JPH08182399A - Method for correcting field pole position in synchronous motor - Google Patents

Method for correcting field pole position in synchronous motor

Info

Publication number
JPH08182399A
JPH08182399A JP6325361A JP32536194A JPH08182399A JP H08182399 A JPH08182399 A JP H08182399A JP 6325361 A JP6325361 A JP 6325361A JP 32536194 A JP32536194 A JP 32536194A JP H08182399 A JPH08182399 A JP H08182399A
Authority
JP
Japan
Prior art keywords
acceleration
electromagnetic force
correction amount
target value
synchronous motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6325361A
Other languages
Japanese (ja)
Other versions
JP3289758B2 (en
Inventor
Tomoaki Tanimoto
智昭 谷本
Kenichi Sekioka
賢一 関岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP32536194A priority Critical patent/JP3289758B2/en
Publication of JPH08182399A publication Critical patent/JPH08182399A/en
Application granted granted Critical
Publication of JP3289758B2 publication Critical patent/JP3289758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE: To obtain a corrective value in current phase with small movement in motor without decreasing an accuracy in pole judgment of electromagnetic force, by increasing an electromagnetic force command up to a temporary target, calculating always an acceleration value, and decreasing a target value during large acceleration, while the target value is increased during small acceleration. CONSTITUTION: In correction of a magnetic pole position of a synchronous motor 6, an amount of correction in applied current phase is so changed that a corrective current phase value for making generated electromagnetic force to zero, regardless of the amount of applied current, is judged from polarity acceleration of generated electromagnetic force. After a corrective current-phase value for maximizing the electromagnetic force is obtained from the corrective value, a current phase to be applied is determined from the corrective value and a temporary field pole position detected by a position detector. As a result, the synchronous motor 6 is operated under vector control. In these steps, the acceleration value is always calculated while the electromagnetic command value is increased in a monotonous way up to a temporary target and the target value is decreased during larger acceleration, while the target value is increased during small acceleration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は同期電動機のベクトル制
御方法に関し、特に界磁極位置の補正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vector control method for a synchronous motor, and more particularly to a field pole position correction method.

【0002】[0002]

【従来の技術】従来、同期電動機のベクトル制御は、位
置検出器(レゾルバやパルス検出器)により界磁極位置
を検出し、界磁極位置に同期した位相の正弦波電流の振
幅および位相の制御を行い電磁力制御を行うものであ
る。一般に、同期電動機の界磁極位置と検出器の検出信
号による位置とはかならずしも一致しない。今、実際の
界磁極位置をφ、検出した界磁極位置をθ、φとθの差
をδ1 、印加する電流の位相をρ、電流位相の補正量を
γ、実際の界磁極位置φと印加する電流の位相差をδと
すると、次の(1)式から(3)式が成立する。 φ=θ+δ1 …(1) ρ=θ+γ …(2) δ=φ−ρ=δ1 −γ …(3) また、界磁極の大きさをΦ、印加する電流の大きさをI
とすると、発生電磁力Tは、 T=K*Φ*I*cos(δ) …(4) となる。ただし、Kは正の定数である。発生電磁力T
は、回転形の同期電動機の場合は発生トルクであり、直
動形の同期電動機の場合は発生推力である。以下、回転
形の同期電動機で説明を行う。発生トルクが最大にな
る、電流位相の補正量γ(=δ1 )は、印加する電流に
よらず発生電磁力Tが零になる電流位相の補正量δ0
90°ずらしたものである。
2. Description of the Related Art Conventionally, in vector control of a synchronous motor, a position detector (resolver or pulse detector) detects a field magnetic pole position and controls the amplitude and phase of a sine wave current having a phase synchronized with the field magnetic pole position. The electromagnetic force control is performed. In general, the field pole position of the synchronous motor and the position of the detection signal of the detector do not always match. Now, the actual field pole position is φ, the detected field pole position is θ, the difference between φ and θ is δ 1 , the phase of the applied current is ρ, the correction amount of the current phase is γ, and the actual field pole position is φ. When the phase difference between the applied currents is δ, the following expressions (1) to (3) are established. φ = θ + δ 1 (1) ρ = θ + γ (2) δ = φ−ρ = δ 1 −γ (3) Further, the size of the field pole is Φ, and the magnitude of the applied current is I.
Then, the generated electromagnetic force T is T = K * Φ * I * cos (δ) (4) However, K is a positive constant. Generated electromagnetic force T
Is the generated torque in the case of a rotary synchronous motor, and is the generated thrust in the case of a direct acting synchronous motor. Hereinafter, description will be made on a rotary synchronous motor. The current phase correction amount γ (= δ 1 ) at which the generated torque becomes maximum is obtained by shifting the current phase correction amount δ 0 at which the generated electromagnetic force T becomes zero by 90 ° regardless of the applied current.

【0003】この電流位相の補正量を求める方法とし
て、発生トルクの極性に応じて電流位相の補正量γを更
新していく方法(本出願人による特開昭61−9218
7)がある。この方法は、電流位相の補正量γ1 、γ
2 、(ただしγ1 <δ0 <γ2 )をそれぞれ下限値、上
限値とする範囲内にある補正量γ3 (例えばγ3 =(γ
1+γ2 )/2)を与えて、発生トルクの極性を調べ、
このときの発生トルクの極性が下限の補正量γ1 のとき
の発生トルクの極性と異なった場合は、上限の補正量γ
2 を補正量γ3 で更新し、上限の補正量γ2 のときの発
生トルクの極性と異なった場合には下限の補正量γ1
補正量γ3 で更新する。この処理を所定回数繰り返して
得られた補正量γの最終値をδ0 としている。発生トル
クの極性の判定法としては、本出願人が提案した特開昭
61−92187号および特開昭62−31385号が
ある。前者は、速度ループをかけて速度フィードバック
がネガティブフィードバックになるときは、発生トルク
の極性は正、ポジティブフィードバックになるときは発
生トルクの極性は負としている。後者では、発生トルク
の極性を、トルク指令の符号と速度変化(加速度)の符
号が一致したときを正、一致しないときを負としてい
る。また、トルク指令としては、最大のトルク指令を与
えている。
As a method of obtaining the correction amount of the current phase, a method of updating the correction amount γ of the current phase according to the polarity of the generated torque (Japanese Patent Laid-Open No. 61-9218 of the present applicant).
There is 7). In this method, the current phase correction amounts γ 1 , γ
2 (where γ 102 ) is the correction amount γ 3 (eg γ 3 = (γ
1 + γ 2 ) / 2) is given, the polarity of the generated torque is investigated,
If the polarity of the generated torque at this time is different from the polarity of the generated torque at the lower limit correction amount γ 1 , the upper limit correction amount γ
2 is updated with the correction amount γ 3 , and when the generated torque has a polarity different from that of the upper limit correction amount γ 2 , the lower limit correction amount γ 1 is updated with the correction amount γ 3 . The final value of the correction amount γ obtained by repeating this process a predetermined number of times is δ 0 . As a method for determining the polarity of the generated torque, there are JP-A-61-92187 and JP-A-62-31385 proposed by the present applicant. In the former case, the polarity of the generated torque is positive when the speed feedback is negative feedback and the polarity of the generated torque is negative when the speed feedback is positive feedback. In the latter, the polarity of the generated torque is positive when the sign of the torque command and the sign of the speed change (acceleration) match, and negative when they do not match. The maximum torque command is given as the torque command.

【0004】[0004]

【発明が解決しようとする課題】ところが、いずれの方
法にしても、発生トルクの極性のみを利用して電流位相
の補正量を求めているので、使用するトルク指令を大き
くすると、電動機が動く量が大きくなり、使用するトル
ク指令を小さくすると、発生トルクの極性の判断の精度
が悪くなる。本発明の目的は、電動機の動きが少なく、
かつ発生電磁力の極性の判断の精度を落とさずに電流位
相の補正量を求めることができる、同期電動機の界磁極
位置補正方法を提供することにある。
However, whichever method is used, the correction amount of the current phase is obtained by using only the polarity of the generated torque. Therefore, when the torque command to be used is increased, the amount of movement of the motor is increased. Becomes larger and the torque command to be used becomes smaller, the accuracy of determining the polarity of the generated torque becomes worse. The object of the present invention is to reduce the movement of the electric motor,
Another object of the present invention is to provide a method for correcting a magnetic pole position of a synchronous motor, which can obtain a correction amount of a current phase without lowering the accuracy of determining the polarity of a generated electromagnetic force.

【0005】[0005]

【課題を解決するための手段】本発明の、同期電動機の
界磁極位置補正方法は、印加する電流の位相(ρ)の補
正量(γ)を変化させて、印加する電流の大きさにかか
わらず発生電磁力が零になる電流位相補正量(δ0
を、発生電磁力の極性を加速度の極性より判定して求
め、この電流位相補正量(δ0 )を用いて発生電磁力が
最大になる電流位相の補正量(δ1 )を導出し、この電
流の位相の補正量(δ1 )と位置検出器で検出された仮
の界磁極位置(φ)より印加する電流の位相(ρ)を決
定して同期電動機をベクトル制御する方法において、電
動機指令を仮の目標値まで単調増加させて加速度を随時
求めていき、加速度が大きいときは目標値を小さくし、
加速度が小さいときは目標値を大きくすることを特徴と
する。
According to the method of correcting the position of the magnetic poles of the synchronous motor of the present invention, the correction amount (γ) of the phase (ρ) of the applied current is changed to change the magnitude of the applied current. The amount of current phase correction (δ 0 ) at which the generated electromagnetic force becomes zero
Is determined by determining the polarity of the generated electromagnetic force from the polarity of the acceleration, and the current phase correction amount (δ 0 ) is used to derive the current phase correction amount (δ 1 ) that maximizes the generated electromagnetic force. In the method of vector-controlling the synchronous motor by determining the phase (ρ) of the current to be applied from the correction amount (δ 1 ) of the current phase and the temporary field pole position (φ) detected by the position detector, Is monotonically increased to a tentative target value and the acceleration is calculated at any time, and when the acceleration is large, the target value is reduced,
The feature is that the target value is increased when the acceleration is small.

【0006】本発明の他の、同期電動機の界磁極位置補
正方法は、印加する電流の位相(ρ)の補正量(γ)を
変化させて、印加する電流の大きさにかかわらず発生電
磁力が零になる電流位相補正量(δ0 )を、発生電磁力
の極性を加速度の極性より判定して求め、この補正量
(δ0 )を用いて発生電磁力が最大になる電流位相補正
量(δ1 )を導出し、この電流位相補正量(δ1 )と位
置検出器で検出された仮の界磁極位置(φ)より印加す
る電流の位相(ρ)を決定して同期電動機をベクトル制
御する方法において、電磁力指令を0から第1の目標値
まで単調に変化させ、第1の目標値の時間を軸として対
称に0まで単調に変化させ、次に電磁力指令0を軸とし
て対称に第1の目標値と絶対値が等しい極性の異なる第
2の目標値まで変化させ、再び0まで単調に変化させ、
さらに今までと全く逆に電磁力指令を第2の目標値、
0、第1の目標値、0と変化させることを特徴とする。
Another field magnetic pole position correction method for a synchronous motor according to the present invention is to change the correction amount (γ) of the phase (ρ) of the applied current to generate an electromagnetic force regardless of the magnitude of the applied current. The current phase correction amount (δ 0 ) at which is zero is determined by determining the polarity of the generated electromagnetic force from the polarity of the acceleration, and the correction amount (δ 0 ) is used to obtain the current phase correction amount that maximizes the generated electromagnetic force. (Δ 1 ) is derived, the phase (ρ) of the current to be applied is determined from this current phase correction amount (δ 1 ) and the temporary field pole position (φ) detected by the position detector, and the synchronous motor is set as a vector. In the control method, the electromagnetic force command is monotonously changed from 0 to a first target value, symmetrically changed to 0 with the time of the first target value as an axis, and then the electromagnetic force command 0 is used as an axis. Symmetrically, the first target value and the second target value having the same absolute value but different polarities are changed, It changes monotonically again to 0,
Furthermore, contrary to the past, the electromagnetic force command is changed to the second target value,
It is characterized in that 0, the first target value, and 0 are changed.

【0007】[0007]

【作用】したがって、加速度が大きいときは、発生電磁
力が大きいので電磁力指令を小さくしても外乱に打ち勝
つことができ、その結果回転量(移動量)を小さくする
ことができる。また、加速度が小さいときは、当然回転
量(移動量)が小さいので電磁力指令を大きくすること
ができ、発生電磁力の極性の判断精度を上げることがで
きる。
Therefore, when the acceleration is large, the generated electromagnetic force is large, so that the disturbance can be overcome even if the electromagnetic force command is reduced, and as a result, the rotation amount (movement amount) can be reduced. Further, when the acceleration is small, the rotation amount (movement amount) is naturally small, so that the electromagnetic force command can be increased and the accuracy of determining the polarity of the generated electromagnetic force can be increased.

【0008】[0008]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図3は、本発明の同期電動機の界磁極位置
補正方法が適用される同期電動機(3相)のベクトル制
御による駆動装置の回路構成を表すブロック図である。
エンコーダ7は、同期電動機6の回転位置を検出する。
マイクロプロセッサ1は、トルク指令iとカウンタ8で
検出された同期電動機6の位置xを用いて演算を行い、
2相の電流指令Iu、IvをそれぞれD/A変換器2、
3によってデジタル/アナログ変換して2相/3相変換
回路4に出力する。2相/3相変換回路4は、入力した
2相の電流指令を3相の電流指令iu、iv、iwに変
換し、パワーアンプ5を制御する。パワーアンプ5は、
これら3相の電流指令iu、iv、iwに対応した電流
を同期電動機6に供給して同期電動機6を駆動する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a block diagram showing a circuit configuration of a drive device by vector control of a synchronous motor (three phases) to which the method for correcting a magnetic field pole position of the synchronous motor of the present invention is applied.
The encoder 7 detects the rotational position of the synchronous motor 6.
The microprocessor 1 performs calculation using the torque command i and the position x of the synchronous motor 6 detected by the counter 8,
Two-phase current commands Iu and Iv are applied to the D / A converter 2,
Digital / analog conversion is performed by 3 and output to the 2-phase / 3-phase conversion circuit 4. The 2-phase / 3-phase conversion circuit 4 converts the input 2-phase current command into 3-phase current commands iu, iv, and iw, and controls the power amplifier 5. The power amplifier 5 is
Currents corresponding to these three-phase current commands iu, iv, and iw are supplied to the synchronous motor 6 to drive the synchronous motor 6.

【0009】図4は、マイクロプロセッサ1のブロック
図である。界磁極位置演算器101は、位置情報xより
仮の界磁極位置θを演算する。速度演算器102は、位
置情報xの時間差分(微分)で速度を演算する。加速度
演算器103は、速度演算器102の速度情報の時間差
分(微分)で加速度を演算する。トルク指令発生器10
4は、界磁極位置補正量の推定中は、後述のパターンに
従ったトルク指令iを発生し、推定後は制御に応じたト
ルク指令iを生成する。トルク極性判定器105は、加
速度情報をもとに実際の界磁極位置φと印加する電流指
令の位相ρとの位相差δに係わるcos(δ)の符号を
判定する。すなわち、トルク極性判定器105は、電流
位相の補正量δ1 の推定中は、任意の電流位相補正量γ
に対して、まずトルク指令0のときの速度変化(加速
度)Acc1を記憶する。Acc1は外乱による加速度
である。ここで、加速度Acc1を予め設定している加
速度Acc2と比較して大きい方を加速度の大きさを判
定する基準加速度Acc0とする。できれば、Acc0
はAcc1よりも5%以上大きい値とする。一定時間お
きに加速度Acc3を計算し、基準加速度Acc0より
大きくなったときの加速度の符号で発生トルクの極性を
判断する。もし、指令が最大トルク指令になっても加速
度Acc3が基準加速度Acc0より小さい場合はその
時の加速度Acciの符号で発生トルクの極性を判断す
る。なお、加速度Acc1、Acc3は加速度演算器1
03が測定する。電流位相補正器106は後述する方法
により電流位相補正量δ0 を推定し、発生トルクの極性
が正になるように電流位相補正量γ=δ1 (=δ0 +9
0°)またはγ=δ1 (=δ0 −90°)を出力する。
加算器107は、界磁極位置演算器101の出力である
仮の界磁極位置θと電流位相補正器106の出力である
電流位相補正量γを加算して印加する電流の位相ρを出
力する。この電流の位相ρは正弦関数発生器110によ
ってsin(ρ)に変換される。また、電流の位相ρと
−120°発生器108の出力を加算器109で加算す
ることによりρ−120°となり、正弦関数発生器11
1によってsin(ρ−120°)に変換される。正弦
関数発生器110、111はそれぞれ印加する電流位相
ρおよびρ−120°をアドレスとして与えることで、
プログラムメモリ上に記憶されているsin関数を取り
出すことができる。乗算器112、113はトルク指令
発生器104から出力されたトルク指令iにそれぞれs
in(ρ)、sin(ρ−120°)を乗じて2相の電
流指令Iu、Ivを出力する。
FIG. 4 is a block diagram of the microprocessor 1. The field pole position calculator 101 calculates a temporary field pole position θ from the position information x. The speed calculator 102 calculates the speed based on the time difference (differentiation) of the position information x. The acceleration calculator 103 calculates acceleration by the time difference (differentiation) of the speed information of the speed calculator 102. Torque command generator 10
4 generates a torque command i according to a pattern described later during the estimation of the field pole position correction amount, and after the estimation, generates a torque command i according to the control. The torque polarity determiner 105 determines the sign of cos (δ) related to the phase difference δ between the actual field pole position φ and the phase ρ of the current command to be applied based on the acceleration information. That is, the torque polarity determiner 105 determines that the current phase correction amount γ 1 is being estimated while the current phase correction amount δ 1 is being estimated.
On the other hand, first, the speed change (acceleration) Acc1 when the torque command is 0 is stored. Acc1 is acceleration due to disturbance. Here, the acceleration Acc1 is compared with the preset acceleration Acc2, and the larger one is set as the reference acceleration Acc0 for determining the magnitude of the acceleration. If possible, Acc0
Is 5% or more larger than Acc1. The acceleration Acc3 is calculated at regular intervals, and the polarity of the generated torque is determined by the sign of the acceleration when it becomes larger than the reference acceleration Acc0. Even if the command becomes the maximum torque command, if the acceleration Acc3 is smaller than the reference acceleration Acc0, the polarity of the generated torque is determined by the sign of the acceleration Acci at that time. The accelerations Acc1 and Acc3 are the acceleration calculator 1
03 measures. The current phase corrector 106 estimates the current phase correction amount δ 0 by the method described later, and the current phase correction amount γ = δ 1 (= δ 0 +9 so that the polarity of the generated torque becomes positive.
0 °) or γ = δ 1 (= δ 0 −90 °) is output.
The adder 107 adds the provisional field magnetic pole position θ output from the field magnetic pole position calculator 101 and the current phase correction amount γ output from the current phase corrector 106, and outputs the phase ρ of the applied current. The phase ρ of this current is converted to sin (ρ) by the sine function generator 110. Further, the current phase ρ and the output of the −120 ° generator 108 are added by the adder 109 to obtain ρ−120 °, and the sine function generator 11
It is converted into sin (ρ-120 °) by 1. The sine function generators 110 and 111 give the applied current phases ρ and ρ−120 ° as addresses, respectively,
It is possible to take out the sin function stored in the program memory. The multipliers 112 and 113 respectively add s to the torque command i output from the torque command generator 104.
The two-phase current commands Iu and Iv are output by multiplying in (ρ) and sin (ρ-120 °).

【0010】次に、本実施例における電流位相補正量δ
1 の推定方法を図1のフローチャートを参照にしながら
説明する。 (処理21)初期値を設定する。すなわち、電流位相補
正量γ=0°、推定回数j=1、時間t=−m・Δt
(=t-1)とする。ただし、mは正の整数である。時間
tは、トルク指令iの計算や加速度の測定等の処理の基
準時間である。処理22に進む。 (処理22)後述の方法でトルク指令iを計算する。処
理23に進む。 (処理23)時間tを判定する。t=0の場合、処理2
4に進む。t=k・Δtの場合、処理26に進む。t=
1MAXの場合、処理28に進む。t=t8 (t 8 =8・
1MAX)の場合、処理32に進む。その他は、処理31
に進む。ただし、kは正の整数で、k・△t<t1MAX
ある。t1MAXはトルク指令iがiMAX になる時間であ
る。
Next, the current phase correction amount δ in this embodiment.
1 The estimation method of is referred to the flowchart of FIG.
explain. (Processing 21) Initial values are set. That is, current level complementation
Positive amount γ = 0 °, number of estimations j = 1, time t = −m · Δt
(= T-1). However, m is a positive integer. time
t is the basis of processing such as calculation of torque command i and measurement of acceleration.
It is a quasi-time. Go to process 22. (Processing 22) The torque command i is calculated by the method described later. place
Proceed to reason 23. (Processing 23) The time t is determined. If t = 0, process 2
Go to 4. If t = k · Δt, the process proceeds to step 26. t =
t1MAXIn the case of, the processing proceeds to processing 28. t = t8 (T 8 = 8
t1MAXIn the case of), the process proceeds to process 32. Others, process 31
Proceed to. However, k is a positive integer and k · Δt <t1MAXso
is there. t1MAXIs the torque command iMAX At the time
It

【0011】(処理24)加速度Acc1を測定する。
処理25に進む。 (処理25)加速度Acc1の絶対値とあらかじめ設定
している加速度Acc2(>0)を比較して大きい方を
基準加速度Acc0(>0)とする。処理31に進む。 (処理26)加速度Acc3を測定する。処理27に進
む。 (処理27)加速度Acc3の絶対値と基準加速度Ac
c0を比較する。|Acc3|がAcc0より大きいと
きは処理29へ、そうでないときは処理31に進む。 (処理28)加速度Acc3を測定する。処理29へ進
む。 (処理29)後述の方法で電流位相補正量γを更新す
る。処理30に進む。
(Processing 24) The acceleration Acc1 is measured.
Go to processing 25. (Processing 25) The absolute value of the acceleration Acc1 is compared with the preset acceleration Acc2 (> 0), and the larger value is set as the reference acceleration Acc0 (> 0). Go to processing 31. (Processing 26) The acceleration Acc3 is measured. Go to processing 27. (Process 27) Absolute value of acceleration Acc3 and reference acceleration Ac
Compare c0. If | Acc3 | is greater than Acc0, the process proceeds to step 29, and if not, the process proceeds to step 31. (Processing 28) The acceleration Acc3 is measured. Go to processing 29. (Processing 29) The current phase correction amount γ is updated by the method described later. Go to processing 30.

【0012】(処理30)トルク指令iを作成する基準
時間t1 を求める。t1 =tとする。ここで、tは加速
度Acc3の絶対値が基準加速度Acc0より大きくな
った時間か、t1MAXである。処理31に進む。 (処理31)時間を更新する。t=t+Δtとする。処
理22に進む。 (処理32)時間を初期値に戻す。t=−m・Δtとす
る。処理33に進む。 (処理33)推定回数jと最大推定回数jmAX とを比較
する。jがjmAX より小さいときは処理34へ、そうで
ないときは処理35へ進む。 (処理34)推定回数jを更新する。j=j+1とす
る。処理22に進む。 (処理35)後述の方法によりで電流位相補正量δ1
決定する。処理を終了する。
(Process 30) A reference time t 1 for creating the torque command i is determined. Let t 1 = t. Here, t is either time the absolute value of the acceleration Acc3 is larger than the reference acceleration Acc0, a t 1MAX. Go to processing 31. (Processing 31) The time is updated. Let t = t + Δt. Go to process 22. (Process 32) The time is returned to the initial value. Let t = −m · Δt. Go to process 33. (Process 33) The estimated number of times j is compared with the maximum estimated number of times j mAX . If j is smaller than j mAX, the process proceeds to step 34, and if not, the process proceeds to step 35. (Processing 34) The estimated number of times j is updated. Let j = j + 1. Go to process 22. (Processing 35) The current phase correction amount δ 1 is determined by the method described later. The process ends.

【0013】次に、図2により電流位相補正量γを更新
する方法を説明する。 (処理41)推定回数jを判定する。j=1の場合は処
理42に、j=2〜j mAX の場合は、処理45に進む。
なお、図1の説明よりj>jmAX になることはない。 (処理42)加速度Acc3の符号を調べる。Acc3
≧0の場合は、処理43に進む。Acc3<0の場合
は、処理44に進む。 (処理43)正の加速度が得られる限界値(以下、正の
限界値と略す)γp 、負の加速度が得られる限界値(以
下、負の限界値と略す)γm を初期化する。γ p =0
°、γm =180°とする。処理48に進む。なお、γ
p は加速度Acc3≧0と判断した時のδ0 にもっとも
近い電流位相補正量γを入れる。γm は加速度Acc3
<0と判断した時のδ0 にもっとも近い電流位相補正量
γを入れる。
Next, the current phase correction amount γ is updated according to FIG.
I will explain how to do. (Processing 41) The estimation number j is determined. If j = 1, then
In reason 42, j = 2 to j mAX In the case of, the processing proceeds to processing 45.
From the description of FIG. 1, j> jmAX Never be. (Process 42) The sign of the acceleration Acc3 is checked. Acc3
If ≧ 0, the process proceeds to step 43. When Acc3 <0
Proceeds to process 44. (Processing 43) Limit value at which positive acceleration is obtained (hereinafter,
Abbreviated as limit value) γp , The limit value for negative acceleration (below
Below, abbreviated as negative limit value) γm To initialize. γ p = 0
°, γm = 180 °. Go to process 48. Note that γ
p Is δ when it is determined that the acceleration Acc3 ≧ 00 Most
Insert a close current phase correction amount γ. γm Is the acceleration Acc3
Δ when it is judged as <00 Current phase correction amount closest to
Insert γ.

【0014】(処理44)正の限界値γp 、負の限界値
γm を初期化する。γp =180°、γm =0°とす
る。処理48に進む。 (処理45)加速度Acc3の符号を調べる。Acc3
≧0の場合は、処理46に進む。Acc3<0の場合
は、処理47に進む。 (処理46)正の限界値γp を更新する。γp =γとす
る。処理48に進む。 (処理47)負の限界値γm を更新する。γm =γとす
る。処理48に進む。 (処理48)次に使用する電流位相補正量γを計算す
る。γ=(γp +γm )/2とする。処理を終了する。 次に、図5をもとにトルク指令iを発生させる方法を述
べる。時間の区切りt2 〜t8 は、処理30で決まった
1 をもとに次のように決める。
(Processing 44) The positive limit value γ p and the negative limit value γ m are initialized. Let γ p = 180 ° and γ m = 0 °. Go to process 48. (Processing 45) The sign of the acceleration Acc3 is checked. Acc3
If ≧ 0, the process proceeds to process 46. If Acc3 <0, the process proceeds to process 47. (Processing 46) The positive limit value γ p is updated. Let γ p = γ. Go to process 48. (Processing 47) The negative limit value γ m is updated. Let γ m = γ. Go to process 48. (Processing 48) The current phase correction amount γ used next is calculated. Let γ = (γ p + γ m ) / 2. The process ends. Next, a method of generating the torque command i will be described with reference to FIG. The time divisions t 2 to t 8 are determined as follows based on t 1 determined in the process 30.

【0015】 t2 =2・t13 =3・t14 =4・t15 =5・t16 =6・t17 =7・t18 =8・t1 トルク指令iは以下のように決定する。t-1≦t<0の
ときは、i=0とする。t-1=−m・Δtである。0≦
t<t1 のときは、i=f(t)とする。関数f(t)
は、f(0)=0、かつf(t1 )=iMAX で区間0≦
t≦t1 で単調増加するものとする。なお、iMAX は最
大のトルク指令が望ましいが、最大トルク指令より小さ
くてもかまわない。例えば最大トルク指令の90%や5
0%でよい。
T 2 = 2 · t 1 t 3 = 3 · t 1 t 4 = 4 · t 1 t 5 = 5 · t 1 t 6 = 6 · t 1 t 7 = 7 · t 1 t 8 = 8 · The t 1 torque command i is determined as follows. When t −1 ≦ t <0, i = 0. t −1 = −m · Δt. 0 ≦
When t <t 1 , i = f (t). Function f (t)
Is f (0) = 0 and f (t 1 ) = i MAX , and the interval 0 ≦
It is assumed that it increases monotonically when t ≦ t 1 . Note that i MAX is preferably a maximum torque command, but it may be smaller than the maximum torque command. For example, 90% of maximum torque command or 5
0% is sufficient.

【0016】t1 ≦t<t2 のときは、i=f(t2
t)とする。t2 ≦t<t3 のときは、i=−f(t−
2 )とする。t3 ≦t<t4 のときは、i=−f(t
4 −t)とする。t4 ≦t<t5 のときは、i=−f
(t−t4 )とする。t5 ≦t<t6 のときは、i=−
f(t6 −t)とする。t6 ≦t<t7 のときは、i=
f(t−t6 )とする。t7 ≦t<t8 のときは、i=
f(t8 −t)とする。図6は、f(t)として1次関
数を用いた例で、t1 =t1MAXの場合である。 f(t)=iMAX /t1MAX・t 図7は、図6と同じf(t)を使用しているが、tがt
1MAXになる前に|Acc3|>Acc0となった場合
で、t1 =t1MID(<t1MAX)のときの例である。トル
ク指令iの目標値の絶対値は、時間t1 におけるトルク
指令iMID (<i MAX )になる。また、トルク指令iを
与える時間は8・t1MAX+t-1から8・t 1MID+t-1
なり、短縮される。
T1 ≤t <t2 , I = f (t2 −
t). t2 ≤t <t3 , I = -f (t-
t2 ). t3 ≤t <tFour , I = -f (t
Four -T). tFour ≤t <tFive When, i = -f
(T-tFour ). tFive ≤t <t6 When, i =-
f (t6 -T). t6 ≤t <t7 When, i =
f (t-t6 ). t7 ≤t <t8 When, i =
f (t8 -T). FIG. 6 shows the primary function as f (t).
In an example using numbers, t1 = T1MAXIs the case. f (t) = iMAX / T1MAX• t Figure 7 uses the same f (t) as Figure 6, but t is t
1MAXIf | Acc3 |> Acc0 before
And t1 = T1 MID(<T1MAX) Is an example. Toll
The absolute value of the target value of the command i is the time t1 Torque at
Command iMID (<I MAX )become. In addition, the torque command i
Time to give is 8t1MAX+ T-1From 8 ・ t 1 MID+ T-1To
Will be shortened.

【0017】図8は、印加する電流の大きさによらず発
生トルクが0となる電流位相補正量δ0 から最大トルク
が得られる電流位相補正量δ1 を求める方法を説明する
図である。図8において斜線の部分がAcc3≧0にな
る電流位相補正量γの範囲である。電流位相補正量γ=
0°のときの加速度Acc3の符号により次の組み合わ
せが考えられる。 (1)Acc3≧0のとき(図8(1)と(4)に対
応) δ1 =δ0 −90° (2)Acc3<0のとき(図8(2)と(3)に対
応) δ1 =δ0 +90° なお、δ0 は必ず0°と180°の間で求まる。
FIG. 8 is a diagram for explaining a method for obtaining the current phase correction amount δ 1 that gives the maximum torque from the current phase correction amount δ 0 at which the generated torque becomes 0 regardless of the magnitude of the applied current. In FIG. 8, the shaded portion is the range of the current phase correction amount γ where Acc3 ≧ 0. Current phase correction amount γ =
The following combinations are possible depending on the sign of the acceleration Acc3 at 0 °. (1) When Acc3 ≧ 0 (corresponding to (1) and (4) in FIG. 8) δ 1 = δ 0 −90 ° (2) When Acc3 <0 (corresponding to (2) and (3) in FIG. 8) δ 1 = δ 0 + 90 ° Note that δ 0 is always found between 0 ° and 180 °.

【0018】以上、回転形の同期電動機について説明し
たが、直動形の同期電動機でもトルクを推力に置き換え
ることにより同様のことがいえる。
Although the rotary synchronous motor has been described above, the same can be said for a direct acting synchronous motor by replacing the torque with the thrust.

【0019】[0019]

【発明の効果】以上説明したように、本発明は、下記の
ような効果がある。 (1)請求項1の発明は、加速度の大きさに応じて与え
る電磁力指令を変更することにより、回転量(移動量)
を少なく、かつ発生電磁力の極性の判断の精度を落とさ
ずに電流位相の補正量を求めることができる。 (2)請求項2の発明は、第2の目標値の後の0指令ま
でで速度を開始時点と同じに戻すことで、最後の0指令
までで位置も開始時点と同じに戻すことができる。電流
位相の補正量を変化させても外乱が変化しなければ、同
じ条件で加速度の極性を判断できる。 (3)請求項3の発明は、関数の発生が簡単にできる。 (4)請求項4の発明は、加速度が大きいときに電磁力
指令を小さくするので、仮の目標値のままよりも回転量
(移動量)が少なくなる。 (5)請求項5の発明は、外乱による加速度よりも基準
加速度を大きくしているので、外乱による電磁力極性判
定のミスをなくすことができる。 (6)請求項6の発明は、各補正量に対し、直前の0指
令における外乱加速度を測定することができるので、外
乱が変化しても対応できる。
As described above, the present invention has the following effects. (1) The invention of claim 1 changes the electromagnetic force command given in accordance with the magnitude of the acceleration to change the rotation amount (movement amount).
It is possible to obtain the correction amount of the current phase without reducing the accuracy of the determination of the polarity of the generated electromagnetic force. (2) According to the invention of claim 2, the velocity can be returned to the same as the start time by the 0 command after the second target value, so that the position can be returned to the same as the start time by the last 0 command. . If the disturbance does not change even if the correction amount of the current phase is changed, the polarity of acceleration can be determined under the same conditions. (3) In the invention of claim 3, the function can be easily generated. (4) According to the invention of claim 4, the electromagnetic force command is reduced when the acceleration is large, so that the rotation amount (movement amount) is smaller than when the provisional target value is maintained. (5) According to the invention of claim 5, the reference acceleration is made larger than the acceleration due to the disturbance, so that the mistake of the electromagnetic force polarity determination due to the disturbance can be eliminated. (6) According to the invention of claim 6, the disturbance acceleration at the immediately preceding 0 command can be measured for each correction amount, so that it is possible to cope with the change in the disturbance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すフローチャートであ
る。
FIG. 1 is a flowchart showing an embodiment of the present invention.

【図2】本発明の電流位相補正量を更新する方法を示す
フローチャートである。
FIG. 2 is a flowchart showing a method of updating a current phase correction amount according to the present invention.

【図3】本発明が適用される同期電動機ベクトル制御の
回路構成を示すブロック図である。
FIG. 3 is a block diagram showing a circuit configuration of synchronous motor vector control to which the present invention is applied.

【図4】マイクロプロセッサ1を表すブロック図であ
る。
FIG. 4 is a block diagram showing a microprocessor 1.

【図5】本発明のトルク指令の生成法を説明する図であ
る。
FIG. 5 is a diagram illustrating a method of generating a torque command according to the present invention.

【図6】本発明のトルク指令を一次関数用いて生成する
場合を説明する図である。
FIG. 6 is a diagram illustrating a case where a torque command of the present invention is generated using a linear function.

【図7】本発明のトルク指令を一次関数用いて生成し、
かつ加速度が大きくて推力指令がiMAX まで必要としな
い場合を説明する図である。
FIG. 7 is a diagram illustrating a torque command of the present invention generated using a linear function,
It is a figure explaining the case where acceleration is large and thrust command does not require up to i MAX .

【図8】本発明の電流位相補正量δ1 を求める説明図で
ある。
FIG. 8 is an explanatory diagram for obtaining a current phase correction amount δ 1 of the present invention.

【符号の説明】[Explanation of symbols]

1 マイクロプロセッサ 2、3 D/A変換器 4 2/3相変換回路 5 パワーアンプ 6 同期電動機 7 エンコーダ 8 カウンタ 21〜35、41〜48 処理 101 速度検出器 102 加速度検出器 103 トルク極性判定器 104 トルク指令発生器 105 仮の磁極位置検出器 106 電流位相補正器 107 −120°発生器 108、109 加算器 110、111 正弦関数発生器 112、113 乗算器 1 Microprocessor 2, 3 D / A converter 4 2/3 phase conversion circuit 5 Power amplifier 6 Synchronous electric motor 7 Encoder 8 Counter 21-35, 41-48 Processing 101 Speed detector 102 Acceleration detector 103 Torque polarity determiner 104 Torque command generator 105 Temporary magnetic pole position detector 106 Current phase corrector 107-120 ° generator 108,109 Adder 110,111 Sine function generator 112,113 Multiplier

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 印加する電流の位相(ρ)の補正量
(γ)を変化させて、印加する電流の大きさにかかわら
ず発生電磁力が零になる電流位相補正量(δ0 )を、前
記発生電磁力の極性を加速度の極性より判定して求め、
前記電流位相補正量(δ0 )を用いて前記発生電磁力が
最大になる電流位相補正量(δ1 )を導出し、前記電流
位相補正量(δ1 )と位置検出器で検出された仮の界磁
極位置(φ)より印加する電流の位相(ρ)を決定して
同期電動機をベクトル制御する方法において、電磁力指
令を仮の目標値まで単調増加させて前記加速度を随時求
めていき、前記加速度が大きいときは前記目標値を小さ
くし、前記加速度が小さいときは目標値を大きくするこ
とを特徴とする、同期電動機の界磁極補正方法。
1. A current phase correction amount (δ 0 ) at which the generated electromagnetic force becomes zero regardless of the magnitude of the applied current, by changing the correction amount (γ) of the applied current phase (ρ). Obtained by determining the polarity of the generated electromagnetic force from the polarity of acceleration,
The current phase correction amount (δ 1 ) is used to derive the current phase correction amount (δ 1 ) that maximizes the generated electromagnetic force, and the current phase correction amount (δ 1 ) and the temporary detector detected by the position detector are derived. In the method of determining the phase (ρ) of the current to be applied from the field pole position (φ) and vector-controlling the synchronous motor, the electromagnetic force command is monotonically increased to a provisional target value to obtain the acceleration at any time, A method of correcting a magnetic field pole of a synchronous motor, comprising: decreasing the target value when the acceleration is large and increasing the target value when the acceleration is small.
【請求項2】 印加する電流の位相(ρ)の補正量
(γ)を変化させて、印加する電流の大きさにかかわら
ず発生電磁力が零になる電流位相補正量(δ0 )を、前
記発生電磁力の極性を加速度の極性より判定して求め、
前記電流位相補正量(δ0 )を用いて前記発生電磁力が
最大になる電流位相補正量(δ1 )を導出し、前記電流
位相補正量(δ1 )と位置検出器で検出された仮の界磁
極位置(φ)より印加する電流の位相(ρ)を決定して
同期電動機をベクトル制御する方法において、前記電磁
力指令を0から第1の目標値まで単調に変化させ、第1
の目標値の時間を軸として対称に0まで単調に変化さ
せ、次に前記電磁力指令0を軸として対称に第1の目標
値と絶対値が等しい極性の異なる第2の目標値まで変化
させ、再び0まで単調に変化させ、さらに今までと全く
逆に前記電磁力指令を第2の目標値、0、第1の目標
値、0と変化させることを特徴とする、同期電動機の界
磁極補正方法。
2. A correction amount (γ) of the phase (ρ) of the applied current is changed so that a current phase correction amount (δ 0 ) at which the generated electromagnetic force becomes zero regardless of the magnitude of the applied current, Obtained by determining the polarity of the generated electromagnetic force from the polarity of acceleration,
The current phase correction amount (δ 1 ) is used to derive the current phase correction amount (δ 1 ) that maximizes the generated electromagnetic force, and the current phase correction amount (δ 1 ) and the temporary detector detected by the position detector are derived. In the method of vector-controlling the synchronous motor by determining the phase (ρ) of the applied current from the field magnetic pole position (φ), the electromagnetic force command is changed monotonically from 0 to the first target value,
Of the target value is symmetrically changed to 0 about the time, and then the electromagnetic force command 0 is changed symmetrically to the second target value whose polarity is different from that of the first target value in absolute value. , A monotonic change again to 0, and further, the electromagnetic force command is changed to a second target value, 0, a first target value, 0 in a completely opposite manner to the above, the field pole of the synchronous motor. Correction method.
【請求項3】 前記電磁力指令を与える関数が、単調に
変化させる区間で一次曲線である、請求項1または2記
載の同期電動機の界磁極位置補正方法。
3. The method of correcting a magnetic field pole position of a synchronous motor according to claim 1, wherein the function for giving the electromagnetic force command is a linear curve in a monotonically changing section.
【請求項4】 前記電磁力指令を0より仮の第1の目標
値まで変化させている間に前記加速度を逐次検出し、前
記加速度の大きさが基準の加速度より大きくなれば、第
1の目標値をその時点の電磁力指令に変更する、請求項
2記載の同期電動機の界磁極位置補正方法。
4. The acceleration is sequentially detected while the electromagnetic force command is being changed from 0 to a temporary first target value, and if the magnitude of the acceleration becomes larger than a reference acceleration, the first acceleration is detected. The method of correcting a magnetic field pole position of a synchronous motor according to claim 2, wherein the target value is changed to an electromagnetic force command at that time.
【請求項5】 電磁力指令0の時の加速度より大きい値
を前記基準の加速度とする請求項4記載の同期電動機の
界磁極位置補正方法。
5. The field pole position correcting method for a synchronous motor according to claim 4, wherein a value larger than the acceleration when the electromagnetic force command is 0 is used as the reference acceleration.
【請求項6】 ある補正量と次の補正量の間で電磁力指
令0の区間を設ける請求項2記載の同期電動機の界磁極
位置補正方法。
6. The method of correcting a magnetic field pole position of a synchronous motor according to claim 2, wherein a section of electromagnetic force command 0 is provided between a certain correction amount and a next correction amount.
JP32536194A 1994-12-27 1994-12-27 Method of correcting field pole position of synchronous motor Expired - Fee Related JP3289758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32536194A JP3289758B2 (en) 1994-12-27 1994-12-27 Method of correcting field pole position of synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32536194A JP3289758B2 (en) 1994-12-27 1994-12-27 Method of correcting field pole position of synchronous motor

Publications (2)

Publication Number Publication Date
JPH08182399A true JPH08182399A (en) 1996-07-12
JP3289758B2 JP3289758B2 (en) 2002-06-10

Family

ID=18175973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32536194A Expired - Fee Related JP3289758B2 (en) 1994-12-27 1994-12-27 Method of correcting field pole position of synchronous motor

Country Status (1)

Country Link
JP (1) JP3289758B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088164A (en) * 2001-09-12 2003-03-20 Shi Control Systems Ltd Detecting method for phase of synchronous motor and controller for synchronous motor
US9312799B2 (en) 2011-10-21 2016-04-12 Mitsubishi Heavy Industries, Ltd. Motor control device and motor control method
US9350282B2 (en) 2011-10-21 2016-05-24 Mitsubishi Heavy Industries, Ltd. Motor control device and motor control method
US9438156B2 (en) 2011-10-21 2016-09-06 Mitsubishi Heavy Industries, Ltd. Motor control device and motor control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088164A (en) * 2001-09-12 2003-03-20 Shi Control Systems Ltd Detecting method for phase of synchronous motor and controller for synchronous motor
JP4659298B2 (en) * 2001-09-12 2011-03-30 住友重機械工業株式会社 Synchronous motor phase detection method and synchronous motor control device
US9312799B2 (en) 2011-10-21 2016-04-12 Mitsubishi Heavy Industries, Ltd. Motor control device and motor control method
US9350282B2 (en) 2011-10-21 2016-05-24 Mitsubishi Heavy Industries, Ltd. Motor control device and motor control method
US9438156B2 (en) 2011-10-21 2016-09-06 Mitsubishi Heavy Industries, Ltd. Motor control device and motor control method

Also Published As

Publication number Publication date
JP3289758B2 (en) 2002-06-10

Similar Documents

Publication Publication Date Title
Cho et al. Torque-ripple reduction and fast torque response strategy for predictive torque control of induction motors
US6781333B2 (en) Drive control apparatus and method of alternating current motor
US6005365A (en) Motor control apparatus
EP0944164B1 (en) Sensorless control method and apparatus of permanent magnet synchronous motor
KR100790914B1 (en) Active reduction of torque irregularities in rotating machines
US6414462B2 (en) Speed control apparatus for synchronous reluctance motor
Briz et al. Dynamic operation of carrier-signal-injection-based sensorless direct field-oriented AC drives
JP4496410B2 (en) Motor control device
US20050146306A1 (en) Sensorless controller of ac motor and control method
CN108631672B (en) Permanent magnet synchronous motor prediction flux linkage control method considering optimal duty ratio modulation
US7187155B2 (en) Leakage inductance saturation compensation for a slip control technique of a motor drive
WO1997021269A1 (en) Method for the field-oriented control of an induction motor
US10199972B2 (en) Control device for an electric motor
CN113067515B (en) Permanent magnet synchronous motor three-vector model prediction flux linkage control method considering duty ratio constraint
EP2493067B1 (en) Method and apparatus for estimating rotor angle of synchronous reluctance motor
JP2002136197A (en) Sensorless vector control apparatus and method
CN108521246B (en) Method and device for predictive control of current of single current sensor of permanent magnet synchronous motor
US6242882B1 (en) Motor control apparatus
JPH08182399A (en) Method for correcting field pole position in synchronous motor
US7043395B2 (en) Method for detecting the magnetic flux the rotor position and/or the rotational speed
CN114123904B (en) Predictive current increment control method suitable for operation of permanent magnet synchronous motor in high-speed region
CN113824364A (en) Method, system, equipment and medium for flux weakening control of permanent magnet synchronous motor
JPH09238492A (en) Control equipment of ac motor
JP2003088166A (en) Initial magnetic pole estimator for ac synchronous motor
JP2000324879A (en) Motor controller

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees