JPH0818181B2 - Broach for helical internal gear machining - Google Patents

Broach for helical internal gear machining

Info

Publication number
JPH0818181B2
JPH0818181B2 JP63160995A JP16099588A JPH0818181B2 JP H0818181 B2 JPH0818181 B2 JP H0818181B2 JP 63160995 A JP63160995 A JP 63160995A JP 16099588 A JP16099588 A JP 16099588A JP H0818181 B2 JPH0818181 B2 JP H0818181B2
Authority
JP
Japan
Prior art keywords
broach
angle
cutting
machining
helical internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63160995A
Other languages
Japanese (ja)
Other versions
JPH0215915A (en
Inventor
繁夫 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Aisin AW Co Ltd
Original Assignee
Nachi Fujikoshi Corp
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, Aisin AW Co Ltd filed Critical Nachi Fujikoshi Corp
Priority to JP63160995A priority Critical patent/JPH0818181B2/en
Publication of JPH0215915A publication Critical patent/JPH0215915A/en
Publication of JPH0818181B2 publication Critical patent/JPH0818181B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はヘリカル内歯車の切削加工に用いられるブ
ローチに関する。
The present invention relates to a broach used for cutting a helical internal gear.

(従来の技術) ヘリカル内歯車切削用として一般的に用いられている
ブローチは、第1図に示すように本体10には引張部1か
ら後方支持部2に向かって刃高が高くなる外径方向切削
用円筒刃部3、該刃部に続き歯厚方向切削用円筒刃部4
及び仕上用円筒刃部5が設けられている。軸心(X−
X)に対してスプラインねじれ角(β)に沿って多数の
切刃6,6aが前記外径方向切削用円筒刃部3及び歯厚方向
切削用円筒刃部4に形成される。
(Prior Art) A broach generally used for cutting a helical internal gear has an outer diameter in which a blade height increases from a tension portion 1 to a rear support portion 2 in a main body 10 as shown in FIG. Direction cutting cylindrical blade portion 3 and, following the blade portion, tooth thickness direction cutting cylindrical blade portion 4
And a finishing cylindrical blade portion 5 are provided. Axis (X-
X), a large number of cutting edges 6, 6a are formed in the outer diameter cutting cylindrical blade portion 3 and the tooth thickness direction cutting cylindrical blade portion 4 along the spline twist angle (β).

従来のヘリカル内歯車加工用ブローチは、第4図に示
すようにブローチを構成する円筒刃部4,5に長手方向に
所定のスプラインねじれ角(β)をもって、後方に向か
って刃高を高くする多数の刃列8又は歯厚方向に次第に
刃幅を大にしていく多数の刃列8aが形成され、かつブロ
ーチの軸心(X−X)に対して直交する多数の刃溝7
(以下、軸直刃溝を称する)を施設して、各刃列8,8aに
多数の切刃6を形成したものである。さらに、第2図に
近似したブローチであって、刃溝7aをスプラインねじれ
角(β)に直角にねじったものが採用されている(特公
昭46−5669号)。この場合、β(スプラインねじれ角)
≒α(刃溝ねじれ角)であり、以下において、かかる刃
溝7aを歯直刃溝と称する。
As shown in Fig. 4, the conventional helical internal gear machining broach has a predetermined spline helix angle (β) in the longitudinal direction of the cylindrical blade portions 4 and 5 constituting the broach, and the blade height is increased rearward. A large number of blade rows 8 or a large number of blade rows 8a whose blade width gradually increases in the tooth thickness direction are formed, and a large number of blade grooves 7 orthogonal to the axis (XX) of the broach.
A large number of cutting blades 6 are formed in each of the blade rows 8 and 8a (hereinafter referred to as a shaft straight blade groove). Further, a broach similar to that shown in FIG. 2 is used in which the blade groove 7a is twisted at a right angle to the spline twist angle (β) (Japanese Patent Publication No. 46-5669). In this case, β (spline twist angle)
≉α (helix groove helix angle), and in the following, the blade groove 7a is referred to as a tooth straight blade groove.

(発明が解決しようとする課題) 近年、ブローチ加工された内歯車には高精度のものが
要求されているが、上記の軸直刃溝を有するブローチで
は被削歯車のリードには第6図に示す「ドッグレッグ」
と呼ばれる誤差を生じる場合が多く、高精度歯車の要求
を満足することができない。第6図では11は被削歯車、
Eはリード誤差、βはスプラインねじれ角を示す。一
方、上記の歯直刃溝を有するブローチも、歯車精度が必
ずしも充分に向上しなかった。
(Problems to be Solved by the Invention) In recent years, highly accurate internal gears that have been broached have been required, but in the broach having the shaft straight blade groove described above, FIG. "Dog legs" shown in
In many cases, an error referred to as "high-precision gear" cannot be satisfied. In FIG. 6, 11 is a gear to be cut,
E is a read error, and β is a spline twist angle. On the other hand, the broach having the above-mentioned tooth straight blade groove does not always sufficiently improve the gear accuracy.

(課題を解決するための手段) スプラインねじれ角βが、19゜<β≦34゜なるヘリカ
ル内歯車加工用ブローチにおいて、刃溝ねじれ角αとス
プラインねじれ角βとを交差させて長手方向に多数の切
刃を形成すると共に、刃溝ねじれ角αを0゜<α<38゜
−βの範囲に限定することによって、鈍角フランクの各
切刃の切刃角δを90゜+(β−19゜)×2<δ<90゜+
βの範囲に設定し、これによりブローチ本体の軸心(X
−X)に対し加工面方向に切削合力が作用する側即ちワ
ークを逃す方向に力が働く側(以下においてマイナス側
と言うことにする)に切刃の作用角θを配するようにす
ることによって、精度の高いヘリカル内歯車の加工を可
能としたヘリカル内歯車加工用ブローチに関する。スプ
ラインねじれ角βを、19゜<β≦34゜に限定した理由は
ヘリカル内歯車加工用ブローチの製作加工は、軸直刃溝
のものが最も加工容易で、次に刃直刃溝のものが加工容
易で、本願発明を含むこれら以外のものは最も加工が難
しくなるが、スプラインねじれ角βが19゜以下の本願発
明のブローチで仕上げられた被削歯車は加工が最も容易
な軸直刃溝の、ブローチで仕上げられた被削歯車と比
べ、そして、スプラインねじれ角βが34゜を越える本願
発明のブローチで仕上げられた被削歯車は次に加工容易
な刃直刃溝のブローチで仕上げられた被削歯車と比べ、
それぞれ本願発明のブローチの製作加工の困難性を凌ぐ
ほどのリード誤差を少なくする性能上の優位性がみられ
ず本発明の経済的効果が少ないからである。ここで、切
刃角δとスプラインねじれ角βとの不等式をδ=90゜+
β−αなる恒等式により整理すると、刃溝ねじれ角αと
スプラインねじれ角βとの不等式は0゜<α<38゜−β
の関係になるようにすることと等価である。なお式δ=
90゜+β−αは第3図に示す。ここで述べた不等式は、
本来実験データを基にしたものである。
(Means for Solving the Problem) In a broach for machining a helical internal gear with a spline twist angle β of 19 ° <β ≦ 34 °, a large number of blade groove twist angles α and spline twist angles β intersect in the longitudinal direction. The cutting edge angle δ of each cutting edge of the obtuse flank is 90 ° + (β-19) by forming the cutting edge and limiting the groove helix angle α in the range of 0 ° <α <38 ° -β.゜) × 2 <δ <90 ° +
Set to the range of β, so that the axis of the broach body (X
-X), the working angle θ of the cutting edge is arranged on the side where the resultant cutting force acts in the machining surface direction, that is, the side where the force acts in the direction of escape of the workpiece (hereinafter referred to as the minus side). The present invention relates to a broach for machining a helical internal gear that enables highly accurate machining of a helical internal gear. The reason for limiting the spline helix angle β to 19 ° <β ≤ 34 ° is that the broach for helical internal gear machining is the easiest to process with a straight groove on the shaft, and then the one with a straight groove on the blade. It is easy to process, and the other things including the present invention are the most difficult to process, but the work gear finished with the brooch of the present invention with a spline helix angle β of 19 ° or less is the easiest straight groove for machining. Compared with the work gear finished with the broach, and the work gear finished with the broach of the present invention in which the spline twist angle β exceeds 34 °, the work gear finished next is the broach with straight flutes that are easy to machine. Compared with the cut gear
This is because the superiority in performance of reducing the lead error, which exceeds the difficulty of manufacturing and processing the broach of the present invention, is not seen, and the economical effect of the present invention is small. Here, the inequality between the cutting edge angle δ and the spline twist angle β is δ = 90 ° +
When arranged by the identity β-α, the inequality between the groove groove helix angle α and the spline helix angle β is 0 ° <α <38 ° -β
It is equivalent to making the relationship of. Note that the formula δ =
90 ° + β-α is shown in FIG. The inequality described here is
Originally based on experimental data.

(作 用) 本発明に係るブローチは第3図に要部を示すように、
切刃角δ=90゜+β−αのとき、作用角θがマイナス側
に位置している。なおα:刃溝ねじれ角、β:スプライ
ンのねじれ角、F1:切削主分力、F2:切削背分力、F3:F1,
F2の合成力、φ:合成角=tan-1(F2/F1)、δ:切刃
角、で軸心X−Xに対するF1,F2合成力の作用角θは、
θ=β−φとなる。
(Operation) The brooch according to the present invention, as shown in FIG.
When the cutting edge angle δ = 90 ° + β-α, the working angle θ is located on the minus side. Where α is the helix angle of the flute, β is the helix angle of the spline, F 1 is the main cutting force component, F 2 is the cutting back force component, F 3 is the F 1 ,
Resultant force of F 2, phi: Synthesis angle = tan -1 (F 2 / F 1), δ: cutting angle, in F 1 with respect to the axis X-X, F 2 working angle of the resultant force θ is
θ = β−φ.

上記のように、作用角θ(θ=β−φ)がマイナス側
即ちブローチ本体の軸心(X−X)に対し加工面方向に
切削合力が作用してワークを逃す方向に力が働く側にあ
って歯車精度を向上させる。ちなみに第5図に従来の歯
直刃溝のブローチの要部を示すと作用角θの位置は本発
明と逆の位置、即ちプラス側に位置することが分る。こ
の位置では切削合成力はワークを引き寄せる力が働く。
As described above, the working angle θ (θ = β-φ) is on the negative side, that is, the side where the resultant force acts in the direction of the machining surface in which the cutting resultant force acts on the axial center (XX) of the broach body to escape the workpiece. Therefore, the gear accuracy is improved. By the way, FIG. 5 shows the main part of the conventional broach of the tooth straight blade groove, and it is found that the position of the working angle .theta. Is opposite to that of the present invention, that is, the plus side. At this position, the combined cutting force acts to pull the workpiece.

(実施例) 刃溝ねじれ角αが7.5゜、スプラインねじれ角βが25
゜、切刃角δが107.5゜、作用角θが−2.7゜のブローチ
でねじれ角25゜の内歯車を切削したところ、第1表に示
すような結果を得た。この結果、本願のブローチでは被
削歯車の精度が向上することが分る。
(Example) Blade groove helix angle α is 7.5 °, spline helix angle β is 25
When an internal gear having a helix angle of 25 ° was cut with a broach having a cutting edge angle δ of 107.5 ° and a working angle θ of -2.7 °, the results shown in Table 1 were obtained. As a result, it can be seen that the broach of the present application improves the accuracy of the gear to be cut.

切刃角δにより合成角φは変化する。一般的に自動車
用内歯車として使用される材質の切刃角δと、作用角θ
の関係は第2表の通りである。
The composite angle φ changes depending on the cutting edge angle δ. Cutting edge angle δ and working angle θ of materials commonly used for automobile internal gears
The relationship is as shown in Table 2.

本発明は、第2表の数値を丸で囲んだ領域である。即
ち本発明はスプラインねじれ角βが19゜をこえ34゜以下
であり、鈍角フランク(切刃角が90゜を越 える側)の対応側の切れ刃角δを90゜+(β−19゜)×
2<δ<90゜+βの関係になるように刃溝ねじれ角αを
配置したものである。このため、作用角θは全てマイナ
ス、換言すればブローチ本体の軸心(X−X)に対し加
工面方向に切削合力が作用する側に位置している。な
お、第2表において数値の囲みのない領域は、従来から
あるブローチであって所望の精度の歯車加工が可能な領
域、数値を三角で囲んだ領域は歯車精度が出ない範囲で
あり、本発明の対象外となる。
The present invention is an area in which the numerical values in Table 2 are circled. That is, in the present invention, the spline twist angle β exceeds 19 ° and is 34 ° or less, and the obtuse flank (the cutting edge angle exceeds 90 °). The angle of cutting edge δ on the corresponding side of 90 ° + (β-19 °) ×
The blade groove helix angle α is arranged so that 2 <δ <90 ° + β. Therefore, the working angles θ are all negative, in other words, they are located on the side where the resultant cutting force acts in the machining surface direction with respect to the axis (XX) of the broach body. In Table 2, the area without numerical values is a conventional broach and is the area where gears can be machined with desired accuracy. The area surrounded by triangles is the range where gear accuracy is not obtained. Not subject to the invention.

(効果) 本発明は、上記のようにブローチ本体の長手方向に多
数の切刃を形成し、スプラインねじれ角βが19゜<β≦
34゜なるヘリカル内歯車加工用ブローチにおいて、刃溝
ねじれ角αを0゜<α<38゜−βの範囲に限定すること
によって、鈍角フランクの各切刃の切刃角δを90゜+
(β−19゜)×2<δ<90゜+βの範囲とし、ブローチ
本体の軸心(X−X)に対し加工面方向に切削合力が作
用する側に切刃の作用角θを配したので、従来品のブロ
ーチのような所謂ドッグレッグと呼ばれる被削歯車にリ
ード誤差を生じることがなく、高精度な加工が可能とな
った。
(Effect) According to the present invention, as described above, a large number of cutting edges are formed in the longitudinal direction of the broach body, and the spline twist angle β is 19 ° <β ≦.
In a 34 ° helical internal gear machining broach, by limiting the blade groove helix angle α to the range of 0 ° <α <38 ° -β, the cutting edge angle δ of each cutting edge of the obtuse flank is 90 ° +
The range of (β-19 °) × 2 <δ <90 ° + β is set, and the working angle θ of the cutting edge is arranged on the side where the resultant cutting force acts in the machining surface direction with respect to the axis (XX) of the broach body. Therefore, it is possible to perform high-precision machining without causing a lead error in a gear to be machined, which is a so-called dog leg, such as a conventional broach.

【図面の簡単な説明】[Brief description of drawings]

第1図は、一般的なヘリカル内歯車加工用ブローチの概
略図、第2図は本発明のブローチの円筒刃部の側面図、
第3図は本発明の要部の説明図、第4図は従来品の軸直
刃溝を有するブローチの側面図、第5図は従来の歯直刃
溝を有するブローチの要部の説明図、第6図は被削歯車
に形成されたドッグレッグと呼ばれるリード誤差の概略
図である。 1……ブローチ本体、6……切刃、6a……切刃、7……
刃溝、7a……刃溝、α……刃溝ねじれ角、β……スプラ
インねじれ角、δ……切刃角、θ……切刃の作用角。
1 is a schematic view of a general broach for processing a helical internal gear, FIG. 2 is a side view of a cylindrical blade portion of the broach of the present invention,
FIG. 3 is an explanatory view of a main part of the present invention, FIG. 4 is a side view of a conventional broach having a shaft straight blade groove, and FIG. 5 is an explanatory view of a main part of a conventional broach having a tooth straight blade groove. , FIG. 6 is a schematic view of a lead error called a dog leg formed on a gear to be cut. 1 ... Brooch body, 6 ... Cutting edge, 6a ... Cutting edge, 7 ...
Blade groove, 7a: Blade groove, α: Blade groove helix angle, β: Spline helix angle, δ: Cutting edge angle, θ: Cutting edge working angle.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】スプラインねじれ角βが、19゜<β≦34゜
なるヘリカル内歯車加工用ブローチにおいて、刃溝ねじ
れ角αとスプラインねじれ角βとを交差させて長手方向
に多数の切刃を形成すると共に、刃溝ねじれ角αを0゜
<α<38゜−βの範囲に限定することによって、鈍角フ
ランクの各切刃の切刃角δを90゜+(β−19゜)×2<
δ<90゜+βの範囲に設定し、これによりブローチ本体
の軸心(X−X)に対し加工面方向に切削合力が作用す
る側即ちワークを逃す方向に力が働く側に切刃の作用角
θを配するようにすることによって、精度の高いヘリカ
ル内歯車の加工を可能にしたヘリカル内歯車加工用ブロ
ーチ。
1. In a broach for machining a helical internal gear having a spline helix angle β of 19 ° <β ≦ 34 °, a large number of cutting edges are formed in the longitudinal direction by intersecting the blade groove helix angle α and the spline helix angle β. By forming and forming the blade groove helix angle α in the range of 0 ° <α <38 ° -β, the cutting edge angle δ of each cutting edge of the obtuse flank is 90 ° + (β-19 °) × 2 <
Set within the range of δ <90 ° + β, so that the cutting blade acts on the side where the resultant cutting force acts in the machining surface direction with respect to the axis of the broach body (XX), that is, the side where the force acts in the work escape direction. A broach for machining helical internal gears that enables highly accurate machining of helical internal gears by arranging the angle θ.
JP63160995A 1988-06-30 1988-06-30 Broach for helical internal gear machining Expired - Lifetime JPH0818181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63160995A JPH0818181B2 (en) 1988-06-30 1988-06-30 Broach for helical internal gear machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63160995A JPH0818181B2 (en) 1988-06-30 1988-06-30 Broach for helical internal gear machining

Publications (2)

Publication Number Publication Date
JPH0215915A JPH0215915A (en) 1990-01-19
JPH0818181B2 true JPH0818181B2 (en) 1996-02-28

Family

ID=15726572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63160995A Expired - Lifetime JPH0818181B2 (en) 1988-06-30 1988-06-30 Broach for helical internal gear machining

Country Status (1)

Country Link
JP (1) JPH0818181B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096219A (en) * 2000-07-21 2002-04-02 Nachi Fujikoshi Corp Helical broach

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3375555A1 (en) * 2017-03-17 2018-09-19 Klingelnberg AG Method for processing the tooth flanks of bevel gear workpieces
CN114042995A (en) * 2021-11-11 2022-02-15 盐城工学院 Combined broach convenient for replacing external precise spiral internal gear

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150907A (en) * 1984-01-19 1985-08-08 Kobe Steel Ltd Helical broach
JP2723532B2 (en) * 1988-04-21 1998-03-09 アイシン・エィ・ダブリュ株式会社 Broach cutter for machining internal helical gear and method for machining internal helical gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096219A (en) * 2000-07-21 2002-04-02 Nachi Fujikoshi Corp Helical broach

Also Published As

Publication number Publication date
JPH0215915A (en) 1990-01-19

Similar Documents

Publication Publication Date Title
WO2016084877A1 (en) End mill and method for manufacturing cutting workpiece
JPH0818181B2 (en) Broach for helical internal gear machining
KR20210136040A (en) Cutting tools, methods for manufacturing cutting tools and methods for machining workpieces
JP3590800B1 (en) End mill
JPH10202422A (en) Broach
US9902004B2 (en) Helical broach
JPH0120008B2 (en)
JPH10315044A (en) Helical broaching method and helical broach
JPH0618737Y2 (en) End mill
JP2535333B2 (en) Milling tool
JP2005144639A (en) Helical broach having blade capable of finishing high-accuracy thick tooth
US2392172A (en) Broach
JPH0347780Y2 (en)
JPH0319003B2 (en)
JP2007098533A (en) Helical broach
JP2532834Y2 (en) Broach for helical internal gear machining
JPH0425083B2 (en)
JPH0214900Y2 (en)
JPH084964Y2 (en) End mill
JP3978148B2 (en) Broach for helical internal gear machining
JP4310778B2 (en) Broach for helical internal gear machining
JP2000094215A (en) Helical broach
JPH0760527A (en) End mill for rough finishing
JPH0611704Y2 (en) Spline brooch
JPH0611715Y2 (en) Brooch for processing internal gears

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080228

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 13