JPH08182791A - Air inflow amount adjusting mechanism at air intake port of wind tunnel apparatus - Google Patents

Air inflow amount adjusting mechanism at air intake port of wind tunnel apparatus

Info

Publication number
JPH08182791A
JPH08182791A JP33852294A JP33852294A JPH08182791A JP H08182791 A JPH08182791 A JP H08182791A JP 33852294 A JP33852294 A JP 33852294A JP 33852294 A JP33852294 A JP 33852294A JP H08182791 A JPH08182791 A JP H08182791A
Authority
JP
Japan
Prior art keywords
air
air intake
intake
air inflow
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33852294A
Other languages
Japanese (ja)
Inventor
Naoyuki Matsumoto
尚之 松本
Koji Matsunaga
康二 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP33852294A priority Critical patent/JPH08182791A/en
Publication of JPH08182791A publication Critical patent/JPH08182791A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To uniformly and stably send air to an acting space by making the inflow amt. of air constant regardless of the presence of air to an air intake port. CONSTITUTION: An air inflow amt. adjusting mechanism is set to the air intake port formed to the outer peripheral wall of a free falling simulated experience apparatus. In this air inflow amt. adjusting mechanism, louver members 81 having a wing-shaped cross section are arranged so that each of them is supported in a shakable and revolvable manner at the position eccentric from its center of lift and energized to be shaken in the direction reverse to the shaking direction due to lift and opening the air intake port by a spring 85 and shaken in the direction reducing the opening area of the air intake port when air inflow speed is high corresponding to the change of air inflow speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、送風装置によって取入
口から吸入した空気を所定の風速で作用空間に供給する
風洞装置の空気取入口における空気流入量調整機構に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air inflow adjusting mechanism at an air intake of a wind tunnel device for supplying air sucked from an intake by a blower to a working space at a predetermined wind speed.

【0002】[0002]

【従来の技術】従来より、送風装置によって取入口から
吸入した空気を所定の風速で作用空間に供給するように
構成された風洞装置が空気力学的な各種測定や試験に用
いられているが、近時、このような風洞装置を落下傘に
よる自由降下の模擬体験に利用することが行われてい
る。
2. Description of the Related Art Conventionally, a wind tunnel device configured to supply air sucked from an intake by a blower to a working space at a predetermined wind speed has been used for various aerodynamic measurements and tests. Recently, such a wind tunnel device has been used for a simulated experience of free descent by a parachute.

【0003】このような自由降下模擬体験装置は、送風
装置からの送風を作用空間(浮遊空間)の下方から上方
に通過するように導いて構成され、その風速を自由降下
時における人間と空気との相対速度と略等しくして練習
者がこの風による浮力によって浮遊空間内に浮遊できる
ようにしたものである。これにより、実際の降下状態を
模擬的に長時間体験して練習することができ、従来地上
ではできなかった技術の習得が可能となった。
Such a free-fall simulation experience device is configured to guide the air blown from the air blower so as to pass from the lower part of the working space (floating space) to the upper part thereof, and the wind speed of the airflow between humans and air during free fall. The relative velocity is set to be approximately equal to that of the practitioner so that the practitioner can float in the floating space by the buoyancy of the wind. As a result, it was possible to experience and practice the actual descent condition for a long time, and it became possible to acquire techniques that were not possible on the ground.

【0004】このような風洞装置として、例えば、実願
平3−116883号公報に示されるようなものがあ
り、これは、図10にその概念図を示すように、送風循
環経路80中に設けられたブロア81(送風装置)によ
って当該送風循環経路80内を気流が循環し、その上昇
送風部位に遊泳エリア83(浮遊空間)が設けられて構
成される。図示構成のものは、この遊泳エリア83の斜
め下方と上流側の循環経路80とがバイパス風路84に
よって結ばれると共に、このバイパス風路84に小型ブ
ロア85が設けられており、小型ブロア85の駆動によ
ってバイパス風路84を介した風が斜め下方から遊泳エ
リア83内に流入して横風状態を生じさせることができ
るようになっているものである。
An example of such a wind tunnel device is shown in Japanese Patent Application No. 3-116883, which is provided in the blast circulation path 80 as shown in the conceptual diagram of FIG. An airflow circulates in the air circulation path 80 by the blower 81 (air blower), and a swimming area 83 (floating space) is provided at the rising air blowing portion. In the configuration shown in the figure, the bypass air passage 84 connects the diagonally lower side of the swimming area 83 and the circulation passage 80 on the upstream side, and the bypass air passage 84 is provided with a small blower 85. By driving, the wind through the bypass air passage 84 can flow into the swimming area 83 from diagonally below to generate a cross wind condition.

【0005】しかし、上記のごとく空気を循環経路内を
循環させる回流式の風洞装置では、送風装置の熱で循環
空気の温度が上昇するといった問題があるため、自由降
下模擬体験用の風洞装置としてはこのような問題のない
非回流式の風洞装置が適する。自由降下模擬体験用の非
回流式風洞装置としては、浮遊空間を形成する内部構造
物の周囲を外壁構造物が囲んで両者の間に吸気通路が形
成されると共に、外壁構造物の全周に亙って空気取入口
が設けられ、浮遊空間の下側に設けられた送風装置によ
って空気取入口から導入された空気が吸気通路を介して
浮遊空間を下方から上方へ通過した後排出されるように
構成されたものがある。
However, in the circulation type wind tunnel device which circulates the air in the circulation path as described above, there is a problem that the temperature of the circulating air rises due to the heat of the blower device, so that it is used as a wind tunnel device for a free-fall simulation experience. A non-circulating type wind tunnel device which does not have such a problem is suitable. As a non-circulating wind tunnel device for a free-fall simulation experience, an outer wall structure surrounds an internal structure that forms a floating space to form an air intake passage between the two, and the entire circumference of the outer wall structure is surrounded. An air intake is provided over the air, so that the air introduced from the air intake by the air blower provided under the floating space passes through the air intake passage from below to above the floating space and is then discharged. There is one configured in.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記の如く
外壁構造物の全周に亙って空気取入口が形成された風洞
装置では、外壁の外側に風が吹いていると空気取入口の
位置によって空気の吸入量が異なり、浮遊空間へ均一に
送風ができないという問題を生ずる。即ち、向かい風と
なる空気取入口からは無風状態に比較して多量の空気が
流入し、これとは反対側に位置する空気取入口では追い
風となって無風状態より空気流入量が少なくなる。吸気
通路は吸入空気の周方向の流動を防ぐために周方向が複
数に仕切られるため、このように空気取入口の位置によ
って空気流入量が異なると、その違いがそのまま浮遊空
間にもたらされるために送風方向と直交する同一平面内
でも部位によって送風量が変化する(風速が異なる)と
いう状態が生ずるものである。更に、風は常に一様に吹
いているのではなく風向きも風速も不規則に変化するも
のであるため、浮遊空間における送風状態もこれと対応
して不規則に変化することとなり、このような状態では
安定した浮遊ができない。
By the way, in the wind tunnel device in which the air intake port is formed over the entire circumference of the outer wall structure as described above, the position of the air intake port when the wind blows on the outer side of the outer wall. Depending on the amount of air sucked, there arises a problem that air cannot be uniformly blown to the floating space. That is, a large amount of air flows in from the air intake that is a head wind as compared with the airless state, and the air intake located on the opposite side becomes a tailwind and the air inflow amount becomes smaller than that in the airless state. The intake passage is divided into multiple circumferential directions to prevent the flow of intake air in the circumferential direction.Therefore, if the amount of air inflow varies depending on the position of the air intake, the difference is introduced into the floating space as it is. Even in the same plane orthogonal to the direction, the amount of blown air changes (the wind speed differs) depending on the site. Furthermore, since the wind does not always blow uniformly, but the wind direction and wind speed also change irregularly, so the blast state in the floating space also changes correspondingly. Stable floating cannot be done in the state.

【0007】尚、空気取入口に対する風の影響は、前述
の自由降下模擬体験用の風洞に限るものではなく、一般
の試験・計測用の風洞においても生ずるものである。ま
た、空気取入口が一方向のみに開口しているものであっ
ても、当該空気取入口への風の有無によって送風断面の
部位における送風量は均一ではあっても全体の風速が変
動してしまい、特に計測用の風洞ではデータに誤差を生
ずる要因となる。
The influence of the wind on the air intake is not limited to the above-described free-fall simulation experience wind tunnel, but also occurs in general test / measurement wind tunnels. Even if the air intake is open in only one direction, the overall air speed will vary depending on the presence or absence of wind to the air intake, even if the amount of air blown at the part of the air flow cross section is uniform. This is a factor that causes an error in the data especially in the wind tunnel for measurement.

【0008】本発明は、上記問題に鑑みてなされたもの
であって、空気取入口への風の有無にかかわらず空気流
入量の一定化を可能とし、作用空間への均一且つ安定し
た送風を可能とする風洞装置の空気取入口における空気
流入量調整機構を提供することを目的とする。
The present invention has been made in view of the above problems, and makes it possible to make the air inflow rate constant regardless of the presence or absence of wind to the air intake port, and to provide uniform and stable air blowing to the working space. It is an object of the present invention to provide an air inflow amount adjusting mechanism at an air intake of a wind tunnel device that enables the air inflow amount.

【0009】[0009]

【課題を解決する為の手段】上記目的を達成する本発明
の風洞装置の空気取入口における空気流入量調整機構
は、風洞装置の空気取入口に、翼型断面のルーバー部材
が、その揚力中心から偏心した位置で揺回動可能に支持
されると共に、揺動付勢手段によって揚力による揺動方
向とは逆で且つ前記空気取入口を開放する方向に揺動付
勢されて配列設置され、空気流入速度の変化に対応して
空気流入速度が速い場合には開口面積を減少させる方向
に揺動するよう構成されていることを特徴とする。
In order to achieve the above object, an air inflow adjusting mechanism for an air intake of a wind tunnel device of the present invention has a louver member having a blade-shaped cross section at the center of its lift force at the air intake of the wind tunnel device. Is eccentrically supported in a swingable manner, and is arranged by being swingably biased by a swinging biasing means in a direction opposite to the swinging direction by the lift force and in a direction of opening the air intake port, When the air inflow speed is high corresponding to the change of the air inflow speed, the airflow is configured to swing in the direction of decreasing the opening area.

【0010】[0010]

【作用】無風状態で安定した作動状態では、空気取入口
に一定の流速で空気が流入するためにルーバー部材はそ
の空気流によって生ずる揚力と揺動付勢手段の付勢力と
がバランスした状態となって一定の開口面積を保つ。一
方、風によって空気取入口への空気流入速度が変化する
と、それに伴ってルーバー部材に作用する揚力が変化し
て揺動付勢部材の付勢力とのバランスが崩れ、バランス
する位置までルーバー部材が揺回動して開口面積が変化
する。
In a calm and stable operating state, since air flows into the air intake at a constant flow velocity, the louver member is in a state where the lift force generated by the air flow and the urging force of the swing urging means are balanced. And maintain a constant opening area. On the other hand, when the air inflow velocity to the air intake is changed by the wind, the lift force acting on the louver member is changed accordingly, the balance with the urging force of the swing urging member is lost, and the louver member is moved to the balanced position. The opening area changes by rocking.

【0011】即ち、向かい風によって空気取入口への空
気流入速度が速くなると、ルーバー部材に作用する揚力
が大きくなるためにルーバー部材は揺動付勢部材の付勢
力に抗して空気取入口を閉ざす方向に揺回動して開口面
積を小さくし、これによって空気の流入を制限する。ま
た、追い風状態で空気取入口への空気流入速度が遅くな
ると、ルーバー部材に作用する揚力が小さくなるために
ルーバー部材は揺動付勢部材の付勢力によって空気取入
口を開く方向に揺回動して開口面積を大きくし、これに
よって空気の流入を促進する。従って、空気流入量が多
くなる向かい風の際には開口面積が減少し、空気流入量
が少なくなる追い風の際には開口面積が増大し、単位時
間当たりの空気流入量を常に一定とするように作用す
る。
That is, when the air inflow velocity to the air intake is increased by the head wind, the lift force acting on the louver member increases, so that the louver member closes the air intake against the urging force of the swing urging member. It swings in the direction to reduce the opening area, thereby restricting the inflow of air. Further, when the air inflow speed to the air intake becomes slow in the tail wind condition, the lift force acting on the louver member becomes small, so that the louver member swings in the direction to open the air intake by the biasing force of the swing biasing member. To increase the opening area, thereby promoting the inflow of air. Therefore, the opening area decreases when the headwind is high and the opening area is large when the tailwind is low, so that the airflow rate per unit time is always constant. To work.

【0012】[0012]

【発明の実施例】以下、添付図面を参照して本発明の実
施例について説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0013】図1は本発明に係る風洞装置の空気取入口
における空気流入量調整機構の一実施例を適用した自由
降下模擬体験装置の外形斜視図、図2はその縦断面図、
図3は図2のA−A断面図、図4は図2のB−B断面図
及び図5は図2のC−C断面図である。
FIG. 1 is an external perspective view of a free descent simulation experience device to which an embodiment of an air inflow amount adjusting mechanism at an air intake of a wind tunnel device according to the present invention is applied, and FIG. 2 is a longitudinal sectional view thereof.
3 is a sectional view taken along line AA of FIG. 2, FIG. 4 is a sectional view taken along line BB of FIG. 2, and FIG. 5 is a sectional view taken along line CC of FIG.

【0014】図示自由降下模擬体験装置は、全体として
は所定高さの八角柱状であって、下端部が所定深さで地
中に埋設されて設置されている。内部中央には、外形と
相似形である八角柱状の内部構造物20が設けられ、こ
の内部構造物20の外面21と外壁構造物である外壁1
0の内面との間には、所定幅の空間が上端部を除いて全
周を巡るように形成されて、これが吸気通路30を構成
している。尚、本実施例は装置を八角柱形状に構成した
例であるが、これに限るものではなく、他の多角柱状や
円柱状であっても良く適宜変更可能なものである。
The illustrated free descent simulation experience device is an octagonal column having a predetermined height as a whole, and the lower end portion thereof is installed by being buried in the ground at a predetermined depth. An octagonal columnar internal structure 20 similar to the external shape is provided in the center of the interior, and an outer surface 21 of the internal structure 20 and an outer wall 1 which is an outer wall structure.
A space having a predetermined width is formed between the inner surface of 0 and the inner surface of 0 to surround the entire circumference except the upper end portion, and this constitutes the intake passage 30. It should be noted that the present embodiment is an example in which the device is configured in an octagonal prism shape, but the invention is not limited to this, and other polygonal prisms or cylinders may be used and can be appropriately changed.

【0015】外壁10には、天面と隣接する最上部に排
気口11が八角形頂点部を除いて全周に亙って開口形成
されると共に、高さ方向中央よりやや上側に空気取入口
12が八角形頂点部を除く全周に亙って開口形成されて
いる。空気取入口12は八角柱状の各面に矩形に開口し
ており、この空気取入口12には、詳しくは後述する空
気流入量均等化機構80が設けられている。
An exhaust port 11 is formed on the outer wall 10 at the uppermost portion adjacent to the top surface over the entire circumference except for the octagonal apex, and an air intake is located slightly above the center in the height direction. An opening 12 is formed over the entire circumference except for the apex of the octagon. The air intake 12 has a rectangular opening on each surface of an octagonal prism, and the air intake 12 is provided with an air inflow equalization mechanism 80, which will be described in detail later.

【0016】吸気通路30は、空気取入口形成位置では
周方向に連続するドーナツ状の吸気通路空間31が形成
されると共に、その下側は外壁10と内部構造物20の
八角形の頂点を結んで設けられた仕切板32によって仕
切られて周方向に8個の吸気通路区画33に分割されて
いる。各吸気通路区画33の吸気通路空間31への開口
部位には、消音器34が介設されている。
The intake passage 30 is formed with a donut-shaped intake passage space 31 which is continuous in the circumferential direction at the position where the air intake is formed, and its lower side connects the outer wall 10 and the octagonal apex of the internal structure 20. It is partitioned by the partition plate 32 provided in (4) and is divided into eight intake passage sections 33 in the circumferential direction. A silencer 34 is provided at an opening portion of each intake passage section 33 to the intake passage space 31.

【0017】内部構造物20は、その外面21が吸気通
路30の内面を構成し、内部中央には周壁22によって
外形と相似形の八角柱状に囲まれた浮遊空間としての遊
泳室23が形成され、この遊泳室23と外面21との間
に遊泳室23の床面と同一平面で遊泳室23の周囲を巡
る回廊部24が設けられている。また、八角形の所定一
面と、対応する吸気通路区画32との間には回廊部が設
けられずに閉塞されており、ここに遊泳室23と吸気通
路区画32とを連通する突風ダクト40が形成されてい
る。遊泳室23内には、その周壁22に設けられた図示
しないドアを介して回廊部24から出入りできるように
なっており、回廊部24には吸気通路30を貫いて設け
られた出入口13(図1に示す)に通じる図示しない通
路を介して外部から出入り可能となっている。
An outer surface 21 of the internal structure 20 constitutes an inner surface of the intake passage 30, and a swimming chamber 23 as a floating space surrounded by a peripheral wall 22 in an octagonal shape similar to the outer shape is formed in the center of the inside. Between the swimming room 23 and the outer surface 21, there is provided a corridor section 24 that extends around the swimming room 23 on the same plane as the floor surface of the swimming room 23. Further, a corridor portion is not provided between the predetermined one surface of the octagon and the corresponding intake passage section 32, and is closed, and the gust duct 40 that connects the swimming chamber 23 and the intake passage section 32 is provided here. Has been formed. The swimming room 23 can be accessed through a corridor 24 through a door (not shown) provided on the peripheral wall 22, and the corridor 24 is provided with an entrance 13 (see FIG. (Shown in FIG. 1) can be accessed from the outside through a passage (not shown) leading to the outside.

【0018】遊泳室23は、その床面及び天面がそれぞ
れ所定の径で開口してそれぞれ下部送風路50又は上部
送風路60に接続されている。また、周壁22の一面に
前述の突風ダクト40が開口している。
The swimming room 23 has a floor surface and a ceiling surface which are opened to have a predetermined diameter and is connected to the lower air passage 50 or the upper air passage 60, respectively. Further, the gust duct 40 described above is opened on one surface of the peripheral wall 22.

【0019】下部送風路50は、遊泳室23の下方に鉛
直に延設されて当該自由降下模擬体験装置の底部に沿う
側方通路空間51を介して全ての吸気通路区画33と接
続しており、その接続部位に送風装置としての軸流型の
送風機52が送風方向を上側(遊泳室23側)として配
設されている。その送風機52と遊泳室23の間には、
整流用ハニカム53,斜流・変動風発生用翼54及び速
度急変用ルーバ55が設けられ、遊泳室23への開口部
には落下防止ネット56が二重に張設されている。
The lower air passage 50 is vertically extended below the swimming chamber 23 and is connected to all the intake passage sections 33 via the side passage space 51 along the bottom of the free-fall simulation experience device. An axial-flow type blower 52 as a blower is arranged at the connecting portion so that the blowing direction is the upper side (the swimming room 23 side). Between the blower 52 and the swimming room 23,
A rectifying honeycomb 53, mixed-flow / fluctuation-wind generating blades 54, and a speed change louver 55 are provided, and a fall prevention net 56 is doubly stretched at the opening to the swimming chamber 23.

【0020】上部送風路60は、上方に鉛直に延設され
て、排気口11形成部位に当該自由降下模擬体験装置の
天面に沿って水平に形成された排気空間61に接続して
いる。また、その遊泳室23への開口部には吸込防止ネ
ット62が張設されている。尚、図中63は当該上部送
風路60中に介設された消音器である。
The upper air passage 60 extends vertically upward, and is connected to an exhaust space 61 which is horizontally formed at the site where the exhaust port 11 is formed and along the top surface of the free fall simulating experience device. A suction prevention net 62 is stretched over the opening to the swimming chamber 23. In addition, reference numeral 63 in the drawing denotes a silencer provided in the upper air passage 60.

【0021】上記の如く構成された自由降下模擬体験装
置では、送風機52の駆動によって、吸気通路30を介
して空気取入口12から吸入された空気が下部送風路5
0から遊泳室23内に吹き上げ、遊泳室23内を通過し
て上部送風路60から排気空間61を通って排気口11
から外部に排出される。遊泳室23内に吹き上げられる
空気は、整流用ハニカム53及び斜流・変動風発生用翼
54によって整流・制御されて乱流のない安定したもの
とされる。遊泳室23内での流速は、自由降下時におけ
る空気との相対速度と略等しい約70m/secとなる
ように設定されており、これによって上昇気流中に位置
する遊泳者が落下も上昇もしない浮遊状態となって自由
降下状態を模擬体験できる。
In the free fall simulating experience device constructed as described above, the air sucked from the air intake 12 through the intake passage 30 by the drive of the blower 52 is moved to the lower blower passage 5.
Blow up into the swimming chamber 23 from 0, pass through the swimming chamber 23, pass through the upper ventilation passage 60, exhaust space 61, and exhaust port 11
Is discharged from the outside. The air blown up into the swimming chamber 23 is rectified and controlled by the rectifying honeycomb 53 and the mixed flow / fluctuation airflow generation vanes 54, and is made stable without turbulence. The flow velocity in the swimming room 23 is set to be approximately 70 m / sec, which is approximately equal to the relative velocity with the air during free fall, whereby the swimmer located in the ascending airstream does not fall or rise. You can experience the free-falling state in a floating state.

【0022】ここで、外壁に開口形成された空気取入口
12には、前述の如く空気流入量均等化機構80が設け
られている。
Here, the air intake equalizing mechanism 80 is provided at the air inlet 12 formed in the outer wall as described above.

【0023】空気流入量均等化機構80は、図6に部分
拡大斜視図を示すように空気取入口12の幅と略等しい
長さのルーバー部材81が、上下に所定の間隔で空気取
入口12の高さ方向全域に亙って複数列配設されて構成
されている。
In the air inflow equalization mechanism 80, as shown in a partially enlarged perspective view of FIG. 6, louver members 81 having a length substantially equal to the width of the air inlet 12 are vertically arranged at predetermined intervals. Are arranged in a plurality of rows over the entire height direction.

【0024】ルーバー部材81は、上面の曲率が下面の
曲率より小さいいわゆる翼型断面に形成され、長手方向
両端に突出形成された支点軸82が開口部の枠板83に
図示しない軸受部材を介して揺回動自在に嵌合して、そ
の前方端面を外側に向けて設けられている。つまり、枠
板83によって揺回動自在に支持されているものであ
り、図7に示すようにその支持軸82の位置(揺動中心
位置)は、当該ルーバー部材81の揚力中心位置84よ
り所定量後方に偏心して設定されている。また、その断
面形状(幅及び厚さ)と上下に隣接するものとの配設位
置との関係(間隔)は、図8に示すように前端を上側に
揺動した状態で、空気取入口12を正面から見て後端が
下側に隣接するルーバー部材81の前端部分と所定量重
合し、両者の間には所定の間隙を有するようになってい
る。
The louver member 81 is formed in a so-called airfoil cross section in which the curvature of the upper surface is smaller than the curvature of the lower surface, and fulcrum shafts 82 projectingly formed at both ends in the longitudinal direction are provided on the frame plate 83 of the opening through a bearing member (not shown). It is fitted so that it can swing and rotate freely, and is provided with its front end face facing outward. That is, it is swingably and rotatably supported by the frame plate 83, and as shown in FIG. 7, the position of the support shaft 82 (swinging center position) is located from the lift center position 84 of the louver member 81. It is set eccentrically behind the fixed amount. Further, the relationship (interval) between the cross-sectional shape (width and thickness) and the disposition positions of the vertically adjacent ones is as shown in FIG. When viewed from the front, the rear end overlaps with the front end portion of the louver member 81 adjacent to the lower side by a predetermined amount, and there is a predetermined gap between them.

【0025】枠板83の外側に突出する支点軸部82に
は、外周側端部が枠板83に固定されたゼンマイバネ8
5の内周側端部が固定されており、ルーバー部材81は
このゼンマイバネ85の弾性復帰力によって前端を下側
とする方向(図6及び図7中時計回り方向)に揺動付勢
されると共に、図示しないストッパーによって揺動が規
制されて略水平となるようになっている。
The fulcrum shaft portion 82 protruding to the outside of the frame plate 83 has an outer peripheral side end portion fixed to the frame plate 83.
The inner peripheral side end of the louver member 5 is fixed, and the louver member 81 is urged to oscillate in a direction with its front end facing downward (clockwise direction in FIGS. 6 and 7) by the elastic restoring force of the spiral spring 85. At the same time, the swing is restricted by a stopper (not shown) so that the stopper is substantially horizontal.

【0026】このように構成されたルーバー部材81
は、空気取入口12に空気が流入する際の気流によって
揚力が生じ、その揚力中心84と支持軸82(揺動中
心)とは偏心しているために支持軸82を中心として揚
力中心84が上方となる方向(前端を上方とする方向)
に揺動し、その揚力による揺動力がゼンマイバネ82の
付勢力とバランスした位置で停止する。即ち、当該自由
降下模擬体験装置が安定作動している状態では空気流入
速度は一定となるため、外部が無風状態であればルーバ
ー部材81も安定して一定の姿勢を保つ。本実施例では
この時水平状態より前端が僅かに上向きとなるように設
定されており、この状態が図7及び図8に破線で示す状
態である。外部に風がありそれが向かい風であった場合
には、無風状態時における空気流入速度にその風速が加
わって空気流入速度が速くなり、その結果、ルーバー部
材81に作用する揚力が増加してゼンマイバネ85の付
勢力に抗して図8に示すように前端を上方とする方向
(図中反時計回り)に揺動する。外部の風が追い風であ
る場合には、空気流入速度が遅くなるために揚力が減少
して前端を下方とする方向に揺動する。つまり、ルーバ
ー部材81は空気流入速度に対応して揺動し、その結
果、空気流入量均等化機構80全体としてみると上下に
隣接するルーバー部材81の重合量と両者の間に生ずる
間隙(開口面積及び吸気抵抗)が変化することとなっ
て、空気流入量が規定されることとなる。
The louver member 81 thus constructed
Is lifted by the airflow when the air flows into the air intake 12, and the lift center 84 and the support shaft 82 (swing center) are eccentric, so that the lift center 84 is upward about the support shaft 82. Direction (direction with the front end upward)
The swing force due to the lift force stops at a position balanced with the urging force of the main spring 82. That is, since the air inflow velocity is constant when the free-fall simulation experience device is operating stably, the louver member 81 also stably maintains a constant posture when the outside is in a windless state. In this embodiment, at this time, the front end is set to be slightly upward from the horizontal state, and this state is the state shown by the broken lines in FIGS. 7 and 8. When there is wind on the outside and it is a headwind, the wind velocity is added to the air inflow velocity in a no-wind state to increase the air inflow velocity, and as a result, the lift force acting on the louver member 81 increases and the mainspring spring As shown in FIG. 8, it swings in the direction in which the front end is upward (counterclockwise in the figure) against the biasing force of 85. When the external wind is the tail wind, the air inflow velocity becomes slower, so that the lift decreases and the front end is swung downward. That is, the louver member 81 oscillates in accordance with the air inflow velocity, and as a result, when viewed as the air inflow amount equalizing mechanism 80 as a whole, the overlapping amount of the louver members 81 that are vertically adjacent to each other and the gap (opening) between them. By changing the area and the intake resistance, the inflow amount of air is regulated.

【0027】空気流入速度に応じたルーバー部材81の
傾きは、その断面形状(当該断面形状によって生ずる揚
力),揚力中心84と支持軸82(揺動中心)の偏心量
及びゼンマイバネ85の付勢力によって決まり、上下に
隣接するルーバー部材81の重合量と両者の間に生ずる
間隙(開口面積及び吸気抵抗)は、ルーバー部材81の
断面形状と隣接するルーバー部材81の配設間隔によっ
て決まるが、これら各条件は、空気流入量均等化機構8
0全体で空気取入口12への単位時間当たりの空気の流
入量が、空気流入速度の変化にかかわらず常に一定とな
るように設定されている。
The inclination of the louver member 81 depending on the air inflow speed depends on its sectional shape (lift force generated by the sectional shape), the eccentric amount of the lift center 84 and the support shaft 82 (swing center), and the biasing force of the main spring 85. The overlapping amount of the louver members 81 adjacent to each other in the vertical direction and the gap (opening area and intake resistance) generated between the louver members 81 are determined by the cross-sectional shape of the louver member 81 and the arrangement interval of the adjacent louver members 81. The condition is an air inflow equalization mechanism 8
In the whole 0, the amount of inflow of air into the air intake 12 per unit time is set to be always constant regardless of the change of the air inflow speed.

【0028】上記のごときルーバー部材81を備えた空
気流入量均等化機構80では、自由降下模擬体験装置が
安定作動中であって外部が無風状態であれば空気流入速
度が一定であるためにルーバー部材81は水平状態より
前端が僅かに上向きの姿勢で安定し、開口率は大きく吸
気抵抗も少ない状態を保つ。これに対して空気取入口1
2に向けて風が吹き込むような状況では、空気流入速度
が速くなるためにルーバー部材81が閉じて(前端を上
方に揺動して隣接するものと重合して)開口面積が小さ
くなると共に吸気抵抗が増大し、単位時間当たりの空気
流入量は前述の無風状態時と等しくなるようになる。ま
た、追い風が吹いて空気取入口12部位が負圧となるよ
うな状況では、空気流入速度が遅くなるためにルーバー
部材81が開き(無風状態時より水平側に揺動し)、無
風状態時より更に開口面積が大きくなると共に吸気抵抗
が減少し、多量の空気を吸入可能となって単位時間当た
りの空気流入量は前述の無風状態時と等しくなるように
なる。このように、外部に風があっても常に一定の空気
流入量となるように作用するものである。
In the air inflow equalization mechanism 80 having the louver member 81 as described above, the louver is constant because the air inflow rate is constant when the free-fall simulation experience device is in stable operation and there is no wind outside. The member 81 is stable in a posture in which the front end is slightly upward as compared with the horizontal state, and maintains a state where the opening ratio is large and the intake resistance is small. On the other hand, the air intake 1
In a situation where the wind blows toward 2, the louver member 81 is closed because the air inflow velocity is high (the front end is swung upward and overlaps with the adjacent one), and the opening area is reduced and the intake air is reduced. The resistance increases, and the amount of inflow of air per unit time becomes equal to that in the above-described windless state. Further, in a situation where the tail wind blows and the air intake 12 site becomes a negative pressure, the louver member 81 opens due to the slow air inflow speed (swings more horizontally than in the no wind state), and in the no wind state. As the opening area further increases and the intake resistance decreases, a large amount of air can be sucked in, and the amount of air inflow per unit time becomes equal to that in the above-mentioned no-air state. In this way, even if there is wind outside, it works so that the air inflow rate is always constant.

【0029】而して、上記のごとき構成の空気流入量均
等化機構80を空気取入口12に備えた自由降下模擬体
験装置では、送風機52の駆動による遊泳室23へ送風
時には、外部に風があっても外壁10に配設された何れ
の空気取入口12からも等しい量の空気が吸入されるた
め、遊泳室23への送風はその送風方向と直交する同一
平面内の部位で送風量(風速)に差異を生ずることがな
い。即ち、送風時には、下部送風路50及び各吸気通路
区画33を介して吸気通路空間31から空気が吸入さ
れ、吸気通路空間31には空気取入口12を介して外部
から空気が吸入されるが、外部に風があっても空気流入
量均等化機構80が常に空気流入量を単位時間当たり一
定量に規定するため、外壁10に配設された何れの空気
取入口12からも等しい量の空気が吸気通路空間31に
吸入され、その結果、各吸気通路区画33にもそれぞれ
等しい量の空気が吸入されることとなり、送風方向と直
交する同一平面内のどの部位でも送風量が均一となるも
のである。これにより、遊泳室23への送風が安定した
ものとなり、安全な自由落下模擬体験が可能となるもの
である。
Thus, in the free fall simulating experience device having the air inflow equalization mechanism 80 having the above-mentioned structure at the air intake 12, when the blower 52 is driven to blow the air into the swimming room 23, the wind is blown outside. Even if there is, the same amount of air is taken in from any of the air intakes 12 arranged in the outer wall 10, so the amount of air blown to the swimming room 23 is the amount of air blown ( There is no difference in wind speed). That is, at the time of blowing air, air is sucked from the intake passage space 31 through the lower air passage 50 and each intake passage section 33, and air is sucked into the intake passage space 31 from the outside through the air intake 12. Even if there is wind on the outside, the air inflow equalization mechanism 80 always regulates the air inflow amount to a constant amount per unit time, so that an equal amount of air is supplied from any of the air intake ports 12 arranged in the outer wall 10. The air is sucked into the intake passage space 31, and as a result, the same amount of air is also sucked into each of the intake passage sections 33, so that the amount of air blown is uniform at any part in the same plane orthogonal to the air blow direction. is there. As a result, the blowing of air to the swimming room 23 becomes stable, and a safe free fall simulation experience is possible.

【0030】また、本構成では、空気流入量均等化機構
80の作用に加え、各空気取入口12からの吸気が直接
吸気通路区画33に導かれずに周方向に連続する吸気通
路空間31に一旦導入された後、この吸気通路空間31
から吸気通路区画33に分配吸入されるように構成され
ているため、遊泳室23への送風量(体積)に比較して
容積の大きい吸気通路空間31によって各吸気通路区画
33への空気流入量の均一化が更に促進され、より一層
送風が安定するようになっているものである。
In addition to the function of the air inflow amount equalizing mechanism 80, in this structure, the intake air from each air intake 12 is not directly guided to the intake passage section 33, but is temporarily introduced into the intake passage space 31 continuous in the circumferential direction. After being introduced, this intake passage space 31
The air intake amount into each intake passage section 33 is increased by the intake passage space 31 having a larger volume than the air flow rate (volume) to the swimming chamber 23. Is further promoted to further stabilize the air flow.

【0031】尚、上記実施例は、空気流入量均等化機構
80のルーバー部材81の揺動中心(支持軸82)を揚
力中心位置84より所定量後方側に偏心させて揚力が作
用すると前端側が上方に揺動するように構成したもので
あるが、ルーバー部材81の揺動中心を揚力中心位置よ
り前方側に偏心させて揚力が作用すると前端側が下方に
揺動するように構成しても良いものである。また、揺動
付勢手段もゼンマイバネ85に限るものではなく、例え
ば図9に示すようにコイルスプリング86でルーバー部
材81を引っ張り付勢する等適宜変更可能なものであ
る。
In the above embodiment, when the swing center (support shaft 82) of the louver member 81 of the air inflow equalization mechanism 80 is eccentrically rearward from the lift center position 84 by a predetermined amount of lift, the front end side is moved. Although the louver member 81 is configured to swing upward, the swing center of the louver member 81 may be eccentric to the front side of the lift center position so that the front end side swings downward when lift is applied. It is a thing. Further, the swinging urging means is not limited to the mainspring 85, but can be changed as appropriate such as urging the louver member 81 with a coil spring 86 as shown in FIG.

【0032】更に、本実施例は本願発明を空気取入口1
2が周囲に配設された自由落下模擬体験装置の空気取入
口に適用したものであるが、本願発明はこれに限るもの
ではなく、空気取入口が一方方向のみに開口する一般の
試験・計測用の風洞の空気取入口に適用しても良く、そ
うすることにより外部の風の影響で空気吸入量が変化し
て風速が変化することを防止でき、外部の風の状態にか
かわらずいつでも実験・計測が可能となると共に精度の
高い計測データを得ることができる。
Further, the present embodiment applies the present invention to the air intake 1.
No. 2 is applied to the air intake of the free fall simulation experience device arranged around, but the present invention is not limited to this, and a general test / measurement in which the air intake is opened in only one direction. It may be applied to the air intake of a wind tunnel for use, and by doing so, it is possible to prevent changes in the air intake rate and changes in the wind speed due to the effect of external wind, and to carry out experiments at any time regardless of the external wind conditions.・ Measurement becomes possible and highly accurate measurement data can be obtained.

【0033】ところで、本実施例では、下部送風路50
の整流用ハニカム53の送風方向上流側に当該下部送風
路50を開閉可能な速度急変用ルーバ56が設けられる
と共に、その上流側に扉部材72,73によって開閉さ
れる速度急変用バイパスダクト70が接続されており、
下部送風路50に設けられた速度急変用ルーバ56を閉
じると共に速度急変用バイパスダクト70の扉部材7
2,73を開放することにより、送風機52の駆動を停
止することなく遊泳室32内への送風を中断して遊泳者
に自由降下状態から開傘した状態を体験させることがで
きるようになっている。尚、この場合には遊泳者1は遊
泳室の上部と吊索2結んでおく必要がある。即ち、前述
の通常の自由降下模擬体験状態から、速度急変用ルーバ
56を閉じ、同時に速度急変用バイパスダクト70の開
口部に設けられた扉部材72,73を開放することによ
り、遊泳室23に通じる下部送風路50が速度急変用ル
ーバ56によって閉塞されて遊泳室23への送風が阻止
され、その空気は速度急変用バイパスダクト70を通っ
て吸気通路30に環流する。これにより、送風によって
生ずる浮力によって遊泳室23内で浮遊状態にあった遊
泳者1は浮力がなくなるために吊索2によって吊り下げ
支持された状態となるまで落下する。このように落下が
吊索2によって阻止される状態は丁度実際の降下の際に
おける自由降下から開傘した状態と同様であり、開傘状
態を模擬的に体験できるものである。速度急変用ルーバ
56によって遊泳室23への通路(下部送風路50)を
塞がれた送風機52からの送風は、前述の如く速度急変
用バイパスダクト70を通って吸気通路30に環流する
ため、空気取入口12からの新しい空気の導入が行われ
なくなるだけで送風は継続され、送風機52に過大な負
荷がかかることはないのである。
By the way, in this embodiment, the lower air duct 50
The rectifier honeycomb 53 is provided on the upstream side in the blowing direction with a rapid velocity change louver 56 capable of opening and closing the lower air passage 50, and on the upstream side there is a rapid velocity change bypass duct 70 opened and closed by the door members 72 and 73. Connected,
The louver 56 for sudden speed change provided in the lower air passage 50 is closed, and the door member 7 of the bypass duct 70 for sudden speed change is closed.
By opening 2, 73, it becomes possible to interrupt the blowing of air into the swimming room 32 without stopping the driving of the blower 52 and allow the swimmer to experience the state of opening the umbrella from the free-fall state. There is. In this case, the swimmer 1 needs to tie the suspension line 2 to the upper part of the swimming room. That is, by closing the louver 56 for sudden change in speed and simultaneously opening the door members 72, 73 provided at the opening of the bypass duct 70 for sudden change in speed from the above-described normal free-fall simulation experience state, the swimming room 23 is opened. The lower air passage 50 that communicates with the louver 56 for sudden speed change is blocked to prevent air from being blown into the swimming chamber 23, and the air is circulated to the intake passage 30 through the bypass duct 70 for sudden speed change. As a result, the buoyancy generated by the air blow causes the swimmer 1 who was in a floating state in the swimming chamber 23 to fall until being suspended and supported by the hanging rope 2 because the buoyancy is lost. In this way, the state in which the fall is blocked by the hanging rope 2 is just the same as the state in which the umbrella is opened from the free fall at the time of the actual descent, and the umbrella open state can be simulated. The air blown from the blower 52 whose passage (lower air passage 50) to the swimming chamber 23 is blocked by the sudden speed change louver 56 is recirculated to the intake passage 30 through the rapid speed change bypass duct 70 as described above. The introduction of new air from the air intake port 12 is stopped, and the ventilation is continued, so that the blower 52 is not overloaded.

【0034】また、前述の遊泳室23と吸気通路30
(吸気通路区画32)とを連通する突風ダクト40が接
続された吸気通路区画33Aには、突風ダクト40の開
口部の上側(吸気方向上流側)に配設された消音器34
の上流側に、当該吸気通路区画32を開閉可能な吸気通
路シャッター35が設けられると共に、突風ダクト40
には、その遊泳室23側と吸気通路区画33A側の両方
の開口部にそれぞれ開閉可能な突風ダクトシャッター4
1,42が設けられており、この吸気通路シャッター3
5と、突風ダクトシャッター41,42を開閉すること
で、遊泳室32内に横風状態を創成することができ、自
由降下中に横風に煽られた状況を体験することができる
ようにもなっている。即ち、突風ダクト40が接続され
た吸気通路区画33に設けられた吸気通路シャッター3
5を閉じ、同時に突風ダクト40に設けられた突風ダク
トシャッター41,42を開くことにより、吸気通路区
画33Aからの吸気が行われなくなると共にこの吸気通
路区画33の吸気通路シャッター35より下流側と遊泳
室23とが突風ダクト40によって連通して通気可能と
なり、遊泳室23から突風ダクト40を介して吸気通路
区画33Aに空気が流れて遊泳室23から突風ダクト4
0,吸気通路区画33A,側方通路空間51及び下部送
風路50(送風機52)を循環する回流が生じ、遊泳室
23内においては突風ダクト40に向かう方向の横風が
生じて、自由降下中に横風を受けた際における対応の練
習が可能となるようになっているものである。
The swimming chamber 23 and the intake passage 30 described above are also provided.
In the intake passage section 33A, to which the gust duct 40 that communicates with the (intake passage section 32) is connected, the silencer 34 disposed above the opening of the gust duct 40 (upstream side in the intake direction).
An intake passage shutter 35 that can open and close the intake passage section 32 is provided on the upstream side of the
The gust duct shutter 4 that can be opened and closed at both openings on the side of the swimming chamber 23 and the side of the intake passage 33A.
1, 42 are provided, and the intake passage shutter 3
5 and by opening and closing the gust duct shutters 41 and 42, it is possible to create a crosswind condition in the swimming room 32, and to experience the situation of being crosswind-induced during free descent. There is. That is, the intake passage shutter 3 provided in the intake passage section 33 to which the gust duct 40 is connected.
5 is closed, and at the same time, the gust duct shutters 41 and 42 provided in the gust duct 40 are opened to prevent intake from the intake passage section 33A and to swim downstream of the intake passage shutter 35 in the intake passage section 33. The chamber 23 communicates with the gust duct 40 to allow ventilation, and air flows from the swimming chamber 23 to the intake passage section 33A via the gust duct 40 to allow the gust duct 4 to flow from the swimming chamber 23.
0, the intake passage section 33A, the side passage space 51 and the lower air passage 50 (blower 52) circulate, and a cross wind in the direction toward the gust duct 40 is generated in the swimming chamber 23 to allow free fall. This makes it possible to practice the response when a crosswind is received.

【0035】つまり、本実施例構成によれば、地上にお
いて複雑且つ高度な技術を習得することができるもので
ある。
In other words, according to the configuration of this embodiment, it is possible to learn complicated and advanced techniques on the ground.

【0036】[0036]

【発明の効果】以上述べたように、本発明に係る風洞装
置の空気取入口における空気流入量調整機構によれば、
空気取入口に設けられたルーバー部材が、空気流入速度
の変化に応じて揺動し、空気流入速度が速い場合には開
口面積を小さくすると共に空気流入速度が遅い場合には
開口面積を大きくし、単位時間当たりの空気流入量を常
に一定とするため、空気取入口への風の有無や変動にか
かわらず作用空間への送風を常に一定に保ことができ、
均一且つ安定した送風が可能となるものである。
As described above, according to the air inflow adjusting mechanism at the air intake of the wind tunnel device according to the present invention,
The louver member provided at the air intake oscillates in response to changes in the air inflow speed, reducing the opening area when the air inflow speed is high and increasing the opening area when the air inflow speed is low. Since the air inflow rate per unit time is always constant, it is possible to always maintain a constant air flow to the working space regardless of the presence or absence of fluctuations in the air intake,
It is possible to blow air uniformly and stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明に係る風洞装置の空気取入口にお
ける空気流入量調整機構の一実施例を適用した自由降下
模擬体験装置の外形斜視図である。
FIG. 1 is an external perspective view of a free descent simulation experience device to which an embodiment of an air inflow amount adjusting mechanism at an air intake of a wind tunnel device according to the present invention is applied.

【図2】その縦断面図である。FIG. 2 is a vertical sectional view thereof.

【図3】図2のA−A断面図である。FIG. 3 is a sectional view taken along line AA of FIG. 2;

【図4】図2のB−B断面図である。FIG. 4 is a sectional view taken along line BB of FIG.

【図5】図2のC−C断面図である。5 is a sectional view taken along line CC of FIG.

【図6】空気流入量均等化機構の部分拡大斜視図。FIG. 6 is a partially enlarged perspective view of an air inflow equalization mechanism.

【図7】ルーバー部材の断面図である。FIG. 7 is a cross-sectional view of a louver member.

【図8】空気流入量が増大した際のルーバー部材の作用
状態を示す断面図である。
FIG. 8 is a cross-sectional view showing an operating state of the louver member when the air inflow amount is increased.

【図9】揺動付勢手段を他の構成とした空気流入量均等
化機構の部分拡大斜視図である。
FIG. 9 is a partially enlarged perspective view of an air inflow equalization mechanism in which the swing urging means has another configuration.

【図10】従来例を示す概念図である。FIG. 10 is a conceptual diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

12 空気取入口 80 空気流入量調整機構 81 ルーバー部材 85 ゼンマイバネ(揺動付勢手段) 86 コイルスプリング(揺動付勢手段) 12 air intake 80 air inflow amount adjusting mechanism 81 louver member 85 spring spring (oscillating urging means) 86 coil spring (oscillating urging means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】風洞装置の空気取入口に、翼型断面のルー
バー部材が、その揚力中心から偏心した位置で揺回動可
能に支持されると共に、揺動付勢手段によって揚力によ
る揺動方向とは逆で且つ前記空気取入口を開放する方向
に揺動付勢されて配列設置され、空気流入速度の変化に
対応して空気流入速度が速い場合には開口面積を減少さ
せる方向に揺動するよう構成されていることを特徴とす
る風洞装置の空気取入口における空気流入量調整機構。
1. A louver member having an airfoil cross section is swingably and rotatably supported at a position eccentric from a center of its lift force at an air intake port of a wind tunnel device, and a swinging direction by the lift force by a swing biasing means. Opposite to the above, they are arranged so as to be oscillated and urged in a direction to open the air intake, and oscillate in a direction to reduce the opening area when the air inflow speed is high corresponding to the change in the air inflow speed. An air inflow adjustment mechanism at an air intake of a wind tunnel device.
JP33852294A 1994-12-28 1994-12-28 Air inflow amount adjusting mechanism at air intake port of wind tunnel apparatus Pending JPH08182791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33852294A JPH08182791A (en) 1994-12-28 1994-12-28 Air inflow amount adjusting mechanism at air intake port of wind tunnel apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33852294A JPH08182791A (en) 1994-12-28 1994-12-28 Air inflow amount adjusting mechanism at air intake port of wind tunnel apparatus

Publications (1)

Publication Number Publication Date
JPH08182791A true JPH08182791A (en) 1996-07-16

Family

ID=18318959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33852294A Pending JPH08182791A (en) 1994-12-28 1994-12-28 Air inflow amount adjusting mechanism at air intake port of wind tunnel apparatus

Country Status (1)

Country Link
JP (1) JPH08182791A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108466698A (en) * 2018-04-17 2018-08-31 大连理工大学 Inhibit control device, parachute and the control method of parachute spin
CN113465867A (en) * 2021-08-20 2021-10-01 中国空气动力研究与发展中心高速空气动力研究所 Single-side single-blade-grid high-speed wind tunnel gust simulation device
CN113465871A (en) * 2021-08-20 2021-10-01 中国空气动力研究与发展中心高速空气动力研究所 Parallel binary cascade high-speed wind tunnel gust simulation device
CN113465870A (en) * 2021-08-20 2021-10-01 中国空气动力研究与发展中心高速空气动力研究所 Single-side parallel blade grid high-speed wind tunnel gust simulation device
CN113465868A (en) * 2021-08-20 2021-10-01 中国空气动力研究与发展中心高速空气动力研究所 High-speed wind tunnel gust simulation device with two parallel blade grids on two sides
CN113465869A (en) * 2021-08-20 2021-10-01 中国空气动力研究与发展中心高速空气动力研究所 High-speed wind tunnel gust simulation device with two side blade grids
CN113567085A (en) * 2021-08-20 2021-10-29 中国空气动力研究与发展中心高速空气动力研究所 Binary cascade high-speed wind tunnel gust simulation device
KR102511758B1 (en) * 2022-12-16 2023-03-20 유한회사 중원시스템 Indoor experience apparatus for skydiving
US11707689B2 (en) 2018-11-16 2023-07-25 Ifly Holdings, Llc Recirculating vertical wind tunnel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108466698A (en) * 2018-04-17 2018-08-31 大连理工大学 Inhibit control device, parachute and the control method of parachute spin
CN108466698B (en) * 2018-04-17 2021-03-19 大连理工大学 Control device for inhibiting parachute spinning, parachute and control method
US11707689B2 (en) 2018-11-16 2023-07-25 Ifly Holdings, Llc Recirculating vertical wind tunnel
CN113465867A (en) * 2021-08-20 2021-10-01 中国空气动力研究与发展中心高速空气动力研究所 Single-side single-blade-grid high-speed wind tunnel gust simulation device
CN113465871A (en) * 2021-08-20 2021-10-01 中国空气动力研究与发展中心高速空气动力研究所 Parallel binary cascade high-speed wind tunnel gust simulation device
CN113465870A (en) * 2021-08-20 2021-10-01 中国空气动力研究与发展中心高速空气动力研究所 Single-side parallel blade grid high-speed wind tunnel gust simulation device
CN113465868A (en) * 2021-08-20 2021-10-01 中国空气动力研究与发展中心高速空气动力研究所 High-speed wind tunnel gust simulation device with two parallel blade grids on two sides
CN113465869A (en) * 2021-08-20 2021-10-01 中国空气动力研究与发展中心高速空气动力研究所 High-speed wind tunnel gust simulation device with two side blade grids
CN113567085A (en) * 2021-08-20 2021-10-29 中国空气动力研究与发展中心高速空气动力研究所 Binary cascade high-speed wind tunnel gust simulation device
KR102511758B1 (en) * 2022-12-16 2023-03-20 유한회사 중원시스템 Indoor experience apparatus for skydiving

Similar Documents

Publication Publication Date Title
CN102219054B (en) Recirculating vertical wind tunnel skydiving simulator and reduced drag cable for use in wind tunnels and other locations
ES2557167T3 (en) Methods and apparatus for pressurizing and efficiently ventilating an air-supported structure
US8876038B2 (en) Ducted fan for VTOL vehicles with system and method to reduce roll moments
CN209341378U (en) Air conditioner
JPH08182791A (en) Air inflow amount adjusting mechanism at air intake port of wind tunnel apparatus
JP6082506B1 (en) How to ventilate poultry houses
JPH08227267A (en) Simulative experiencing device for free dive
ES2197460T3 (en) VENTILATION HOOD THAT HAS A BISTABLE VORTICE.
JPH1142308A (en) Free fall training hard-type wind nd tunnel
JPH08299515A (en) Free fall simulator
JPH08182789A (en) Free falling simulated experience apparatus
JPH08182790A (en) Free falling simulated experience apparatus
CN100359228C (en) Flow circuit switch device
JPH10325593A (en) Floor outlet for air conditioning
JPH08299516A (en) Free fall simulator
JP2003083577A (en) Ventilation system
NO154321B (en) CONTROL UNIT FOR AN AIR DISTRIBUTION SYSTEM.
JPH08332253A (en) Free fall simulated experience device
AU2011253710B2 (en) Recirculating vertical wind tunnel skydiving simulator and reduced drag cable for use in wind tunnels and other locations
JPH10293082A (en) Wind direction controlling wind tunnel
JPH04190129A (en) Disturbance avoiding type smoke wind tunnel
KR940006913B1 (en) Apparatus for controlling air-direction in air conditioners
JP2003083575A (en) Ventilation system
CN110500321A (en) A kind of wind pressure type ventilation fan
JPH0961287A (en) Wind tunnel with wind direction fluctuating device