処理に対応するものである。
FIG. 6 shows the coefficients p and q using the method of least squares.
6 is a flowchart showing a processing procedure for calculating
This corresponds to the process of step 51 of.

【0061】まず,入射角度βを変えて複数回反射光強
度が測定される(ステップ61)。入射角度βと実測によ
り得られた反射光強度とから,入射角度βと反射光強度
との関係を表わす特性曲線F( β) が算出される(ステ
ップ62)。
First, the reflected light intensity is measured a plurality of times by changing the incident angle β (step 61). A characteristic curve F (β) representing the relationship between the incident angle β and the reflected light intensity is calculated from the incident angle β and the reflected light intensity obtained by actual measurement (step 62).

【0062】係数pおよびqならびに入射角度βが適当
な初期値に設定される(ステップ63)。設定されたp,
qおよびβが式4に代入され,式4の計算値Daが求め
られる(ステップ64)。
The coefficients p and q and the incident angle β are set to appropriate initial values (step 63). Set p,
Substituting q and β into the equation 4, the calculated value Da of the equation 4 is obtained (step 64).

【0063】[0063]

【数4】 [Equation 4]

【0064】但し,式4中におけるRp (p,q,β)
は式5から得ることができ,式5中におけるRs (p,
q,β)は式6から得ることができる。
However, R p (p, q, β) in the equation 4
Can be obtained from Equation 5, and R s (p,
q, β) can be obtained from Equation 6.

【0065】[0065]

【数5】 (Equation 5)

【0066】[0066]

【数6】 (Equation 6)

【0067】式4の計算値Daが最小の値となるまで,
p,qおよびβの値が変更され,式4の計算が繰返され
る(ステップ65でNO,ステップ66,64)。式6の計算値
Daが最小となるときのpおよびqの値が最適な値とし
て決定される(ステップ67)。
Until the calculated value Da of the equation 4 becomes the minimum value,
The values of p, q, and β are changed, and the calculation of Expression 4 is repeated (NO in step 65, steps 66 and 64). The values of p and q when the calculated value Da of Expression 6 becomes the minimum are determined as the optimum values (step 67).

【0068】このようにして決定されたpおよびqの値
を用いて,第1の複素誘電率の虚数部εj0および第2の
複素誘電率の虚数部εjsが決定され,これらの虚数部ε
j0とεjsとの差から磁気記録媒体の配向度が決定される
のは上述の通りである。
Using the values of p and q thus determined, the imaginary part ε j0 of the first complex permittivity and the imaginary part ε js of the second complex permittivity are determined. ε
As described above, the degree of orientation of the magnetic recording medium is determined from the difference between j0 and ε js .

【0069】図3から図6に示す処理において,計算処
理がコンピュータ装置25によって行なわれる。
In the processing shown in FIGS. 3 to 6, the calculation processing is performed by the computer device 25.

【0070】磁気記録媒体10の表面部分が粗いと反射率
が減少する。しかしながら,磁気テープ,磁気ディスク
などはほぼ平面とみることができ表面の粗さにもとづく
反射率の減少は無視できほとんど問題が生じない。
If the surface of the magnetic recording medium 10 is rough, the reflectance will decrease. However, magnetic tapes, magnetic disks, etc. can be regarded as almost flat, and the decrease in reflectance due to surface roughness can be neglected, causing almost no problems.

【0071】また上記においてはp偏光を磁気記録媒体
10に照射しているが,s偏光を磁気記録媒体10に照射す
るようにしてもよい。さらに,上記においては複素誘電
率の虚数部を比較して,配向度を評価しているが,実数
部を比較して配向度を評価することも可能である。但
し,式3から分るように実数部は入射角βに依存してい
るので,実数部を用いて配向度を評価した場合には,入
射角βを考慮する必要があろう。
In the above, the p-polarized light is used for the magnetic recording medium.
Although 10 is irradiated, the s-polarized light may be irradiated to the magnetic recording medium 10. Furthermore, in the above, the degree of orientation is evaluated by comparing the imaginary parts of the complex permittivity, but it is also possible to evaluate the degree of orientation by comparing the real parts. However, as can be seen from Equation 3, the real part depends on the incident angle β, and therefore when the degree of orientation is evaluated using the real part, the incident angle β should be taken into consideration.

【0072】さらに上記においてはp偏光の直線偏光を
磁気記録媒体10に照射しているが,直線偏光でなくラン
ダム偏光を磁気記録媒体10に照射し,第1の誘電率およ
び第2の誘電率を算出し,配向度を評価するようにして
もよい。ランダム偏光を用いた場合には,ランダム偏光
をp偏光成分とs偏光成分とに分け,式5および式6に
適用して第1の複素誘電率および第2の複素誘電率を算
出することとなる。
Further, in the above description, the p-polarized linearly polarized light is applied to the magnetic recording medium 10. However, random polarized light, not linearly polarized light, is applied to the magnetic recording medium 10, and the first dielectric constant and the second dielectric constant are applied. May be calculated and the degree of orientation may be evaluated. When random polarization is used, the random polarization is divided into a p-polarization component and an s-polarization component, and the first complex permittivity and the second complex permittivity are calculated by applying the formulas 5 and 6. Become.

【0073】また,磁気記録媒体10は,テープ状のもの
だけでなくフロッピィ・ディスクのような円状のもので
あってもよい。この場合磁気記録媒体の表面に直交し,
かつ中心を通り互いに直交する2つの平面を設定し,こ
れら2つの平面内において,磁気記録媒体に光ビームを
照射することとなろう。
Further, the magnetic recording medium 10 may be not only a tape-shaped one but also a circular one such as a floppy disk. In this case, perpendicular to the surface of the magnetic recording medium,
In addition, two planes passing through the center and orthogonal to each other are set, and the light beam will be irradiated onto the magnetic recording medium in these two planes.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁気記録媒体配向度評価装置の構成を示してい
る。
FIG. 1 shows a configuration of a magnetic recording medium orientation degree evaluation apparatus.

【図2】入射角と反射光強度との関係を示している。FIG. 2 shows the relationship between incident angle and reflected light intensity.

【図3】磁気記録媒体の配向度評価の処理手順を示して
いる。
FIG. 3 shows a processing procedure for evaluating the degree of orientation of a magnetic recording medium.

【図4】反射光強度計測処理の処理手順を示している。FIG. 4 shows a processing procedure of reflected light intensity measurement processing.

【図5】複素誘電率の虚数部の算出処理を示している。FIG. 5 shows a process of calculating an imaginary part of a complex permittivity.

【図6】最小2乗法による屈折率ベクトルのz成分の係
数p,qを決定する処理手順を示している。
FIG. 6 shows a processing procedure for determining coefficients p and q of az component of a refractive index vector by the least square method.

【図7】媒質1から媒質2に光が入射するときの屈折と
反射の関係を示している。
FIG. 7 shows a relationship between refraction and reflection when light is incident on the medium 2 from the medium 1.

【図8】(A) 〜(C) は分極の様子を示している。8 (A) to (C) show polarization states.

【図9】移動する電子のモデルを示している。FIG. 9 shows a model of moving electrons.

【図10】配向度の低い磁気記録媒体の様子を表わして
いる。
FIG. 10 shows a state of a magnetic recording medium having a low degree of orientation.

【図11】配向度の高い磁気記録媒体の様子を表わして
いる。
FIG. 11 shows a state of a magnetic recording medium having a high degree of orientation.

【符号の説明】[Explanation of symbols]

10 磁気記録媒体 12,21 支持機構 13 半導体レーザ 14 偏光板 15 ステージ 22 フォトダイオード 25 コンピュータ装置 10 Magnetic recording medium 12, 21 Support mechanism 13 Semiconductor laser 14 Polarizing plate 15 Stage 22 Photodiode 25 Computer equipment

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 被検査物である磁気記録媒体の表面に直
交し,かつ互いに直交する2つの平面を設定し,一方の
平面内において上記磁気記録媒体へ光ビームを照射し,
上記磁気記録媒体からの反射光を受光し,光ビームの照
射と受光とを入射角度を変えて繰返し,受光した反射光
の反射光強度と反射光強度が得られたときの入射角とに
もとづいて,上記一方の平面に平行な方向における磁気
記録媒体の第1の複素誘電率を算出し,上記平面のうち
他方の平面内において上記磁気記録媒体へ光ビームを照
射し,上記磁気記録媒体からの反射光を受光し,光ビー
ムの照射と受光とを入射角度を変えて繰返し,受光した
反射光の反射光強度と反射光強度が得られたときの入射
角とにもとづいて,上記他方の平面に平行な方向におけ
る磁気記録媒体の第2の複素誘電率を算出する,磁気記
録媒体の配向度評価方法。
1. A magnetic recording medium that is an object to be inspected is set with two planes orthogonal to each other and orthogonal to each other, and a light beam is irradiated to the magnetic recording medium in one plane.
Based on the reflected light intensity of the received reflected light and the incident angle when the reflected light intensity is obtained, the reflected light from the magnetic recording medium is received, and the light beam irradiation and the light reception are repeated by changing the incident angle. Then, the first complex permittivity of the magnetic recording medium in the direction parallel to the one plane is calculated, and the optical beam is irradiated to the magnetic recording medium in the other plane of the planes. The reflected light is received, and the light beam irradiation and the light reception are repeated by changing the incident angle. Based on the reflected light intensity of the received reflected light and the incident angle when the reflected light intensity is obtained, A method for evaluating the degree of orientation of a magnetic recording medium, which comprises calculating a second complex dielectric constant of the magnetic recording medium in a direction parallel to a plane.
【請求項2】 上記第1の複素誘電率と上記第2の複素
誘電率との差が大きいほど,上記磁気記録媒体の配向度
が高いと評価する,請求項1に記載の磁気記録媒体の配
向度評価方法。
2. The magnetic recording medium according to claim 1, wherein the larger the difference between the first complex permittivity and the second complex permittivity, the higher the degree of orientation of the magnetic recording medium. Orientation evaluation method.
【請求項3】 上記一方の平面が,上記磁気記録媒体の
長手方向に平行である,請求項1に記載の磁気記録媒体
の配向度評価方法。
3. The method for evaluating the degree of orientation of a magnetic recording medium according to claim 1, wherein the one plane is parallel to the longitudinal direction of the magnetic recording medium.
【請求項4】 上記光ビームが直線偏光である,請求項
1に記載の磁気記録媒体の配向度評価方法。
4. The method for evaluating the degree of orientation of a magnetic recording medium according to claim 1, wherein the light beam is linearly polarized light.
【請求項5】 最小2乗法を用いて,上記第1の複素誘
電率および上記第2の複素誘電率を算出するものであ
る,請求項1に記載の磁気記録媒体の配向度評価方法。
5. The method for evaluating the degree of orientation of a magnetic recording medium according to claim 1, wherein the first complex permittivity and the second complex permittivity are calculated by using the least square method.
【請求項6】 上記第1の複素誘電率の虚数部の係数と
上記第2の複素誘電率の虚数部の係数との差が大きいほ
ど,上記磁気記録媒体の配向度が高いと評価する,請求
項2に記載の磁気記録媒体の配向度評価方法。
6. The larger the difference between the coefficient of the imaginary part of the first complex permittivity and the coefficient of the imaginary part of the second complex permittivity, the higher the degree of orientation of the magnetic recording medium is evaluated. The method for evaluating the degree of orientation of a magnetic recording medium according to claim 2.
【請求項7】 上記直線偏光がp偏光である,請求項4
に記載の磁気記録媒体の配向度評価方法。
7. The linearly polarized light is p-polarized light.
7. A method for evaluating the degree of orientation of a magnetic recording medium according to.
【請求項8】 被検査物である磁気記録媒体の表面に直
交し,かつ互いに直交する2つの平面を設定し,一方の
平面内において上記磁気記録媒体に光ビームを照射する
第1の光源,上記設定された平面のうち他方の平面内に
おいて上記磁気記録媒体に光ビームを照射する第2の光
源,上記磁気記録媒体からの反射光を受光する受光素
子,上記第1の光源および上記第2の光源から照射する
光ビームの,上記磁気記録媒体への入射角を変える入射
角変更手段,上記第1の光源からの上記磁気記録媒体へ
の光ビームの照射および上記受光素子による反射光の受
光を,上記入射角変更手段を用いて入射角度を変えるこ
とにより得られた,それぞれの反射光強度と反射光強度
が得られたときの入射角とにもとづいて上記一方の平面
に平行な方向における磁気記録媒体の第1の複素誘電率
を算出する第1の算出手段,ならびに上記第2の光源か
らの上記磁気記録媒体への光ビームの照射および上記受
光素子による反射光の受光を,上記入射角変更手段を用
いて入射角度を変えることにより得られた,それぞれの
反射光強度と反射光強度が得られたときの入射角とにも
とづいて上記他方の平面に平行な方向における磁気記録
媒体の第2の複素誘電率を算出する第2の算出手段,を
備えた磁気記録媒体の配向度評価装置。
8. A first light source which sets two planes orthogonal to the surface of a magnetic recording medium to be inspected and orthogonal to each other, and irradiates the magnetic recording medium with a light beam in one plane, A second light source that irradiates the magnetic recording medium with a light beam in the other plane of the set planes, a light receiving element that receives reflected light from the magnetic recording medium, the first light source, and the second Angle changing means for changing the angle of incidence of the light beam emitted from the light source on the magnetic recording medium, the irradiation of the light beam on the magnetic recording medium from the first light source, and the reception of the reflected light by the light receiving element. In the direction parallel to the one plane based on the respective reflected light intensities and the incident angles at which the reflected light intensities are obtained, which are obtained by changing the incident angle using the incident angle changing means. The first calculation means for calculating the first complex permittivity of the magnetic recording medium, and the irradiation of the light beam from the second light source to the magnetic recording medium and the reception of the reflected light by the light receiving element, are made incident. Of the magnetic recording medium in the direction parallel to the other plane based on the respective reflected light intensities and the incident angles at which the reflected light intensities are obtained, which are obtained by changing the incident angle using the angle changing means. An orientation degree evaluation apparatus for a magnetic recording medium, comprising: a second calculation means for calculating a second complex dielectric constant.
【請求項9】 上記第1の複素誘電率と上記第2の複素
誘電率との差が大きいほど,上記磁気記録媒体の配向度
が高いと評価する配向度評価手段,をさらに備えた請求
項8に記載の磁気記録媒体の配向度評価装置。
9. An orientation degree evaluation means for evaluating that the greater the difference between the first complex permittivity and the second complex permittivity, the higher the degree of orientation of the magnetic recording medium. 8. A magnetic recording medium orientation degree evaluation apparatus according to item 8.
【請求項10】 上記一方の平面が,上記磁気記録媒体
の長手方向に平行である,請求項8に記載の磁気記録媒
体の配向度評価装置。
10. The orientation evaluation apparatus for a magnetic recording medium according to claim 8, wherein the one plane is parallel to a longitudinal direction of the magnetic recording medium.
【請求項11】 上記第1の光源および上記第2の光源
が,直線偏光を出射するものである,請求項8に記載の
磁気記録媒体の配向度評価装置。
11. The orientation evaluation apparatus for a magnetic recording medium according to claim 8, wherein the first light source and the second light source emit linearly polarized light.
【請求項12】 上記第1の算出手段および上記第2の
算出手段が,最小2乗法を用いて,上記第1の複素誘電
率および上記第2の複素誘電率を算出するものである,
請求項8に記載の磁気記録媒体の配向度評価装置。
12. The first calculating means and the second calculating means calculate the first complex permittivity and the second complex permittivity using a least square method.
The orientation evaluation apparatus for a magnetic recording medium according to claim 8.
【請求項13】 上記配向度評価手段が,上記第1の複
素誘電率の虚数部の係数と上記第2の複素誘電率の虚数
部の係数との差が大きいほど,上記磁気記録媒体の配向
度が高いと評価するものである,請求項9に記載の磁気
記録媒体の配向度評価装置。
13. The orientation of the magnetic recording medium increases as the difference between the coefficient of the imaginary part of the first complex permittivity and the coefficient of the imaginary part of the second complex permittivity increases. 10. The orientation evaluation apparatus for a magnetic recording medium according to claim 9, which is evaluated as having a high degree of orientation.
【請求項14】 上記第1の光源および上記第2の光源
から照射する上記直線偏光がp偏光である,請求項11に
記載の磁気記録媒体の配向度評価装置。
14. The orientation evaluation apparatus for a magnetic recording medium according to claim 11, wherein the linearly polarized light emitted from the first light source and the second light source is p-polarized light.
JP33742894A 1994-12-28 1994-12-28 Method and apparatus for evaluating orientation of magnetic recording medium Pending JPH08184559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33742894A JPH08184559A (en) 1994-12-28 1994-12-28 Method and apparatus for evaluating orientation of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33742894A JPH08184559A (en) 1994-12-28 1994-12-28 Method and apparatus for evaluating orientation of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH08184559A true JPH08184559A (en) 1996-07-16

Family

ID=18308542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33742894A Pending JPH08184559A (en) 1994-12-28 1994-12-28 Method and apparatus for evaluating orientation of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH08184559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030204A (en) * 2004-07-15 2006-02-02 Byk Gardner Gmbh Goniometric inspection device of optical surface characteristics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030204A (en) * 2004-07-15 2006-02-02 Byk Gardner Gmbh Goniometric inspection device of optical surface characteristics

Similar Documents

Publication Publication Date Title
EP1006348A1 (en) Measurement system and method for measuring critical dimensions using ellipsometry
US5929994A (en) Intergrating sphere ellipsometer
US20140133284A1 (en) Magneto-optical detection of a field produced by a sub-resolution magnetic structure
US9548083B2 (en) Read sensor testing using thermal magnetic fluctuation noise spectra
CA2004377A1 (en) Optical output controlling method and apparatus therefor
US7265845B2 (en) Surface corrugation enhanced magneto-optical indicator film
JPH01305340A (en) Method and apparatus for discriminating front and back
US8179624B2 (en) Method and apparatus for evaluating a magnetic recording medium
CN109141259A (en) A kind of optical constant of thin absorbing film and the measuring device and method of thickness
US7166997B2 (en) Complex transverse AC magneto-optic susceptometer for determination of volume and anisotropy field distribution in recording media
US10234347B1 (en) Rapid and wireless screening and health monitoring of materials and structures
CN106501279A (en) A kind of low sub-surface damage detection method of firmly crisp optical material
US4816761A (en) Apparatus for measuring the hysteresis loop of hard magnetic films on large magnetic recording disk
US10134446B1 (en) Heat-assisted rotating disk magnetometer for ultra-high anisotropy magnetic measurements
Fu et al. Dielectric tensor characterization and evaluation of several magneto‐optical recording media
JPH08184559A (en) Method and apparatus for evaluating orientation of magnetic recording medium
Sinclair et al. Cold atoms in videotape micro-traps
JP2943995B2 (en) Adjustment mechanism of coercive force measurement optical system
US5838444A (en) Magneto-optic characteristic measuring apparatus
US20210090857A1 (en) Systems and methods utilizing long wavelength electromagnetic radiation for feature definition
JP7116966B2 (en) fast response element
US5694384A (en) Method and system for measuring Kerr rotation of magneto-optical medium
CN108387855A (en) A kind of dual-beam magnetic light spectrometer
CN108680876A (en) A kind of secondary Kerr magnetooptical effect measurement method of nanoscale
JPH01155283A (en) Evaluating apparatus of magnetic disk